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8.1 Promoter analysis

8.1.1 Control of gene expression

Nearly all the cells of a multicellular organism contain the same genome. In the course
of embryonic development, a fertilized egg cell gives rise to many cell types that differ
dramatically in both structure and function. The differences between a mammalian neuron
and a lymphocyte, for example, are so extreme that it is difficult to imagine that the two cells
contain the same DNA. Cell differentiation is achieved mainly by control of gene expression.
When a cell expresses a gene it means the relevant portion of DNA is first transcribed into
RNA, and then translated into protein. By controlling which genes are transcribed, the cell
can control which proteins to synthesize. Of course, this description is somewhat simplified,
and the pathway from DNA to protein contains multiple steps.

Figure 8.1: Examples of regulation at each of the steps above are known. Still, for most
genes, the main site of regulation is step 1: transcription of DNA into RNA.

In principal, a cell can control all steps that appear in Figure 8.1: (1) controlling when
and how often a gene is transcribed, (2) controlling how the primary RNA transcript is
spliced or otherwise processed, (3) regulating the transport of RNA from the nucleus to the
cytosol, (4) selecting which mRNAs are translated by ribosomes, or (5) selectively activating
or inactivating proteins after they have been made. For most genes, however, the control of
transcription is paramount.

'Based on the scribe of Eran Balan and Maayan Goldstein, May 2004
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8.1.2 Regulation of transcription

As mentioned above, transcription is the process in which template DNA is used to create
a matching RNA molecule. The enzyme that carries out transcription is called RNA poly-
merase (Figure 8.2). However, RNA polymerase can not initiate transcription on its own.
It requires two special sets of proteins (not shown in the figure): basic transcription proteins
and transcription factors.
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Figure 8.2: The different stages of transcription are shown above. First, the RNA polymerase
binds tightly to the DNA stretch just upstream from the gene. Then, after initiation is
completed, RNA polymerase starts synthesizing the RNA molecule of the gene. Signals
in the DNA sequence mark the end of the gene, and the polymerase literally falls off the
DNA. The newly made RNA molecule is released and translated into protein. Regulation of
transcription is exerted when the process is initiated

Basic transcription proteins

As mentioned in section 8.1.2, RNA polymerase can not initiate transcription on its on. It
needs the help of basic transcription proteins. These proteins bind to the DNA stretch just
upstream the start of the gene (to be henceforth called the promoter region). They start
accumulate at a specific DNA segment called the TATA box, and form an elaborate assembly
that performs the following tasks: (1) position the RNA polymerase at the start of the gene,
(2) help it bind firmly to the DNA, (3) aid in pulling apart the two strands of DNA and (4)
allow the RNA polymerase to detach, and start transcription. An important characteristic of
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these proteins is that they are not gene-specific. In fact, probably the same proteins assemble
before most genes. We will henceforth use the term transcription machinery to describe the
combined effect of RNA polymerase and the basic transcription proteins (Figure 8.3).
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Figure 8.3: RNA polymerase together with basic transcription proteins form the transcrip-
tion machinery. As mentioned above, RNA polymerase can not initiate transcription on its
own.

Transcription Factors (TFs)

Although the transcription machinery as a whole can initiate transcription in wvitro, it fails to
do so inside the cell. Indeed, nearly all human genes will fail to initiate transcription without
dedicated transcription factors. TFs can bind DNA in specific binding bites (BSs), and
promote the recruitment of the transcription machinery. These TFs are called activators,
because, as the name implies, they help activate the transcription machinery. Another
group of TFs is repressors. As one can guess, when they bind DNA in specific BSs, they
repress the recruitment of the transcription machinery. The different TFs work together as
a “committee” to control the expression of a gene. The effects of multiple TFs is combined
to determine the rate of transcription initiation (Figure 8.4).
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Figure 8.4: Multiple TFs bind to specific DNA BSs. They work together, combining their
effects to determine the overall rate of transcription initiation.
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In 1979 it was first discovered that TFs can be bound thousands of nucleotide pairs away
from the gene and still regulate its expression. Moreover, influencing TFs were also found
downstream from some genes. What model can account for this “action at a distance”? It
seems that in most cases, the simplest model applies: The DNA loops out and allow the TF
to directly influence events at the start of the gene (Figure 8.5).
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Figure 8.5: Transcription machinery bound to activator TF. Some TFs are thousands of
nucleotide pairs away and manage to interact with the transcription machinery by DNA
loops. The broken stretch of DNA signifies that the length varies.
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8.1.3 Promoter analysis - problem definition

Promoter analysis deals with the following problems:
Find new BSs for some known TF.

