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0.1 Notions

• A deterministic algorithm A is called symmetrical if A (x) = A (π (x)) for any permutation π.

• A randomized PASS/FAIL algorithmA is called symmetrical if Pr [ A passes x ] = Pr [ A passes π (x) ]
for any permutation π.

• We denote by UD the uniform distribution over a domain D.

0.2 Today’s lecture

The main subject of today’s lecture is testing properties of distributions. More specifically,

• Examples of cases where uniformity testing was used.

• Formal definition of our goal (A uniformity tester).

• Uniformity tester for `2 distance.

• Modification of the previous uniformity tester for `1 distance.

• Comparing unknown distributions.

1 Examples of uniformity testing

Uniformity testing was used in order to estimate whether or not the lottery results of the past years (of
some different lottery types) are actually uniform.

1.1 New Jersey ”Pick 3” Lottery

In that lottery you pick three digits (from {0, ..., 9}) and if they were the same as the digits that were
randomly selected by the lottery you win. If it was uniform the probability of winning was 1

103 = 1
1000 .

The Chi-squared test on actual data of about twenty years gave low confidence in uniformity despite the
fact that the data was probably uniform, the reason for that is probably the relatively low number of
samples. That gives us a motivation for looking for sub-linear uniformity testing algorithm.

1.2 Multilotek

On that lottery in order to randomly choose the winning numbers, balls with numbers written on them
were pulled out of a machine. It turned out that because of size or shape differences, some balls had a
lower probability of being selected. The uniformity of such machine could have been estimated using a
uniformity testing algorithm.

2 Our Goal

Our goal is to construct for any given ε > 0 a uniformity testing algorithm A that gets as an input a
black-box that can take samples out of an unknown distribution p over the domain D = [n] = {1, ..., n}
and
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1. If p = U[n] then A(p) = PASS with probability ≥ 3
4 .

2. If distance
(
p, U[n]

)
> ε then A(p) = FAIL with probability ≥ 3

4 .

3. Otherwise, either PASS or FAIL may be returned.

The distance functions we will consider are:

• `2 distance: distance(p, q) = ||p− q||2 =
√∑n

i=1 (pi − qi)2.

• `1 distance: distance(p, q) = ||p− q||1 =
∑n
i=1 |pi − qi|.

We note that it is known that ||p− q||2 ≤ ||p− q||1 ≤
√
n · ||p− q||2.

3 Uniformity testing in `2

3.1 Collision Probability

We have already noticed that

||p− U[n]||22 =

n∑
i=1

(pi − 1/n)2 =

n∑
i=1

(p2i − 2 · 1

n
· pi + 1/n2) =

n∑
i=1

p2i − 2 · 1

n

n∑
i=1

pi + n · 1

n2
=

n∑
i=1

p2i −
1

n

As the last term may be written as ||p||22−||U[n]||22, it follows that for p = U = U[n], ||p||22 = n · ( 1
n )2 = 1

n ,

and for any other distribution p 6= U , ||p||22 > 1
n .

The expression
∑n
i=1 p

2
i is exactly the collision probability, which is the probability that two independent

samples s1, s2 from p would collide, the easy proof follows

Pr [s1 = s2] =

n∑
i=1

Pr [s1 = i] · Pr [s2 = i] =

n∑
i=1

p2i

Thus, in order to estimate ||p − U[n]||22, it is enough to estimate the collision probability. That leads to
the following general algorithm outline.

(Interesting note concerning collision probability:
∑n
i=1 p

2
i ≤ pmax ·

∑n
i=1 pi = pmax)

3.2 Algorithm

1. Take s(n) samples from p. (How many?)

2. Let ĉ ← estimate of ||p||22 (the collision probability) from the samples. (How?)

3. If ĉ < 1
n + δ then PASS, else FAIL. (Which δ should we use?)

3.3 How well can we estimate ||p||22?
If ||p− U ||22 > ε2 then by previous arguments ||p||22 > 1

n + ε2.

Let δ < ε2

2 (e.g δ = ε2

4 ) and pick s(n) such that |ĉ− ||p||22| < δ with high probability (≥ 3
4 ). Then

• If p = U then ||p||22 = 1
n and |ĉ− 1

n | < δ, thus, ĉ < 1
n + δ with high probability.

• If ||p− U[n]||22 ≥ ε2 then ĉ ≥ 1
n + ε2 − δ = 1

n + 3
4ε

2 > 1
n + δ with high probability.

All that is left to do is to show how can we choose such s(n).
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3.4 How well can we estimate ||p− U[n]||1?
• If ||p− U ||1 = 0 ⇐⇒ ||p− U[n]||22 = 0 then ||p||22 = 1

n and we need to PASS.

• If ||p − U ||1 > ε then ||p − U[n]||2 > ε√
n
⇒ ||p − U[n]||22 > ε2

n so ||p||22 > 1
n + ε2

n . We need a better

estimation to handle this case (δ < ε2

2n )

3.5 Estimation via recycling

• Take s samples from p: x1, x2, ..., xs

• For each 1 ≤ i ≤ j ≤ s : σij =

{
1 if xi = xj
0 if xi 6= xj

• Output ĉ←
∑
σij

(s
2)

We now have E[ĉ] = 1

(s
2)

∑
i<j E[σij ] = ||p||22 where E[σij ] = Pr[σij = 1]

3.6 Reminder: Chebyshev’s inequality

Pr[|ĉ− ||p||22| > ρ] ≤ V ar(ĉ)
ρ2

Now, to find a sufficient sample size s, we’ll want to bound V ar(ĉ), beacuse if we do,

Pr[|ĉ− ||p||22| > ε2

4 ] ≤ 16·V ar(ĉ)
ε2 . but to do that, we’ll first need to prove a lemma.

