Lecture 11

Lecturer: Ronitt Rubinfeld Scribe: Amit Levi

Lecture Overview

In this lecture we will cover one of the most basic algorithms for testing boolean functions - Testing Linearity. In order to establish the proof we will introduce some basic tools from Fourier analysis.

1 Definitions and Introduction

Definition 1 (Linearity) Assume that we have a function $f: G \rightarrow G$ where G is a finite group. f is linear (or equivalently, homomorphism), if $\forall x, y \in G$ it holds that $f(x)+f(y)=f(x+y)$.

For example the following functions are linear:

1. $f(x)=x$
2. $f(x)=a x \bmod p$ where $G=\mathbb{Z}_{p}$ and $a \in G$
3. $f(\bar{x})=\sum_{i \in[n]} a_{i} x_{i} \bmod 2$ where $\bar{x} \in\{0,1\}^{n}$

Definition 2 We say that f is ϵ-close to linear over G if there exist a linear function g such that f and g agree on at least $1-\epsilon$ fraction of the inputs. Equivalently,

$$
\operatorname{Pr}_{x \in G}[f(x)=g(x)] \geq 1-\epsilon
$$

Fact $1 \forall a, y \in G$

$$
\operatorname{Pr}_{x \in G}[y=a+x]=\frac{1}{|G|}
$$

This fact is true since over a finite group G only $x=y-a$ satisfy the above equality. Therefore, if we pick an element x uniformly at random from the group then $a+x$ is distributed uniformly in G. Furthermore, this fact also applies for $G=\mathbb{Z}_{2}^{n}$ where $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ and $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$.

1.1 Self-correcting

Given f such that is $1 / 8$-close to linear, i.e. there exist a linear function g such that $\operatorname{Pr}[f(x)=g(x)] \geq 7 / 8$ there exist a randomized algorithm that can compute $g(x)$ using oracle calls to f. The algorithm is as follows:

1. for $i=1, \ldots, c \log (1 / \beta)$
(a) Pick y uniformly at random from G
(b) Answer $_{i} \leftarrow f(y)+f(x-y)$
2. Output the most common answer

Note that from Fact 1, $f(x-y)$ is uniformly distributed in G. Since $\operatorname{Pr}[f(x) \neq g(x)] \leq 1 / 8$ and $\operatorname{Pr}[f(x-y) \neq g(x-y)] \leq 1 / 8$ if $f(y)=g(y)$ and $f(x-y)=g(x-y)$ then the answer Answer ${ }_{i}$ is exactly equal to $g(x)$ with probability grater then $3 / 4$. Thus, by using Chernoff bounds the Self-Corrector outputs the corrected function with high probability.

1.2 Linearity tester

Consider the following tester:

1. Do $O\left(\frac{1}{\epsilon} \log \left(\frac{1}{\beta}\right)\right)$ times:
(a) Pick x, y uniformly at random from G
(b) If $f(x)+f(y) \neq f(x+y)$

- Reject

2. Accept

Observe that for general group the tester might fail. Take for example the following function over \mathbb{Z}_{p} due to Coppersmith.

$$
f(x)=\left\{\begin{array}{lll}
1 & \text { if } & x \equiv 1 \bmod 3 \\
0 & \text { if } & x \equiv 0 \bmod 3 \\
-1 & \text { if } & x \equiv 2 \bmod 3
\end{array}\right.
$$

If, for example $x=y \equiv 1 \bmod 3$ then, $f(x)=f(y)=1, f(x)+f(y)=2$ but $f(x+y)=-1$, which is a contradiction. We note that same thing happens for $x=y \equiv 2 \bmod 3$, while all other cases pass. It is easy to see the closest linear function to $f(x)$ is $g(x)=0$ for all x. Therefore, f is $2 / 3$-far from g but the tester passes $7 / 9$ fraction of x, y choices. It turns out that it can be showed that if we pass more than $7 / 9$ fraction of the choices of x, y, then the function is close to linear.

