Homework 6

Lecturer: Ronitt Rubinfeld

Due Date: January 19, 2015

Homework guidelines: Same as for homework 1. Automatic extension of one week (to January 26) for whoever wants it.

1. Say that f_{1}, f_{2}, f_{3}, mapping from group G to H, are linear consistent if there exists a linear function $\phi: G \rightarrow H$ (that is $\forall x, y \in G, \phi(x)+\phi(y)=\phi(x+y)$) and $a_{1}, a_{2}, a_{3} \in H$ such that $a_{1}+a_{2}=a_{3}$ and $f_{i}(x)=\phi(x)+a_{i}$ for all $x \in G$. A natural choice for a test of linear consistency is to verify that

$$
\operatorname{Pr}_{x, y \in r}\left[f_{1}(x)+f_{2}(y) \neq f_{3}(x+y)\right] \leq \delta
$$

for some small enough choice of δ.

- Assume G, H are Abelian. Show that f, g, h are linear-consistent iff for every $x, y \in G$ $f(x)+g(y)=h(x+y)$.
- Let $G=\{+1,-1\}^{n}$ and $H=\{+1,-1\}$. First note that since $a_{i} \in\{+1,-1\}$, then linear consistent f_{i} must be linear functions or "negations" of linear functions. We refer to the union of linear functions and the negations of linear functions as the affine functions. In class we expressed the minimum distance of f to a linear function. Express the minimum distance of a function f to an affine function.
- Show that if f_{1}, f_{2}, f_{3} satisfy the above test, then for each $i \in\{1,2,3\}$, there is an affine function g_{i} such that $\operatorname{Pr}_{x \in_{r} G}\left[f_{i}(x) \neq g_{i}(x)\right] \leq \delta$.
- (Extra credit) Show that there are linear consistent functions g_{1}, g_{2}, g_{3} such that for $i \in\{1,2,3\}, \operatorname{Pr}_{x \in r G}\left[f_{i}(x) \neq g_{i}(x)\right] \leq \frac{1}{2}-\frac{2 \gamma}{3}$ where $\gamma=\frac{1}{2}-\delta$.

2. For function $f:\{1,-1\}^{n} \rightarrow\{1,-1\}$, the NAE test chooses $x, y, z \in\{1,-1\}^{n}$ by choosing, independently for each i, the triple (x_{i}, y_{i}, z_{i}) uniformly from the set of "not all equal" triples (that is, all 3 -tuples from $1,-1$ except for $(1,1,1)$ and $(-1,-1,-1))$. Then the test accepts iff the three outcomes $(f(x), f(y), f(z))$ are not all equal. Show that the probability that the NAE test passes a function f is

$$
\frac{3}{4}-\frac{3}{4} \sum_{S \subseteq[n]}\left(\frac{-1}{3}\right)^{|S|} \hat{f}(S)^{2}
$$

3. Show that for any monotone function $f:\{+1,-1\}^{n} \rightarrow\{+1,-1\}$, the influence of the $i^{\text {th }}$ variable is equal to the value of the Fourier coefficient of $\{i\}$, that is $\inf _{i}(f)=\hat{f}(\{i\})$.
4. Show that the majority function $f(x)=\operatorname{sign}\left(\sum_{i} x_{i}\right)$ maximizes the total influence among n-variable monotone functions mapping $\{+1,-1\}^{n}$ to $\{+1,-1\}$, for n odd.
5. You are given $n \times n$ matrices A, B, C whose elements are from $\mathcal{Z}_{2}($ integers mod 2$)$. Show a (randomized) algorithm running in $O\left(n^{2}\right)$ time which verifies $A \cdot B=C$. The algorithm should always output "pass" if $A \cdot B=C$ and should output "fail" with probability at least $3 / 4$ if $A \cdot B \neq C$. Assume the field operations,$+ \times,-$ can be done in $O(1)$ steps.

Useful definitions:

1. For $x=\left(x_{1}, \ldots, x_{n}\right) \in\{+1,-1\}^{n}, x^{\oplus i}$ is x with the i-th bit flipped, that is,

$$
x^{\oplus i}=\left(x_{1}, \ldots, x_{i-1},-x_{i}, x_{i+1}, \ldots, x_{n}\right)
$$

The influence of the i-th variable on $f:\{+1,-1\}^{n} \rightarrow\{+1,-1\}$ is

$$
\operatorname{Inf}_{i}(f)=\operatorname{Pr}_{x}\left[f(x) \neq f\left(x^{\oplus i}\right)\right]
$$

The total influence of f is

$$
\operatorname{Inf}(f)=\sum_{i=1}^{n} \operatorname{Inf}_{i}(f)
$$

2. A function $f:\{+1,-1\}^{n} \rightarrow\{+1,-1\}$ is monotone if for all $x, y \in\{+1,-1\}^{n}$ such that $x_{i} \leq y_{i}$ for each $i, f(x) \leq f(y)$. Assume that $-1<+1$.