Find new BSs for unknown TFs (called motifs).

Find combinations of TF's that regulate genes together.

Promoter analysis - preliminaries and assumptions

e Ignore repetitive DNA sequences

Consider some repetitive sequence that appears millions of times throghout the genome.
The probability that this sequence is an active BS is slim. Therefore, repetitive se-
quences are usually masked prior to promoter analysis.

e Consider both strands of DNA.

Though only one strand contains the coding sequence of the gene, both strands are
used for DNA-protein bindings.

e A good downstream bound for the promoter region exists.

The promoter region is defined as the DNA stretch upstream from the gene. The
Transcription Start Site (T'SS) is therefore the downstream bound for the promoter
region. Experimentally verified TSS are therefore essential for a proper analysis.

e A heuristic upstream bound for the promoter region is used.

The only upstream bound that naturally comes to mind is the end of the next gene
upstream. This upper bound can indeed be used in yeasts. The intergenic regions
there are relatively small (hundreds of nucleotides). In humans however, the distance
between consecutive genes can be huge (our genes constitute only about 2 percent of
the entire genome).

Today, it is common practice to set the upstream bound for promoters at 500-2000
nucleotides upstream from the TSS. If too short promoter regions are used, we might
miss real BSs. On the other hand, if we use very long promoter regions, the portion of
the real BSs will decrease and the rate of false hits will increase.
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8.2 Biological approaches to promoter analysis

This section presents some of the common methods used for promoter analysis.

8.2.1 Finding new motifs
Using reporter genes

This method looks for BSs of unknown TFs. It uses a gene that encodes an easily detectable
protein (reporter gene). DNA engineering is used to place our promoter just upstream to
the reporter gene. The construct is put into cells, and the rate of transcription is easily
monitored by the levels of protein produced. We can perform multiple tests, using different
promoter subsequences each time (see figure 8.6).
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Figure 8.6: Source: [11]. Finding new motifs. New BSs of known TFs can be found by
using reporter genes. The rate of transcription is easily monitored by measuring the protein
levels produced. By performing multiple tests with different promoter subsequences, we can
deduce which subsequences affect the rate of transcription. In other words: we can find
where the BSs are.

8.2.2 ChIP - Finding BSs of known TF's

ChIP (Chromatin Immunoprecipitation) is a procedure that identifies BSs bound by known
TF's in vivo, under a given set of conditions. Briefly, proteins are covalently cross-linked to
DNA in living cells, the cells are lysed, and DNA is fragmented via sonication. Antibodies
to the binding protein can then be used to immunoprecipitate the protein-DNA complex.
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This technique allows us to purify the BSs bound by known TF's at the time of cross-linking.
The purified DNA can be amplified by PCR, and sequence information can be obtained by
gel electrophoresis. (see Figure 8.7 and also [15]). Note that making antibodies against
arbitrary TF's is not always easy.
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Figure 8.7: Source: [12] Performing ChIP analysis involves the following stages: (1) expose
the cell to a given a set of conditions, (2) freeze its chemical stage, (3) lyse the cell and create
fragmented DNA, (4) add the antibodies that bind to the TFs, (5) isolate antibody bound
DNA-protein complexes, (6) remove TFs and antibodies from DNA, (7) perform PCR and
(8) obtain BSs sequences by gel electrophoresis.
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8.2.3 ChIP on Chip - Identifying BSs of known TFs throughout
the whole genome

ChIP on (DNA) Chip basically performs all the steps of the standard ChIP procedure (see
8.2.2). However, since we are dealing with vast amounts of DNA, sequencing with gel
electrophoresis is simply not feasible. Instead, we use dedicated intergenic DNA chips.
Intergenic DNA chips that span the entire non-repetitive part of the human genome is
already in commercial use (see Figure 8.8 and [2]).
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Figure 8.8: Source: [6] BSs for a specific TF can be found across the whole genome. The
process is like the ChIP procedure described above, with one difference: instead of using gel
electrophoresis, we use dedicated intergenic DNA chips. Once the purified DNA fragments
are received, we use denaturation to open DNA into single strands. The single stranded
DNA is then poured over the surface of the DNA chip. The reference set consists of DNA
fragments generated under the very same conditions in a strain bearing a deletion of the
gene that encodes the TF protein.