2 Introduction to Fourier Analysis

In the following we will establish basic tools that will enable us to prove the correctness of the tester. Consider the function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ and the binary operation $x \oplus y \stackrel{\text { def }}{=} \sum_{i \in[n]} x_{i}+y_{i} \bmod 2$. The class of linear functions is defined as follows: $L_{a}(x)=a x$ for $a \in\{0,1\}^{n}$, or equivalently, we can define the set $A \subseteq[n]$ which contains all the indices in a that are set to 1 , and get that

$$
L_{A}(x)=\bigoplus_{i \in A} x_{i}
$$

For technical reasons we will make the following notational switch.

2.1 The Great Notational Switch

Instead of working over \mathbb{F}_{2}^{n} with the operation of addition we will work over $\mathbb{Z}_{2}^{n}=\{ \pm 1\}^{n}$ with the operation of multiplication. Thus, our "new" objects of interest are of the form

$$
f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}
$$

Where 1 corresponds to FALSE and -1 corresponds to TRUE. Therefore, using the new notations a function f is linear if for every $a, b \in\{ \pm 1\}^{n}$ it holds that $f(a \cdot b)=f(a) \cdot f(b)$. Also, for this case linear functions will be of the form

$$
\chi_{S}(x) \stackrel{\text { def }}{=} \prod_{i \in S} x_{i}
$$

Where $S \subseteq[n]$. Our convention is that if $S=\emptyset$ then $\chi_{\emptyset}(x)=1$. Using our new notation we can rephrase our linearity tester as follows.

1. Do $O\left(\frac{1}{\epsilon} \log \left(\frac{1}{\beta}\right)\right)$ times:
(a) Pick x, y uniformly at random from $\{ \pm 1\}^{n}$
(b) If $f(x) \cdot f(y) \neq f(x \cdot y)$

- Reject

2. Accept

We note that $f(x) \cdot f(y) \neq f(x \cdot y)$ if and only if $f(x) \cdot f(y) \cdot f(x \cdot y)=-1$. Hence, we can define the following indicator function.

$$
I_{\mathrm{FAIL}}^{f}(x, y) \stackrel{\text { def }}{=} \frac{1-f(x) \cdot f(y) \cdot f(x \cdot y)}{2}=\left\{\begin{array}{ccc}
0 & \text { if } & \text { Tester Pass } \\
1 & \text { if } & \text { Tester Fail }
\end{array}\right.
$$

And note that,

$$
\underset{x, y}{\operatorname{Pr}}[\text { Tester Rejects } f]=\mathbb{E}_{x, y}\left[I_{\mathrm{FAIL}}^{f}(x, y)\right]=\frac{1}{2}-\frac{1}{2} \cdot \mathbb{E}_{x, y}[f(x) \cdot f(y) \cdot f(x \cdot y)]
$$

Therefore, in order to analyze the tester rejection rate, it is suffices to study the term

$$
\mathbb{E}_{x, y}[f(x) \cdot f(y) \cdot f(x \cdot y)]
$$

2.2 The Fourier Basis

Consider the following class of functions

$$
\mathcal{G}=\left\{g \mid g:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}\right\}
$$

It is easy to see that $\operatorname{dim}(\mathcal{G})=2^{n}$ and thus, all functions of \mathcal{G} are expressible as a linear combination of 2^{n} basis functions.
One possibility for a basis is the indicator functions:

$$
e_{a}(x)=\left\{\begin{array}{cc}
1 & \text { if } x=a \\
0 & \text { otherwise }
\end{array}\right.
$$

Where $a \in\{ \pm 1\}^{n}$. Under this basis we have that each function g can be expressed as

$$
g(x)=\sum_{a} g(a) e_{a}(x)
$$

Where $g(a)$ is a scaler.
For our purpose we will use the following basis.

$$
\chi_{S}(x)=\prod_{i \in S} x_{i}
$$

In addition, we define the inner product

$$
\langle g, f\rangle=\frac{1}{2^{n}} \sum_{x \in\{ \pm 1\}^{n}} f(x) g(x)
$$

Lemma $2\left\{\chi_{S}\right\}_{S}$ is orthonormal basis with respect to the inner product $\langle\cdot, \cdot\rangle$.

