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Lecture 11
Lecturer: Ronitt Rubinfeld Scribe: Amit Levi

Lecture Overview

In this lecture we will cover one of the most basic algorithms for testing boolean functions - Testing
Linearity. In order to establish the proof we will introduce some basic tools from Fourier analysis.

1 Definitions and Introduction

Definition 1 (Linearity) Assume that we have a function f : G → G where G is a finite group. f is
linear (or equivalently, homomorphism), if ∀x, y ∈ G it holds that f(x) + f(y) = f(x+ y).

For example the following functions are linear:

1. f(x) = x

2. f(x) = ax mod p where G = Zp and a ∈ G

3. f(x̄) =
∑
i∈[n] aixi mod 2 where x̄ ∈ {0, 1}n

Definition 2 We say that f is ε-close to linear over G if there exist a linear function g such that f and
g agree on at least 1− ε fraction of the inputs. Equivalently,

Pr
x∈G

[f(x) = g(x)] ≥ 1− ε

Fact 1 ∀a, y ∈ G
Pr
x∈G

[y = a+ x] =
1

|G|

This fact is true since over a finite group G only x = y − a satisfy the above equality. Therefore, if
we pick an element x uniformly at random from the group then a + x is distributed uniformly in G.
Furthermore, this fact also applies for G = Zn2 where a = (a1, . . . , an) and x = (x1, . . . , xn).

1.1 Self-correcting

Given f such that is 1/8-close to linear, i.e. there exist a linear function g such that Pr[f(x) = g(x)] ≥ 7/8
there exist a randomized algorithm that can compute g(x) using oracle calls to f . The algorithm is as
follows:

1. for i = 1, . . . , c log(1/β)

(a) Pick y uniformly at random from G

(b) Answeri ← f(y) + f(x− y)

2. Output the most common answer

Note that from Fact 1, f(x − y) is uniformly distributed in G. Since Pr[f(x) 6= g(x)] ≤ 1/8 and
Pr[f(x− y) 6= g(x− y)] ≤ 1/8 if f(y) = g(y) and f(x− y) = g(x− y) then the answer Answeri is exactly
equal to g(x) with probability grater then 3/4. Thus, by using Chernoff bounds the Self-Corrector
outputs the corrected function with high probability.
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1.2 Linearity tester

Consider the following tester:

1. Do O
(

1
ε log

(
1
β

))
times:

(a) Pick x, y uniformly at random from G

(b) If f(x) + f(y) 6= f(x+ y)

• Reject

2. Accept

Observe that for general group the tester might fail. Take for example the following function over Zp
due to Coppersmith.

f(x) =

 1 if x ≡ 1 mod 3
0 if x ≡ 0 mod 3
−1 if x ≡ 2 mod 3

If, for example x = y ≡ 1 mod 3 then, f(x) = f(y) = 1, f(x) + f(y) = 2 but f(x+ y) = −1, which is a
contradiction. We note that same thing happens for x = y ≡ 2 mod 3, while all other cases pass. It is
easy to see the closest linear function to f(x) is g(x) = 0 for all x. Therefore, f is 2/3-far from g but
the tester passes 7/9 fraction of x, y choices. It turns out that it can be showed that if we pass more
than 7/9 fraction of the choices of x, y, then the function is close to linear.

2 Introduction to Fourier Analysis

In the following we will establish basic tools that will enable us to prove the correctness of the tester.

Consider the function f : {0, 1}n → {0, 1} and the binary operation x⊕ ydef
=
∑
i∈[n] xi + yi mod 2. The

class of linear functions is defined as follows: La(x) = ax for a ∈ {0, 1}n, or equivalently, we can define
the set A ⊆ [n] which contains all the indices in a that are set to 1, and get that

LA(x) =
⊕
i∈A

xi

For technical reasons we will make the following notational switch.

2.1 The Great Notational Switch

Instead of working over Fn2 with the operation of addition we will work over Zn2 = {±1}n with the
operation of multiplication. Thus, our “new” objects of interest are of the form

f : {±1}n → {±1}

Where 1 corresponds to FALSE and −1 corresponds to TRUE. Therefore, using the new notations a
function f is linear if for every a, b ∈ {±1}n it holds that f(a · b) = f(a) · f(b). Also, for this case linear
functions will be of the form

χS(x)
def
=
∏
i∈S

xi

Where S ⊆ [n]. Our convention is that if S = ∅ then χ∅(x) = 1. Using our new notation we can rephrase
our linearity tester as follows.
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1. Do O
(

1
ε log

(
1
β

))
times:

(a) Pick x, y uniformly at random from {±1}n

(b) If f(x) · f(y) 6= f(x · y)

• Reject

2. Accept

We note that f(x) · f(y) 6= f(x · y) if and only if f(x) · f(y) · f(x · y) = −1. Hence, we can define the
following indicator function.

IfFAIL(x, y)
def
=

1− f(x) · f(y) · f(x · y)

2
=

{
0 if Tester Pass
1 if Tester Fail

And note that,

Pr
x,y

[Tester Rejects f ] = Ex,y[IfFAIL(x, y)] =
1

2
− 1

2
· Ex,y[f(x) · f(y) · f(x · y)]

Therefore, in order to analyze the tester rejection rate, it is suffices to study the term

Ex,y[f(x) · f(y) · f(x · y)]

2.2 The Fourier Basis

Consider the following class of functions

G = {g | g : {±1}n → {±1}}

It is easy to see that dim(G) = 2n and thus, all functions of G are expressible as a linear combination of
2n basis functions.
One possibility for a basis is the indicator functions:

ea(x) =

{
1 if x = a
0 otherwise

Where a ∈ {±1}n. Under this basis we have that each function g can be expressed as

g(x) =
∑
a

g(a)ea(x)

Where g(a) is a scaler.
For our purpose we will use the following basis.