8.2.4 ChIP-DSL (DNA Selection and Ligation)

We start the process by identifying in advance a sequence of 40 nucleotides, in all human
promoters that is unique as possible. We synthesize, for each human promoter, the two
20mer oligonucleotide sequences. The set of all pairs of 20mer oligonucleotide sequences will
be henceforth called the oligo pool. The ChIP-DSL can be described as follows: (figure 8.9)
(1) Perform the standard ChIP procedure.

(2) Before the PCR step, mix DNA with oligo pool.

(3) Wait for interactions to take place, wash unbound oligonucleotide sequences. Ligate
matching 20mer pairs.

(4) Perform PCR at the oligonucleotide sequences that are attached to DNA.

ChIP-DSL has several advantages over its predecessor ChIP on chip. First, it handles
better de-cross linking: if the DNA is not released from the TF cross linkage, it will not
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Figure 8.9: Source: [7] A schematic description of ChIP-DSL.
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be amplified efficiently during PCR. On the other hand, in ChIP-DSL, the oligonucleotide
ligation is less affected. Second, since the oligo pool contains only distinct sequences, it
does not contain repetitive sequences, avoiding potential interference. Third, since the PCR
process is performed on the oligonucleotide sequences, the amplicons all have the same size,
and amplification is likely to be less biased.
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8.2.5 Protein binding microarrays

The PBM method starts by synthetically generating all possible DNA sequence variants of a
given length k (all k-mers) on a single universal microarray. This is done by converting high-
density single-stranded oligonucleotide arrays to double-stranded DNA arrays (Figure 8.10).
These microarrays are used for comprehensively determining the binding specificities over a
full range of affinities for different TF's of different structural classes from different orgarnisms
(Figure 8.11). The unbiased coverage of all k-mers permits high-throughput interrogation of
binding site preferences. (see [4])
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Figure 8.10: Source: [4]. (a) Overlapping k-mers. Each sequence on the microarray contains
several distinct, overlapping k-mer binding sites. Here, k = 10. (b) Example of a de Bruijn
sequence of order 3. A de Bruijn sequence of order 3 contains all 64 3-mer variants exactly
once. The de Bruijn sequence is partitioned into subsequences that overlap by two bases,
preserving all 3-mers in the sequence. These subsequences then become the spots on the
microarray. (c) Universal PBM containing all possible 10-mer binding sites, bound by the
S. cerevisiae TF Cbfl expressed with a glutathione S-transferase (GST) epitope tag. Above
is a schematic showing the three main stages of each experiment: primer annealing, primer
extension, and protein binding. Beneath are zoom-in images of each stage for the same mi-
croarray, scanned at different wavelengths: Cyb5-labeled universal primer, Cy3-labeled dUTP
and Alexad88-conjugated alpha-GST antibody. Fluorescence intensities are shown in false
color, with blue indicating low signal intensity, green indicating moderate signal intensity,
yellow indicating high signal intensity, and white indicating saturated signal intensity. The
variability observed in the Cy3-dUTP signal is due to differences in the nucleotide compo-
sition of each feature. The blank spots are single-stranded negative control probes that do
not contain the universal primer sequence.
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Figure 8.11: Source: [4]. (a) Enrichment of different Cbfl binding site variants. All spots
are ranked in descending order by their normalized signal intensities, and spots containing
a match to each specified 8-mer are marked. For each 8-mer the median intensity over all
such spots is shown (in fluorescence units), as is the p-value for enrichment as calculated
by the Wilcoxon-Mann-Whitney test. (b) Correspondence between signal intensity and
binding affinity. The median intensities for six 9-mer binding site variants for the mouse TF
Zif268 are plotted against their relative dissociation constants as measured by a quantitative
binding (QuMFRA). (¢) Correspondence between separate PBM experiments performed on
microarrays constructed with independent de Bruijn sequences. The median intensity for
spots containing a match to each 8-mer is shown for each experiment. As evident here, the
PBM data are consistent not only for the k-mers with highest affinity but also for the k-mers
with moderate and low affinity.
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Figure 8.12: Source: [4]. (a) Method of constructing PWMs and sequence logos, using Cbfl
as an example. First, all 8-mers containing three gapped positions or fewer are evaluated
using an enrichment score, and the highest scoring 8-mer (in this case GTCACGTG) is used
as a seed for constructing the motif. Second, at each position within this 8-mer seed, all
four possible nucleotides are compared by inspecting the ranks of the probes matching each
of the four variants. This analysis produces a score between 0.5 and 0.5 for each variant at
each position. Third, positions outside the 8-mer seed are inspected by dropping the least
informative position within the seed and repeating the preceding analysis at every additional
position that yields an 8-mer with at most three gaps (ensuring that the positions inspected
outside of the 8-mer seed are based on a roughly equal number of samples to those within
the 8-mer seed). This analysis produces the bar graph shown. (b) Logos for four additional
TFs constructed using this method. For each, the organism and structural class are given.
Consensus sequences in a and b were obtained from the literature for Chfl, Zif268, Ceh-22,
Oct-1 and Rapl (standard ITUPAC abbreviations are used (K = T,G; R =A,G; Y =C,T; N
= A,C,G,T). (c) Extension of the method for motif construction described in a to the case
of dinucleotide variants and applied to the first two positions in the Cbfl motif. Here, all
16 variants of the form NNCACGTG were obtained, and the enrichment score of each was
computed.
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Example:
BS = TACACC , TACGGC