Proof We first show that the basis is normal.

$$
\left\langle\chi_{S}, \chi_{S}\right\rangle=\frac{1}{2^{n}} \sum_{x} \chi_{S}(x)^{2}=\frac{1}{2^{n}} \sum_{x} 1=1
$$

For two different subsets of the indices S and T such that $S \neq T$

$$
\begin{aligned}
\left\langle\chi_{S}, \chi_{T}\right\rangle= & \frac{1}{2^{n}} \sum_{x} \chi_{S}(x) \chi_{T}(x)=\frac{1}{2^{n}} \sum_{x} \prod_{i \in S} x_{i} \prod_{j \in T} x_{j}=\frac{1}{2^{n}} \sum_{x} \prod_{i \in S \backslash T} x_{i} \prod_{j \in T \backslash S} x_{j} \prod_{k \in S \cap T} x_{k}^{2} \\
& =\frac{1}{2^{n}} \sum_{x} \prod_{i \in S \Delta T} x_{i} \quad \star
\end{aligned}
$$

Pick $j \in S \Delta T$, and define $x \stackrel{\text { def }}{=}\left(x_{1}, \ldots, x_{j-1},(-1) \cdot x_{j}, x_{j+1}, \ldots, x_{n}\right)$

$$
\star=\frac{1}{2^{n}} \sum_{x, x^{\oplus j \text { Pairs }}}\left(\prod_{i \in S \Delta T} x_{i}+\prod_{i \in S \Delta T} x_{i}^{\oplus j}\right)=\frac{1}{2^{n}} \sum_{x, x^{\oplus j \text { Pairs }}} \prod_{i \in S \Delta T \backslash\{j\}} x_{i}\left(x_{j}+x_{j}^{\oplus j}\right)=0
$$

Which conclude the proof.

Definition 3 We define the Fourier Coefficients of a boolean function f as follows.

$$
\hat{f}(S)=\left\langle f, \chi_{S}\right\rangle=\frac{1}{2^{n}} \sum_{x} f(x) \chi_{S}(x)
$$

Theorem $3 \forall f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$ there exist a unique representation of f as a multi-linear polynomial,

$$
f(x)=\sum_{S} \hat{f}(S) \chi_{S}(x)
$$

In what follows we assume that $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$.
Fact $4 f$ is linear, i.e. $f(x)=\chi_{S}(x)$ for some S, if and only if there exists $S \subseteq[n]$ such that $\hat{f}(S)=1$ and for all $T \neq S$ it holds that $\hat{f}(T)=0$.

Lemma $5 \forall S \in[n]$ it holds that $\hat{f}(S)=1-2 \cdot \operatorname{dist}\left(f, \chi_{S}\right)=1-2 \cdot \operatorname{Pr}_{x}\left[f(x) \neq \chi_{S}(x)\right]$.

Proof

$$
\begin{aligned}
2^{n} \hat{f}(S) & =2^{n}\left\langle f, \chi_{S}\right\rangle=\sum_{x} f(x) \chi_{S}(x)=\sum_{x: f(x)=\chi_{S}(x)} f(x) \chi_{S}(x)+\sum_{x: f(x) \neq \chi_{S}(x)} f(x) \chi_{S}(x) \\
& =\left(1-\operatorname{dist}\left(f, \chi_{S}\right)\right) \cdot 2^{n}+\operatorname{dist}\left(f, \chi_{S}\right) \cdot(-1) \cdot 2^{n}=\left(1-2 \cdot \operatorname{dist}\left(f, \chi_{S}\right)\right) \cdot 2^{n}
\end{aligned}
$$

And we are done.

Observation $6 \forall S \neq T$ it holds that $\operatorname{dist}\left(\chi_{S}, \chi_{T}\right)=1 / 2$.
Proof

$$
0=\left\langle\chi_{S}, \chi_{T}\right\rangle=1-2 \operatorname{dist}\left(\chi_{S}, \chi_{T}\right) \Longrightarrow \operatorname{dist}\left(\chi_{S}, \chi_{T}\right)=1 / 2
$$

Which conclude the proof.

