January 12, 2015

Lecture 11

Scribe: Amit Levi

Lecturer: Ronitt Rubinfeld

Lecture Overview

In this lecture we will cover one of the most basic algorithms for testing boolean functions - Testing *Linearity*. In order to establish the proof we will introduce some basic tools from Fourier analysis.

1 Definitions and Introduction

Definition 1 (Linearity) Assume that we have a function $f : G \to G$ where G is a finite group. f is linear (or equivalently, homomorphism), if $\forall x, y \in G$ it holds that f(x) + f(y) = f(x+y).

For example the following functions are linear:

- 1. f(x) = x
- 2. $f(x) = ax \mod p$ where $G = \mathbb{Z}_p$ and $a \in G$
- 3. $f(\bar{x}) = \sum_{i \in [n]} a_i x_i \mod 2$ where $\bar{x} \in \{0, 1\}^n$

Definition 2 We say that f is ϵ -close to linear over G if there exist a linear function g such that f and g agree on at least $1 - \epsilon$ fraction of the inputs. Equivalently,

$$\Pr_{x \in G}[f(x) = g(x)] \ge 1 - \epsilon$$

Fact 1 $\forall a, y \in G$

$$\Pr_{x \in G}[y = a + x] = \frac{1}{|G|}$$

This fact is true since over a finite group G only x = y - a satisfy the above equality. Therefore, if we pick an element x uniformly at random from the group then a + x is distributed uniformly in G. Furthermore, this fact also applies for $G = \mathbb{Z}_2^n$ where $\mathbf{a} = (a_1, \ldots, a_n)$ and $\mathbf{x} = (x_1, \ldots, x_n)$.

1.1 Self-correcting

Given f such that is 1/8-close to linear, i.e. there exist a linear function g such that $\Pr[f(x) = g(x)] \ge 7/8$ there exist a randomized algorithm that can compute g(x) using oracle calls to f. The algorithm is as follows:

- 1. for $i = 1, \ldots, c \log(1/\beta)$
 - (a) Pick y uniformly at random from G
 - (b) Answer_i $\leftarrow f(y) + f(x y)$
- 2. **Output** the most common answer

Note that from Fact 1, f(x - y) is uniformly distributed in G. Since $\Pr[f(x) \neq g(x)] \leq 1/8$ and $\Pr[f(x-y) \neq g(x-y)] \leq 1/8$ if f(y) = g(y) and f(x-y) = g(x-y) then the answer Answer_i is exactly equal to g(x) with probability grater then 3/4. Thus, by using Chernoff bounds the Self-Corrector outputs the corrected function with high probability.

1.2 Linearity tester

Consider the following tester:

- 1. Do $O\left(\frac{1}{\epsilon}\log\left(\frac{1}{\beta}\right)\right)$ times:
 - (a) Pick x, y uniformly at random from G
 - (b) If $f(x) + f(y) \neq f(x+y)$
 - Reject

2. Accept

Observe that for general group the tester might fail. Take for example the following function over \mathbb{Z}_p due to Coppersmith.

$$f(x) = \begin{cases} 1 & \text{if } x \equiv 1 \mod 3\\ 0 & \text{if } x \equiv 0 \mod 3\\ -1 & \text{if } x \equiv 2 \mod 3 \end{cases}$$

If, for example $x = y \equiv 1 \mod 3$ then, f(x) = f(y) = 1, f(x) + f(y) = 2 but f(x + y) = -1, which is a contradiction. We note that same thing happens for $x = y \equiv 2 \mod 3$, while all other cases pass. It is easy to see the closest linear function to f(x) is g(x) = 0 for all x. Therefore, f is 2/3-far from g but the tester passes 7/9 fraction of x, y choices. It turns out that it can be showed that if we pass more than 7/9 fraction of the choices of x, y, then the function is close to linear.

2 Introduction to Fourier Analysis

In the following we will establish basic tools that will enable us to prove the correctness of the tester. Consider the function $f: \{0,1\}^n \to \{0,1\}$ and the binary operation $x \oplus y \stackrel{\text{def}}{=} \sum_{i \in [n]} x_i + y_i \mod 2$. The class of linear functions is defined as follows: $L_a(x) = ax$ for $a \in \{0,1\}^n$, or equivalently, we can define the set $A \subseteq [n]$ which contains all the indices in a that are set to 1, and get that

$$L_A(x) = \bigoplus_{i \in A} x_i$$

For technical reasons we will make the following notational switch.

2.1 The Great Notational Switch

Instead of working over \mathbb{F}_2^n with the operation of addition we will work over $\mathbb{Z}_2^n = \{\pm 1\}^n$ with the operation of multiplication. Thus, our "new" objects of interest are of the form

$$f: \{\pm 1\}^n \to \{\pm 1\}$$

Where 1 corresponds to **FALSE** and -1 corresponds to **TRUE**. Therefore, using the new notations a function f is linear if for every $a, b \in \{\pm 1\}^n$ it holds that $f(a \cdot b) = f(a) \cdot f(b)$. Also, for this case linear functions will be of the form

$$\chi_S(x) \stackrel{\text{def}}{=} \prod_{i \in S} x_i$$

Where $S \subseteq [n]$. Our convention is that if $S = \emptyset$ then $\chi_{\emptyset}(x) = 1$. Using our new notation we can rephrase our linearity tester as follows.