CAATGCAGGATACACCGATCGGTA
GGAGTACGGCAAGTCCCCATGTGA
AGGCTGGACCAGACTCTACACCTA

Figure 8.13: Exact string: only exact matches of the target string are considered hits.

8.3 Computational approaches to promoter analysis

In this section, we will present various techniques to find binding sites in groups of promoters.
We can divide the promoter analysis computational problem into three strategies:

e Given groups of co-regulated genes and known binding sites models (PWMs) find
enriched cis elements in the groups, for instance, using PRIMA algorithm. (promoter
elements that control the gene adjacent to them are called cis-acting elements).

e Given a set of binding site models (PWMs) find CRM (cis-regulatory-modules) which
are sets of binding sites that tends to cluster together, for instance, using CREME
algorithm.

e Given a set of co-regulated genes (from gene expression clustering) or putative targets
of a TF (e.g. from CHIP-CHIP) build motif models that are enriched in the sets. We
will show two algorithms to solve this problem: Random Projections and MEME.

8.3.1 String matching models in finding BSs

We shall consider a number of models: exact string model, string mismatches model, degen-
erate string model and a position weight matrix (PWM).

Exact string model Using the exact string model is trying to find an exact sequence in
the DNA sequence (see Figure 8.13)

String mismatches model Using the string mismatches model is trying to find an almost
exact sequence while tolerating mistakes in some of the positions (see Figure 8.14).

Degenerate string model When using the degenerate string model, also known as con-
sensus model, one tries to find a sequence, but allows various bases to be placed in specific
positions of the sequence. In the example, positions 3,4 of the sequence could be represented
by two or three bases. This gives us 6 possible strings to search for (see Figure 8.15).
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Example:
BS = Tacacc + 1 mismatch

CAATGCAGGATTCACCGATCGGTA
GGAGTACAGCAAGTCCCCATGTGA
AGGCTGGACCAGACTCTACACCTA

Figure 8.14: Exact mismatch: some mismatches are tolerated when searching for the target
sequence.

