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Lecture 11
Lecturer: Ronitt Rubinfeld Scribe: Amit Levi

Lecture Overview

In this lecture we will cover one of the most basic algorithms for testing boolean functions - Testing
Linearity. In order to establish the proof we will introduce some basic tools from Fourier analysis.

1 Definitions and Introduction

Definition 1 (Linearity) Assume that we have a function f : G — G where G is a finite group. f is
linear (or equivalently, homomorphism), if Vx,y € G it holds that f(z) + f(y) = f(z +y).

For example the following functions are linear:
1. f(z)==
2. f(z) = ax mod p where G =Z, and a € G
3. f(Z) = > ¢ v mod 2 where z € {0, 1}"

Definition 2 We say that f is e-close to linear over G if there exist a linear function g such that f and
g agree on at least 1 — € fraction of the inputs. Equivalently,

Prlf(@)=g(2)] 21~

Fact 1 Va,y € G

[y:a+961=i

P
G €

This fact is true since over a finite group G only x = y — a satisfy the above equality. Therefore, if
we pick an element x uniformly at random from the group then a + z is distributed uniformly in G.
Furthermore, this fact also applies for G = Z3 where a = (a1, ...,a,) and x = (z1,...,2,).

1.1 Self-correcting

Given f such that is 1/8-close to linear, i.e. there exist a linear function g such that Pr[f(z) = g(z)] > 7/8
there exist a randomized algorithm that can compute g(z) using oracle calls to f. The algorithm is as
follows:

1. fori=1,...,clog(1/p)
(a) Pick y uniformly at random from G
(b) Answer; < f(y) + f(z —y)

2. Output the most common answer

Note that from Fact 1, f(x — y) is uniformly distributed in G. Since Pr[f(z) # g(z)] < 1/8 and
Pr[f(z—vy) # g(xr —y)] <1/81if f(y) = g(y) and f(x —y) = g(x —y) then the answer Answer; is exactly
equal to g(x) with probability grater then 3/4. Thus, by using Chernoff bounds the Self-Corrector
outputs the corrected function with high probability.



1.2 Linearity tester

Consider the following tester:
1. Do O (%log (%)) times:

(a) Pick z,y uniformly at random from G

(b) If f(z) + f(y) # fz +y)
e Reject

2. Accept

Observe that for general group the tester might fail. Take for example the following function over Z,
due to Coppersmith.

1 if x=1mod3

flxy=<¢ 0 if z=0mod3

—1 if z=2mod3
If, for example z = y = 1 mod 3 then, f(z) = f(y) =1, f(z) + f(y) =2 but f(x +y) = —1, which is a
contradiction. We note that same thing happens for £ = y = 2 mod 3, while all other cases pass. It is
easy to see the closest linear function to f(x) is g(x) = 0 for all . Therefore, f is 2/3-far from g but
the tester passes 7/9 fraction of z,y choices. It turns out that it can be showed that if we pass more
than 7/9 fraction of the choices of x,y, then the function is close to linear.

2 Introduction to Fourier Analysis

In the following we will establish basic tools that will enable us to prove the correctness of the tester.
Consider the function f : {0,1}™ — {0,1} and the binary operation z ¢ ydéf > icin Ti + i mod 2. The
class of linear functions is defined as follows: L,(x) = az for a € {0,1}", or equivalently, we can define
the set A C [n] which contains all the indices in @ that are set to 1, and get that

La(z) = EB T
€A

For technical reasons we will make the following notational switch.

2.1 The Great Notational Switch

Instead of working over F3 with the operation of addition we will work over Z§ = {£1}" with the
operation of multiplication. Thus, our “new” objects of interest are of the form

Fo{E1)" - {£1)

Where 1 corresponds to FALSE and —1 corresponds to TRUE. Therefore, using the new notations a
function f is linear if for every a,b € {£1}" it holds that f(a-b) = f(a)- f(b). Also, for this case linear
functions will be of the form

XS (x)déf H i

€S
Where S C [n]. Our convention is that if S = @) then x¢(z) = 1. Using our new notation we can rephrase
our linearity tester as follows.