3.7 Bounding the variance of ĉ

Lemma 1 V ar(
∑
i,j σij) ≤ 4(

(
s
2

)
||p||22)

3
2

Proof Denote σ̄ij = σij − E[σij ]. We can easily see that each of following facts hold:

1. E[σ̄ij ] = 0

2. E[σ̄ij σ̄kl] ≤ E[σijσkl] (beacuse ∀a,bσ̄ab ≤ σab)

3. (
∑

(p(x)3))
1
3 ≤ (

∑
(p(x)2))

1
2 for a probability vector p.

4. s ≤
√

3
(
s
2

)
and

(
s
2

)
≤ s3

6

5. For two independant variables X,Y E[X · Y ] = E[X] · E[Y ].

6. We can see that (σij · σjk) is equivalent to event that xi, xj , xk are all with the same value. So
E[σij · σjk] =

∑
x∈D(p(x))3

V ar(
∑
i<j

(σij)) = E[(
∑
i<j

σij − E[
∑
i<j

σij ])
2] = E[

∑
i<j

σ̄2
ij ] =

E[
∑
i<j

σ̄2
ij +

∑
i 6=k,j 6=l

σ̄ij σ̄kl +
∑

j 6=k,i<j,l

σ̄ij σ̄il +
∑

i6=k,i<j<k

σ̄ij σ̄jk] =

∑
i<j

E[σ̄2
ij ] +

∑
i6=k,j 6=l

E[σ̄ij σ̄kl] +
∑

j 6=k,i<j,l

E[σ̄ij σ̄il] +
∑

i 6=k,i<j<k

E[σ̄ij σ̄jk]

Lets bound each of the four parts of the last equation seperatly.
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i E[
∑
i<j σ̄

2
ij ] ≤(2) E[

∑
σ2
ij ] =

(
s
2

)
· ||p||22

ii E[
∑
i<j,k<l σ̄ij σ̄kl =(5)

∑
i<j,k<lE[σ̄ij ]E[σ̄kl] =(1) 0

iii E[
∑
σ̄ij σ̄il] ≤

∑
i<j<lE[σijσil] =(6)

(
s
3

)∑
(p(x)3) ≤(3) 2 · s

3

6

∑
x∈D(p(x)2)

3
2 ≤(4)

√
3
(
s
2

) 3
2 (||p||22)

3
2

iv Identical to (iii).

This gives us that V ar(
∑
i,j σij) ≤

(
s
2

)
||p||22 + 0 + 2 ·

√
3
(
s
2

) 3
2 (||p||22)

3
2 ≤ 4(

(
s
2

)
||p||22)

3
2

Fact 2 ∀α∈RV ar(aX) = a2V ar(X)

So V ar(ĉ) = V ar( 1

(s
2)
·
∑
σij) = 1

(s
2)

2 · V ar(
∑
σij)

Now lets bound the distance between ĉ and ||p||22.

E[ĉ] = 1

(s
2)

∑
i<j E[σij ] = 1

(s
2)

∑
i<j Pr[σij = 1] =

(s
2)

(s
2)
||p||22 = ||p||22

Pr[|ĉ− ||p||22| > ε2

4 ] ≤chebishev V ar[ĉ]
ε4 · 42 = 64

((s
2)||p||

2
2)

3
2

(s
2)

2
ε4

= O( 1
ε4·s ) (as ||p||32 ≤ 1).

So for Pr[|ĉ− ||p||22] ≤ 1
4 we’ll need to pick s ≥ Ω( 1

ε4 ).

Conclusion 3 To test uniformity in l2 norm, it is sufficient to take sample size s ≥ Ω( 1
ε4 ).

From this we can get result for l1 norm, using the ||x||1 ≤
√
n|||x||2 but it will cost us a

√
n factor.

Corollary 4 To test uniformity in l1 norm, it is sufficient to take sample size s ≥ Ω( 1
ε4
√
n).

4 Difference in distributions

We now have two distributions, p and q and we want our algorithm to behave like this:

• If p = q output PASS.

• If ||p− q||22 > ε2 or ||p− q||1 > ε output FAIL.

Again, notice: ||p − q||22 =
∑
i p

2
i − 2

∑
i piqi +

∑
i q

2
i so the variance bound depends on the maximum

probability element of q.

4.1 Filter Distribution

1. Learn B = domain elements with probability > b. (We need O( 1
b log( 1

b )) samples)

2. Filter the samples:

• If ∈ B, use the naive method to estimate
∑
i∈B |pi − qi| (O( 1

b ) samples)

• If /∈ B, use the collisions method to distinguish pB = qB from |pB − qB| > ε (small elements,
depends on b)

Picking b = Θ( 1

n
2
3

) optimizes the result.
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