Example:
BS = Ttaspac (s={c,c} D={a,G,T})

CAATGCAGGATACAACGATCGGTA
GGAGTAGTACAAGTCCCCATGTGA
AGGCTGGACCAGACTCTACGACTA

Figure 8.15: Degenerate String: searching for matches of the original string, where S can be

replaced by C or G, and D by A, G or T.
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Position Weight Matrix model (PWM) When using the position weight matrix model,
also known as position specific scoring matrix model, one creates a matrix, where each column
represents a position and each row represents a base and the value in the cell is the probability
of the base to appear in the specified position (see Figure 8.16). When scanning the target,
we compute the total probability, while we assume that appearances of each base at any
position are statistically independent. As shown in the example, we compute various scores
and choose those with the higher scores (above a predefined threshold).
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ATGCAGGATACACCGATCGGTA 0.0605
GGAGTAGAGCAAGTCCCGIGA 0.0605
AAGACTCTACAATTATGGCGT 0.0151

Figure 8.16: PWM string model. The matrix defines the probabilities of each base at
different location in the binding site sequence. As you can see there are a couple of examples
for specific sequences and their probability according to the table.

There are also more complex models such as PWM with spacers, Markov model (dependency
between adjacent columns of PWM), hybrid models, e.g., mixture of two PWMs and more.
In order to have a complete probabilistic picture of the data we are handling, we should also
define a model for the background sequences (sequences between binding sites). In order
to determine if a sequence is a binding site or not, we have to calculate the ratio between
the probabilities of the sequence under the binding site model and that of the background
model.

8.3.2 PRIMA

PRIMA (PRomoter Integration in Microarray Analysis) is a program for finding transcrip-
tion factors (TFs) whose binding sites are enriched in a given set of promoters. PRIMA is
typically used for the analysis of large-scale gene expression data. Microarray (‘DNA chip’)
measurements point to alterations in gene expression levels under varying biological condi-
tions, but they do not, however, directly reveal the transcriptional networks that underlie the
observed transcriptional modulations. PRIMA is aimed at the identification of TF's that take
part in these networks. The basic biological assumption is that genes that are co-expressed
over multiple biological conditions are regulated by common TF's, and therefore are expected
to share common regulatory elements in their promoters. By utilizing human genomic se-
quences and models (PWM) for binding sites (BSs) of known TFs, PRIMA identifies TFs
whose BSs are significantly over-represented in a given set of co-expressed genes’ promoters
(taking into consideration multiple BS’s per promoter).

The algorithm is integrated into the Expander software (see [3]).
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The algorithm: Input: a target set (e.g., a list of co-expressed genes found in a microar-
ray experiment) and a background set (e.g., the 13K set of the human genome) and PWMs
of known TFs (taken out of large TF databases). Output: p-values of enriched TFs.

For each PWM:

e Compute a threshold score for declaring hits of the PWM (hit = subsequence that is
similar to the PWM = hypothetical BS)

e Scan background (henceforth BG) and target-set promoters for hits.

e Compute enrichment score to decide whether the number of hits in the target-set is
significantly higher than expected by chance, given the distribution of hits in the BG.
(Synergism test: Find co-occurring pairs of TFs)

Computing a threshold for the PWD’s: In order to identify putative binding sites, or
hits, of a TF, a threshold T'(P) for the similarity score of the TFs PWM P is determined.
Subsequences with a similarity score above T'(P) are regarded as hits of P. The threshold for
each PWM is computed as follows: First a 2nd-order Markov-Model of background sequences
is computed. Using the MM model, random sequences are generated (for e.g., 1,000 seqs of
length 1,000 bp). Then, a threshold is set so that the PWM has given amount of hits, f, in
the random sequences (e.g., f=100).

This method of determining the PMW’s parameters ensures a pre-defined false-positives
rate, but has no guarantee on false-negatives rate. Estimating false-negatives (positives)
rate requires good positive (negative) training-sets.

Computing the enrichment score Suppose each promoter has 0 or 1 hits. Then, define
e B is the number of BG promoters.
e T is the number of target-set promoters.
e b is the number of hits in BG promoters.
e ¢ is the number of hits in target-set promoters.

The probablity for getting ¢ hits when selecting T" promoters at random out of B promoters,
according to hypergeomtric distribution, equals to

ro=(2)(20) /(%)

The probability for at least ¢ hits is

min{b,T'}

> P()
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Now, we would like to take into account more than 1 hit per promoter. The reason for
this is that sometimes there is a number of BSs that together could encourage the transcrip-
tion. We will take into account up to 3 hits per promoter. Let:

B, T = # of promoters in BG, target-set.

bl , b2 , b3 = # of BG promoters with 1,2,3 hits.

t = total # of hits in target-set.

