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1 Quick Overview And Topics To Be Covered

Lower bounds are important subject in computer science, but usually we find lower bounds
for deterministic algorithms, but what about lower bounds for randomized algorithms?
In this lecture we are going to develop tools for deriving some lower bounds on randomized
algorithms.
The main topics of this lecture are ”Yao’s Principle” and ”Lower Bounds via Communica-
tion Complexity”.

2 Yao’s Principle

Yao’s principle essentially says that given a lower bound on the expectation of some de-
terministic algorithm, then we can get a lower bound on the worst case expectation of
randomized algorithm for the same problem.
Yao’s Principle:

I there is a probability distribution D on union of YES/NO inputs such
that any deterministic algorithm of query complexity ≤ t is incorrect w.h.p
(probability ≥ δ for some constant δ) for inputs according to D. Then t is a
lower bound on the randomized query complexity.

We won’t prove the correctness of ”Yao’s Principle”, but if you are interested,
and you have knowledge in the field of game theory, then you are more than welcome to
click here for the proof.
Deterministic lower bound can be modeled by decision trees. We know already that a
binary tree with m leaves needs an average of at least logm height. Now, lets apply it on
the following example:

We denote by Ln = {w|w is a n-bit string, and ∃u, v s.t. w = uuRvvR}.
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Theorem. Ω(
√
n) queries are needed in order to test whether some input of length n belongs

to Ln.
i.e., for any tester A for this property s.t.:

• ∀x ∈ Ln Pr(A(x) = Y ES) ≥ 2
3

• ∀x ε− far from Ln
1 Pr(A(x) = NO) ≥ 2

3

A makes at least Ω(
√
n) queries.

Proof. w.l.o.g assume that 6|n.
Define the following distributions:

N = uniform distribution over all the n-bit strings that
are ε− far from Ln

P =


1. pick k ∈R [n6 + 1, n2 ]
2. pick u, v randomly s.t. |u| = k , |v| = n

2 − k
3. output uuRvvR

D =


1. F lip a fair coin
2. If heads output according to N
3. elseways output according to P

Define:
1. E−(l) = {w ∈ {0, 1}n| dist(w,Ln) ≥ εn ∧ w reaches the leaf l}
2. E+(l) = {w ∈ {0, 1}n| w ∈ Ln ∧ w reaches the leaf l}
3. FP = { leaf l s.t. A outputs Y ES at l}
4. FF = { leaf l s.t. A outputs NO at l}

Notice that the total error of A on D = Σl∈FPPrw∈D[w ∈ E−(l)]+Σl∈FFPrw∈D[w ∈ E+(l)]

Claim 1. If t = o(n) then ∀l P rw∈D[w ∈ E−(l)] ≥ ((12 − o(1))2−t

Claim 2. If t = o(
√
n) then ∀l P rw∈D[w ∈ E+(l)] ≥ (12 − o(1))2−t

Before proving the claim let’s notice, that given the claims we can conclude:
Total Error Of A =

∑
l∈FP Prw∈D[w ∈ E−(l)] +

∑
l∈FF Prw∈D[w ∈ E+(l)] ≥ 2t · (12 −

o(1))2−t ≥ 1
2 − o(1) ≫ 1

3
Which proves our theorem.

1meaning the hamming ditance is at least ε
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Now lets prove the claims.

Proof. Claim 1:
The idea is to Lets notice that the number of words in Ln is less or equal to the number of
ways to choose index that separates the palindromes·, number of palindromes of length at
most 1

2n i.e.:

|Ln| ≤ 2
n
2 n

Counting number of words that are ε− close, is at most number of words in Ln multiplied
by the ways to choose where the ”errors” occurred, and how far are the strings from being
in Ln, i.e.:
≤ 2

n
2 n ·

∑εn
i=0

(
n
i

)
≤ 2

n
2
+2(ε log 1

ε
)·n

For the last inequality, we used the second to the last inequality from here
We have 2n−t strings that follow a path to a leaf, plus, because t = o(n) and we can choose
ε small enough such that ε log 1

ε ≤
1
2 (lets say ε≪ 1

8), and we get that:

E−(l) ≥ 2n−t − 2
n
2
+2(ε log 1

ε
)·n > (1− o(1))2n−t

So:
Probw∈D[w ∈ E−(l)] ≥ 1

2ProbN [w ∈ E−(l)] = 1
2
|E−(l)|

2n ≥ 1
2(1− o(1))2−t

This proves claim 1.
Claim 2:
We need to show, that for every fixed set of o(

√
n) queries, there is a big amount of strings

in Ln that path.
How many strings agree with t queries in a leaf? The answer is 2n−l

How many strings in Ln agree with t queries in l? The answer is 2n−l−?
In the homework we will prove this claim.

3 Property Testing Lower Bounds via Communication Com-
plexity

Communication complexity is measured in the amount of communication between processes,
i.e. number of bits communicated by the processes.

Consider a ’hard’ problem of Set Disjointness :
There are two players Alice and Bob with inputs x ∈ {0, 1}n and y ∈ {0, 1}n accordingly.

Disj(x, y) :=
n∨
i=1

xi ∧ yi

A known lower bound to this problem is Ω(n) bits of communication. If
n∑
i=1

xi ≤ k then

the lower bound is Ω(k) bits, this is knows as Sparse Set Disjontess probelm.
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Define: f : {0, 1}n → {0, 1} is k-linear if it is a parity of k-variables, i.e.
f(x) = xi1 ⊕ xi2 ⊕ ...⊕ xik , where ij are disjoint.

Define: Property testing for k-linearity:

K − Linearity Testing =

{
if f is k − linear test passes w.p ≥ 2/3
if f is ε− far from k − linear test fails w.p ≥ 2/3

f is ε− far from k-linear: @g such that g is k-linear ∧ {x|f(x) 6= g(x)}| ≤ 2nε

The reduction from set-disjointness to k-linear property testing problem :

Define
A: f(z) := ⊕zi, i s.t. xi = 1
B: g(w) := ⊕wi, i s.t. yi = 1
h := f ⊕ g

x and y are n-bit vectors such that
n∑
i=1

xi =
n∑
i=1

yi = k, clearly f and g are k-linear.

Now we use Property-Testing algorithm to decide if h is 2k − linear:
A runs Property-Testing algorithm on h (B runs it symmetrically to A).
Whenever A and B need the value of g(x) and f(x) they send each other the values, this is
O(1) bits per query. Also that x is not exchanged due to the public shared randomness.

• A figures f(x) out on its own

• A asks B what g(x) is - B sends 1 bit

• use h := f ⊕ g

• A sends the result to B

Both A and B use known public randomness.
Total amount of bits sent is 2 ∗ amount of queries.

• if x, y are disjoint → h is 2k-linear

• if x, y are not disjoint → h is 1/2-far from every 2k-linear function (2k − 2-linear)

One lower bound for testing set-disjointness is known, it follows that k-linearity testing has
lower bound Ω(k) queries.
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Example:
x = (1000) y = (0011) k = 2
f(x) = zi1 ⊕ zi2 , g(x) = zi3 ⊕ zi4
h(x) = zi1 ⊕ zi2 ⊕ zi3 ⊕ zi4 - h is 4-linear

y’=(0110)
f(x) = zi1 ⊕ zi2 , g(x) = zi2 ⊕ zi3
h′(x) = zi1 ⊕ zi2 ⊕ zi3 ⊕ zi4 = zi1 ⊕ zi4 - h′ is 2-linear
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