1. Do O (%log (%)) times:
(a) Pick z,y uniformly at random from {£1}"

(b) If f(z)- fy) # fz-y)
e Reject

2. Accept

We note that f(z) - f(y) # f(x-y) if and only if f(x) - f(y) - f(z -y) = —1. Hence, we can define the
following indicator function.

o )dif 1—f(x)- f(y) - f(x-y) [ O if Tester Pass
FAIL\%: Y) = 2 T 1 1 if Tester Fail

And note that,

1

Pr [Tester Rejects /] = Ea I, (2,0)] = 5 — 5+ Ba [ (2) - 1) - £ )

Therefore, in order to analyze the tester rejection rate, it is suffices to study the term
Eoylf(z) - f(y)- flz-y)]

2.2 The Fourier Basis
Consider the following class of functions
G=Aglg:{=x1}" = {+1}}

It is easy to see that dim(G) = 2™ and thus, all functions of G are expressible as a linear combination of
2™ basis functions.
One possibility for a basis is the indicator functions:

ea(x)_{ 1 if z=a

0 otherwise

Where a € {£1}". Under this basis we have that each function g can be expressed as
g(x) = gla)ea(x)

Where g(a) is a scaler.
For our purpose we will use the following basis.

xs(z) = H Ti

€S

In addition, we define the inner product

N =g > @)

ze{£l}n

Lemma 2 {xs}s is orthonormal basis with respect to the inner product (-,-).



Proof We first show that the basis is normal.

(xs:x85) = 2n2x5 2171;1:1
For two different subsets of the indices S and 1" such that S # T’
soxr) =3 Snstona) = S e T =55 [ o I o 11

z €S JET x i€S\T jeT\S keSNT
:272 I = +

T i€SAT

Pick j € SAT, and define %7 &f (1, 2j-1, (1) - zj, 241, ..., Tn)

> (Hxﬂrﬂxl@j)—;n S I w(wref) =0

z,xPiPairs \i€SAT i€SAT z,x®PIPairs 1€ SAT\{j}

Which conclude the proof. B

Definition 3 We define the Fourier Coefficients of a boolean function f as follows.

() = (f:xs) = QHZf )xs(x

Theorem 3 Vf : {£1}" — R there exist a unique representation of f as a multi-linear polynomial,

=3 f(S)xs(@)
S

In what follows we assume that f: {+1}" — {£1}.

Fact 4 f is linear, i.e. f(z) = xs(z) for some S, if and only if there exists S C [n] such that f(S) =

and for all T # S it holds that f(T) =0
Lemma 5 VS € [n] it holds that f(S)=1—2-dist(f,xs) =1—2-Pry[f(z) # xs(z)].

Proof

2" f(S) =2"(f, xs) = Zf Yo faxs@+ Y fl@)xs(e)

@:f (2)=xs(v) a:f (2)#xs (@)
=(1 —dist(f, xs)) - 2" + dist(f, xs) - (=1) - 2" = (1 — 2 - dist(f, xs)) - 2"

And we are done. B

Observation 6 VS # T it holds that dist(xs, xr) = 1/2.

Proof
0= (xs,xr) =1—2dist(xs, x7) = dist(xs, x7) = 1/2

Which conclude the proof. B

1



Theorem 7 (Plancherel’s Theorem)

(f.9)=>_ f(9)a(S)

S

(f,9) = Zf(S)XS,Z xr ) =YY F(9)aT){xs,xr) =D F(9)a(S)
S T

S

Proof

And we are done.

Corollary 8 (Parseval’s Theorem)

Note that for a boolean function

o Z,LZfZ = ) _fA(9)=1

3 Putting It All Together

Let 07 denote the rejection probability of f. Namely,
1 1

0p =5 =5 Eoylf@) f(y) f(z-y)]
We will show that ¢y is quite big.
Theorem 9 f is d¢-close to some linear function.

Proof

Eyylf(z)- f(y)- flz-y)] =Esy

S itss ;f 0 F U y]

U

SOSTS T RS A FU) By Ixs (@) xr (y)xu (2y)]
S

T U

If S =T =U then xs(z)xr(y)xv(zy) = [[;cg Tivi(ziy;) = 1. Otherwise, if S # U or T' # U,

Eay [xs(@)xr(y)xv(zy)] = Bz y {H v [Tw 1 xkyk] =

i€S  jeT  keU

Ewu[H minin? H:Uj Hyj H yf]Z

i€S\U i€U\S i€UNS jeT\U jeU\T jeTnU

E, | [[ w|=0
JETAU
Therefore we get that

Eoylf(x) - f(y) - f(z-y)] =Y F3(S) < max f(S Zf2 ) = max f(S) = 1 -2 dist(f, xs+)
S

i€ESAT

Hence, §; > ming dist(f, xg) and we are done. H
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