Thus the probability for at least ¢ hits (Hyper-Geomtric distribution) is:

()=
ot \ i )\ a )k ) Ui
B
(7)
Synergism score: Find pairs of TFs that tend to occur in the same promoters
Let: T = # of promoters in target-set
t1 , to = # of promoters with 1+ hits of TF 1,2

t12 = # of promoters with 1+ hits of both TFs (w/o overlaps!)
Thus the probability for co-occurrence of at least t15 is

t1 T -1t
=)0
T
ta

PRIMA results on HCC: Whitfield et al. (Whitfield et al. 2002) partitioned the cell
cycle-regulated genes according to their expression periodicity patterns into five clusters
corresponding to different phases of the cell cycle. When the promoter sequences of these
clusters were scanned for enriched PWMs, two PWMs were enriched in a specific phase
cluster, but not in the cell-cycle regulated set as a whole. The results of the experiment are
presented in figures 16-18.

PRIMA future directions: Possible improvements to the algorithm could be in several
aspects. First, choice of the region to scan within the promoters could be improved. Finding
strand bias could improve normalization. In addition to that, more complex BS models
could be used. The enrichment score could also be improved (by using other scores), since
as presented, it is problematic when promoters are of different lengths. Synergism can take
into account distance between hits and we could find synergism of multiple transcription
factors.

Alternative enrichment scores: The Hypergeomtric enrichment score used by PRIMA
is not the only possible one to use.

e Pros: It’s model independent and gives accurate results.
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Figure 8.17: Source: [13]. Representation of TF PWMs in the cell cycle phase clusters.
The eight circles correspond to the PWMs that were highly enriched in promoters of cell
cycle-regulated genes. Each circle is divided into 5 zones, corresponding to the phase clus-
ters. The number adjacent to the zone represents the ratio of its prevalence in promoters
contained in each of the cell cycle phase clusters to its prevalence in the set of 13K back-
ground promoters. Note that several TFs show a tendency towards specific cell cycle phases:
e.g., over-representation of the E2F PWM in promoters of the G1/S and S clusters, and its
under-representation in promoters of the M/G1 cluster.

I

Figure 8.18: Source: [13]. Distribution of locations of TFs putative binding sites found in
568 cell cycleregulated promoters. Promoters were divided into six intervals, 200 bp each.
For each of the PWMSs, the number of times its computationally identified binding sites
appeared in each interval was counted (after accounting for the actual number of base pairs
scanned in each interval. This number changes as the masked sequences are not uniformly
distributed among the six intervals). Locations of NRF-1, CREB, NF-Y, Sp1, ATF and E2F
binding sites tend to concentrate in the vicinity of the T'SSs (chi-square test, p<0.01).
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Figure 8.19: Source: [13]. Pairs of PWMs that co-occur significantly in promoters of genes
regulated in a cell cycle manner. It was examined whether the PWMs can be organized into
regulatory modules. For each possible pair formed by these PWMs; it was tested whether the
prevalence of cell cycle-regulated promoters that contain hits for both PWMs is significantly
higher than would be expected if the PWMs occurred independently. Eight significant pairs
were identified, each connected by an edge. The corresponding p-value is indicated next to
the edge. The edge connecting the E2F-NRF'1 pair is dashed to indicate that its significance
is borderline.

e Cons: Assumes all promoters are equally likely to be in the target set, which is not
accurate, for example because different promoters have different lengths and GC con-
tent.

Other possible enrichment scores can be model based (e.g. likelihood score), or use promoter
bins.

Binning promoters:
e Bin promoters according to their length / GC-content (e.g., bin 1 contains promoters
of length 1-100, bin 2 contains promoters of length 101-200...)
b(p)=bin of promoter p

e Use background set to estimate the expectation E(b) and variance V' (b) of the number
of hits in a promoter in bin b

e By Central Limit Theorem:

t~ N EOD(p), S V(b(p)))

pet pEt

e And like the HG case, given t hits, the enrichment score is the tail of the distribution:

score = 7N()
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8.3.3 CREME - Cis-Regulatory Module Explorer

CREME is a web-server that identifies and visualizes cis-regulatory modules in the promoter
regions of a given set of potentially co-regulated genes. CREME relies on a database of
putative transcription factor binding sites (TFBS) that have been carefully annotated across
the human genome using evolutionary conservation with the mouse and rat genomes. An
efficient search algorithm is applied to this data-set to identify combinations of transcrip-
tion factors, whose binding sites tend to co-occur in close proximity within the promoter
regions of the input gene set. These combinations are statistically evaluated, and significant
combinations are reported and visualized (see [10]).