1. **Do** $O\left(\frac{1}{\epsilon}\log\left(\frac{1}{\beta}\right)\right)$ times:

- (a) Pick x, y uniformly at random from $\{\pm 1\}^n$
- (b) If $f(x) \cdot f(y) \neq f(x \cdot y)$
 - Reject

2. Accept

We note that $f(x) \cdot f(y) \neq f(x \cdot y)$ if and only if $f(x) \cdot f(y) \cdot f(x \cdot y) = -1$. Hence, we can define the following indicator function.

$$I_{\text{FAIL}}^{f}(x,y) \stackrel{\text{def}}{=} \frac{1 - f(x) \cdot f(y) \cdot f(x \cdot y)}{2} = \begin{cases} 0 & \text{if Tester Pass} \\ 1 & \text{if Tester Fail} \end{cases}$$

And note that,

$$\Pr_{x,y}[\text{Tester Rejects } f] = \mathbb{E}_{x,y}[I_{\text{FAIL}}^f(x,y)] = \frac{1}{2} - \frac{1}{2} \cdot \mathbb{E}_{x,y}[f(x) \cdot f(y) \cdot f(x \cdot y)]$$

Therefore, in order to analyze the tester rejection rate, it is suffices to study the term

$$\mathbb{E}_{x,y}[f(x) \cdot f(y) \cdot f(x \cdot y)]$$

2.2 The Fourier Basis

Consider the following class of functions

$$\mathcal{G} = \{g \mid g : \{\pm 1\}^n \to \{\pm 1\}\}$$

It is easy to see that $\dim(\mathcal{G}) = 2^n$ and thus, all functions of \mathcal{G} are expressible as a linear combination of 2^n basis functions.

One possibility for a basis is the indicator functions:

$$e_a(x) = \begin{cases} 1 & \text{if } x = a \\ 0 & \text{otherwise} \end{cases}$$

Where $a \in \{\pm 1\}^n$. Under this basis we have that each function g can be expressed as

$$g(x) = \sum_{a} g(a)e_a(x)$$

Where g(a) is a scaler.

For our purpose we will use the following basis.

$$\chi_S(x) = \prod_{i \in S} x_i$$

In addition, we define the inner product

$$\langle g, f \rangle = \frac{1}{2^n} \sum_{x \in \{\pm 1\}^n} f(x)g(x)$$

Lemma 2 $\{\chi_S\}_S$ is orthonormal basis with respect to the inner product $\langle \cdot, \cdot \rangle$.

Proof We first show that the basis is normal.

$$\langle \chi_S, \chi_S \rangle = \frac{1}{2^n} \sum_x \chi_S(x)^2 = \frac{1}{2^n} \sum_x 1 = 1$$

For two different subsets of the indices S and T such that $S \neq T$

$$\begin{aligned} \langle \chi_S, \chi_T \rangle = &\frac{1}{2^n} \sum_x \chi_S(x) \chi_T(x) = \frac{1}{2^n} \sum_x \prod_{i \in S} x_i \prod_{j \in T} x_j = \frac{1}{2^n} \sum_x \prod_{i \in S \setminus T} x_i \prod_{j \in T \setminus S} x_j \prod_{k \in S \cap T} x_k^2 \\ &= \frac{1}{2^n} \sum_x \prod_{i \in S \Delta T} x_i \quad \star \end{aligned}$$

Pick $j \in S\Delta T$, and define $x^{\oplus j} \stackrel{\text{def}}{=} (x_1, \dots, x_{j-1}, (-1) \cdot x_j, x_{j+1}, \dots, x_n)$

$$\star = \frac{1}{2^n} \sum_{x, x^{\oplus j} \text{Pairs}} \left(\prod_{i \in S \Delta T} x_i + \prod_{i \in S \Delta T} x_i^{\oplus j} \right) = \frac{1}{2^n} \sum_{x, x^{\oplus j} \text{Pairs}} \prod_{i \in S \Delta T \setminus \{j\}} x_i \left(x_j + x_j^{\oplus j} \right) = 0$$

Which conclude the proof. \blacksquare

Definition 3 We define the Fourier Coefficients of a boolean function f as follows.

$$\hat{f}(S) = \langle f, \chi_S \rangle = \frac{1}{2^n} \sum_x f(x) \chi_S(x)$$

Theorem 3 $\forall f : \{\pm 1\}^n \to \mathbb{R}$ there exist a unique representation of f as a multi-linear polynomial,

$$f(x) = \sum_{S} \hat{f}(S)\chi_{S}(x)$$

In what follows we assume that $f: \{\pm 1\}^n \to \{\pm 1\}$.