Theorem 7 (Plancherel's Theorem)

$$
\langle f, g\rangle=\sum_{S} \hat{f}(S) \hat{g}(S)
$$

Proof

$$
\langle f, g\rangle=\left\langle\sum_{S} \hat{f}(S) \chi_{S}, \sum_{T} \hat{g}(T) \chi_{T}\right\rangle=\sum_{S} \sum_{T} \hat{f}(S) \hat{g}(T)\left\langle\chi_{S}, \chi_{T}\right\rangle=\sum_{S} \hat{f}(S) \hat{g}(S)
$$

And we are done.

Corollary 8 (Parseval's Theorem)

$$
\langle f, f\rangle=\sum_{S} \hat{f}^{2}(S)
$$

Note that for a boolean function

$$
\langle f, f\rangle=\frac{1}{2^{n}} \sum_{x} f^{2}(x)=1 \Longrightarrow \sum_{S} \hat{f}^{2}(S)=1
$$

3 Putting It All Together

Let δ_{f} denote the rejection probability of f. Namely,

$$
\delta_{f}=\frac{1}{2}-\frac{1}{2} \cdot \mathbb{E}_{x, y}[f(x) \cdot f(y) \cdot f(x \cdot y)]
$$

We will show that δ_{f} is quite big.
Theorem $9 f$ is δ_{f}-close to some linear function.
Proof

$$
\begin{aligned}
\mathbb{E}_{x, y}[f(x) \cdot f(y) \cdot f(x \cdot y)] & =\mathbb{E}_{x, y}\left[\sum_{S} \hat{f}(S) \chi_{S}(x) \sum_{T} \hat{f}(T) \chi_{T}(y) \sum_{U} \hat{f}(U) \chi_{U}(x y)\right] \\
& =\sum_{S} \sum_{T} \sum_{U} \hat{f}(S) \hat{f}(T) \hat{f}(U) \mathbb{E}_{x, y}\left[\chi_{S}(x) \chi_{T}(y) \chi_{U}(x y)\right]
\end{aligned}
$$

If $S=T=U$ then $\chi_{S}(x) \chi_{T}(y) \chi_{U}(x y)=\prod_{i \in S} x_{i} y_{i}\left(x_{i} y_{i}\right)=1$. Otherwise, if $S \neq U$ or $T \neq U$,

$$
\begin{aligned}
& \mathbb{E}_{x, y}\left[\chi_{S}(x) \chi_{T}(y) \chi_{U}(x y)\right]=\mathbb{E}_{x, y}\left[\prod_{i \in S} x_{i} \prod_{j \in T} y_{j} \prod_{k \in U} x_{k} y_{k}\right]= \\
& \mathbb{E}_{x, y}\left[\prod_{i \in S \backslash U} x_{i} \prod_{i \in U \backslash S} x_{i} \prod_{i \in U \cap S} x_{i}^{2} \prod_{j \in T \backslash U} y_{j} \prod_{j \in U \backslash T} y_{j} \prod_{j \in T \cap U} y_{j}^{2}\right]= \\
& \mathbb{E}_{x}\left[\prod_{i \in S \Delta T} x_{i}\right] \mathbb{E}_{y}\left[\prod_{j \in T \Delta U} y_{j}\right]=0
\end{aligned}
$$

Therefore we get that

$$
\mathbb{E}_{x, y}[f(x) \cdot f(y) \cdot f(x \cdot y)]=\sum_{S} \hat{f}^{3}(S) \leq \max _{S} \hat{f}(S) \sum_{S} \hat{f}^{2}(S)=\max _{S} \hat{f}(S)=1-2 \cdot \operatorname{dist}\left(f, \chi_{S^{*}}\right)
$$

Hence, $\delta_{f} \geq \min _{S} \operatorname{dist}\left(f, \chi_{S}\right)$ and we are done.