χS(x) =
∏
i∈S

xi

In addition, we define the inner product

〈g, f〉 =
1

2n

∑
x∈{±1}n

f(x)g(x)

Lemma 2 {χS}S is orthonormal basis with respect to the inner product 〈·, ·〉.
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Proof We first show that the basis is normal.

〈χS , χS〉 =
1

2n

∑
x

χS(x)2 =
1

2n

∑
x

1 = 1

For two different subsets of the indices S and T such that S 6= T

〈χS , χT 〉 =
1

2n

∑
x

χS(x)χT (x) =
1

2n

∑
x

∏
i∈S

xi
∏
j∈T

xj =
1

2n

∑
x

∏
i∈S\T

xi
∏

j∈T\S

xj
∏

k∈S∩T

x2
k

=
1

2n

∑
x

∏
i∈S∆T

xi ?

Pick j ∈ S∆T , and define x⊕j
def
= (x1, . . . , xj−1, (−1) · xj , xj+1, . . . , xn)

? =
1

2n

∑
x,x⊕jPairs

( ∏
i∈S∆T

xi +
∏

i∈S∆T

x⊕ji

)
=

1

2n

∑
x,x⊕jPairs

∏
i∈S∆T\{j}

xi

(
xj + x⊕jj

)
= 0

Which conclude the proof.

Definition 3 We define the Fourier Coefficients of a boolean function f as follows.

f̂(S) = 〈f, χS〉 =
1

2n

∑
x

f(x)χS(x)

Theorem 3 ∀f : {±1}n → R there exist a unique representation of f as a multi-linear polynomial,

f(x) =
∑
S

f̂(S)χS(x)

In what follows we assume that f : {±1}n → {±1}.

Fact 4 f is linear, i.e. f(x) = χS(x) for some S, if and only if there exists S ⊆ [n] such that f̂(S) = 1

and for all T 6= S it holds that f̂(T ) = 0.

Lemma 5 ∀S ∈ [n] it holds that f̂(S) = 1− 2 · dist(f, χS) = 1− 2 · Prx[f(x) 6= χS(x)].

Proof

2nf̂(S) =2n〈f, χS〉 =
∑
x

f(x)χS(x) =
∑

x:f(x)=χS(x)

f(x)χS(x) +
∑

x:f(x)6=χS(x)

f(x)χS(x)

=(1− dist(f, χS)) · 2n + dist(f, χS) · (−1) · 2n = (1− 2 · dist(f, χS)) · 2n

And we are done.

Observation 6 ∀S 6= T it holds that dist(χS , χT ) = 1/2.

Proof
0 = 〈χS , χT 〉 = 1− 2dist(χS , χT ) =⇒ dist(χS , χT ) = 1/2

Which conclude the proof.
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Theorem 7 (Plancherel’s Theorem)

〈f, g〉 =
∑
S

f̂(S)ĝ(S)

Proof

〈f, g〉 =〈
∑
S

f̂(S)χS ,
∑
T

ĝ(T )χT 〉 =
∑
S

∑
T

f̂(S)ĝ(T )〈χS , χT 〉 =
∑
S

f̂(S)ĝ(S)

And we are done.

Corollary 8 (Parseval’s Theorem)

〈f, f〉 =
∑
S

f̂2(S)

Note that for a boolean function

〈f, f〉 =
1

2n

∑
x

f2(x) = 1 =⇒
∑
S

f̂2(S) = 1

3 Putting It All Together

Let δf denote the rejection probability of f . Namely,

δf =
1

2
− 1

2
· Ex,y[f(x) · f(y) · f(x · y)]

We will show that δf is quite big.

Theorem 9 f is δf -close to some linear function.

Proof

Ex,y[f(x) · f(y) · f(x · y)] =Ex,y

[∑
S

f̂(S)χS(x)
∑
T

f̂(T )χT (y)
∑
U

f̂(U)χU (xy)

]
=
∑
S

∑
T

∑
U

f̂(S)f̂(T )f̂(U)Ex,y [χS(x)χT (y)χU (xy)]

If S = T = U then χS(x)χT (y)χU (xy) =
∏
i∈S xiyi(xiyi) = 1. Otherwise, if S 6= U or T 6= U ,

Ex,y [χS(x)χT (y)χU (xy)] = Ex,y

∏
i∈S

xi
∏
j∈T

yj
∏
k∈U

xkyk

 =

Ex,y

 ∏
i∈S\U

xi
∏

i∈U\S

xi
∏

i∈U∩S
x2
i

∏
j∈T\U

yj
∏

j∈U\T

yj
∏

j∈T∩U
y2
j

 =

Ex

[ ∏
i∈S∆T

xi

]
Ey

 ∏
j∈T∆U

yj

 = 0

Therefore we get that

Ex,y[f(x) · f(y) · f(x · y)] =
∑
S

f̂3(S) ≤ max
S

f̂(S)
∑
S

f̂2(S) = max
S

f̂(S) = 1− 2 · dist(f, χS∗)

Hence, δf ≥ minS dist(f, χS) and we are done.
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