Fact 4 f is linear, i.e. $f(x) = \chi_S(x)$ for some S, if and only if there exists $S \subseteq [n]$ such that $\hat{f}(S) = 1$ and for all $T \neq S$ it holds that $\hat{f}(T) = 0$.

Lemma 5 $\forall S \in [n]$ it holds that $\hat{f}(S) = 1 - 2 \cdot \operatorname{dist}(f, \chi_S) = 1 - 2 \cdot \operatorname{Pr}_x[f(x) \neq \chi_S(x)].$

Proof

$$2^{n}\hat{f}(S) = 2^{n}\langle f, \chi_{S} \rangle = \sum_{x} f(x)\chi_{S}(x) = \sum_{x:f(x)=\chi_{S}(x)} f(x)\chi_{S}(x) + \sum_{x:f(x)\neq\chi_{S}(x)} f(x)\chi_{S}(x)$$
$$= (1 - \operatorname{dist}(f, \chi_{S})) \cdot 2^{n} + \operatorname{dist}(f, \chi_{S}) \cdot (-1) \cdot 2^{n} = (1 - 2 \cdot \operatorname{dist}(f, \chi_{S})) \cdot 2^{n}$$

And we are done.

Observation 6 $\forall S \neq T$ it holds that dist $(\chi_S, \chi_T) = 1/2$.

Proof

$$0 = \langle \chi_S, \chi_T \rangle = 1 - 2 \operatorname{dist}(\chi_S, \chi_T) \implies \operatorname{dist}(\chi_S, \chi_T) = 1/2$$

Which conclude the proof. \blacksquare

Theorem 7 (Plancherel's Theorem)

$$\langle f,g\rangle = \sum_S \hat{f}(S)\hat{g}(S)$$

Proof

$$\langle f,g \rangle = \langle \sum_{S} \hat{f}(S)\chi_{S}, \sum_{T} \hat{g}(T)\chi_{T} \rangle = \sum_{S} \sum_{T} \hat{f}(S)\hat{g}(T)\langle\chi_{S},\chi_{T}\rangle = \sum_{S} \hat{f}(S)\hat{g}(S)$$

And we are done.

Corollary 8 (Parseval's Theorem)

$$\langle f, f \rangle = \sum_{S} \hat{f}^2(S)$$

Note that for a boolean function

$$\langle f, f \rangle = \frac{1}{2^n} \sum_x f^2(x) = 1 \implies \sum_S \hat{f}^2(S) = 1$$

3 Putting It All Together

Let δ_f denote the rejection probability of f. Namely,

$$\delta_f = \frac{1}{2} - \frac{1}{2} \cdot \mathbb{E}_{x,y}[f(x) \cdot f(y) \cdot f(x \cdot y)]$$

We will show that δ_f is quite big.

Theorem 9 f is δ_f -close to some linear function.

Proof

$$\mathbb{E}_{x,y}[f(x) \cdot f(y) \cdot f(x \cdot y)] = \mathbb{E}_{x,y} \left[\sum_{S} \hat{f}(S)\chi_{S}(x) \sum_{T} \hat{f}(T)\chi_{T}(y) \sum_{U} \hat{f}(U)\chi_{U}(xy) \right]$$
$$= \sum_{S} \sum_{T} \sum_{U} \hat{f}(S)\hat{f}(T)\hat{f}(U)\mathbb{E}_{x,y} \left[\chi_{S}(x)\chi_{T}(y)\chi_{U}(xy) \right]$$

If S = T = U then $\chi_S(x)\chi_T(y)\chi_U(xy) = \prod_{i \in S} x_i y_i(x_i y_i) = 1$. Otherwise, if $S \neq U$ or $T \neq U$,

$$\mathbb{E}_{x,y} \left[\chi_S(x) \chi_T(y) \chi_U(xy) \right] = \mathbb{E}_{x,y} \left[\prod_{i \in S} x_i \prod_{j \in T} y_j \prod_{k \in U} x_k y_k \right] = \\\mathbb{E}_{x,y} \left[\prod_{i \in S \setminus U} x_i \prod_{i \in U \setminus S} x_i \prod_{i \in U \cap S} x_i^2 \prod_{j \in T \setminus U} y_j \prod_{j \in U \setminus T} y_j \prod_{j \in T \cap U} y_j^2 \right] = \\\mathbb{E}_x \left[\prod_{i \in S \Delta T} x_i \right] \mathbb{E}_y \left[\prod_{j \in T \Delta U} y_j \right] = 0$$

Therefore we get that

$$\mathbb{E}_{x,y}[f(x) \cdot f(y) \cdot f(x \cdot y)] = \sum_{S} \hat{f}^{3}(S) \le \max_{S} \hat{f}(S) \sum_{S} \hat{f}^{2}(S) = \max_{S} \hat{f}(S) = 1 - 2 \cdot \operatorname{dist}(f, \chi_{S^{*}})$$

Hence, $\delta_f \geq \min_S \operatorname{dist}(f, \chi_S)$ and we are done.