Definitions:
e Module = Set of PWMs.
e 7 is the number of PWMs in the module.

e Instance of a module is a set of hits, at least one per PWM in the module, that occur
in a short interval in a promoter.

e w = length of interval.

Figure 8.20: Example: Instance of a (r=3,w=30)-module.

The algorithm receives as its input promoter sequences of background, target sets PWMs of
known TFs and the module parameters (r,w). The output of the algorithm is p-values of
enriched modules.

The algorithm:

Find enriched PWMSs (p-value < 0.01).

Filter similar PWMs (more than 50% overlapping hits).

Build a list of all (7, w)-modules that have instances in the target-set.

Compute Monte-Carlo enrichment score of each module (given enrichment of PWMs)
and pass those with p-value < 0.05.

Filter similar modules (more than 75% overlapping instances).
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If we look closely at the third step of the algorithm, we see that if n is the number of
given PWMs then there are n” possible modules. We’ll check only those that actually have
(one or more) instances in the target-set.

Possible simplification: Search for modules with a consecutive instance, a promoter in-
terval that contains more than one hit for each PWM in the module, and no hits for other
PWDMs

Finding modules with a consecutive instance in a promoter sequence using a hashing
algorithm:

Let M be the list of all hits, ordered by position. We shall build a hash C' of modules where
Copen is a hash of active modules and their starting positions

Figure 8.21: Instance of a (r=3,w=30)-module and possible instances of Copen.

The details of the algorithm are shown in Figure 8.22 (see [9]).

C « 1} # A hash of motif clusters whose keys are motif sets.
Copen < i # A hash of active clusters and their starting positions.
Fori = 1to | M| do:
Let / be the i-th hit in M occurring at position pes(i).
For every (C, start) € Copen do:
If (pos(h) — start > w or i & C) then Insert(C,C); Delete{Cypr.C).
If (h & C and |C| < r) then Insert(Cyp.n.(C U {h}, start)).
If C = {h} then start < pos(h).
It {h} & Copen then Insert(Cp.n.({R). pos(h))).
For every C € Cgper do: Insert(C,C) # Add remaining active clusters.
Cutput C.

Figure 8.22: Source: [14] An algorithm for identifying all motif clusters with at least one con-

secutive instance in a given sequence. Procedures Insert(H, e) and Delete( H, e) insert/delete
an element from a hash table H.

The running time of the algorithm is O(r | M |) since C,pep, contains at most r modules.
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8.3.4 Motif finding tools

Definitions Motif(l,d) is a string M of length 1 that appears in many of the given promot-
ers, each occurrence contains (exactly) d mismatches. For example, the string ‘CATA’ is a
(4,1)-motif in AGGCCTAGGTG , GTAAACATGAAG and ACCAGAGAG.

Goal: Given a set of t promoters, and [, d, find the (I, d)-motif(s) that appear in at least
t of the promoters.

Random Projection

The main idea of the algorithm is to choose a projection h : 4 — 4*, hash each l-mer x in
the input sequence to its bucket h(x). h(x) is constructed by choosing k (out of 1) positions
at random. Many instances of the motif are likely to fall into the same motif bucket. Thus
buckets with large count are likely to correspond to a motif.

The algorithm: (m iterations)

Choose a random projection h.

Scan promoters using h and fill buckets.

For each bucket with count larger than s, try to recover motif using an iterative refine-
ment procedure.

An example for the algorithm is seen in Figure 8.23.

Figure 8.23: An example of random projection, with 1=5, d=1, k=3, motif M="CATAG”
and projection function h(xixexszszs )=r12225, The motif bucket is CAG. In the example,
we can use any base for x3 and x4 and we look at all the sub-sequences that fall into the
same bucket. And we find z3 and x4 according to the most frequent sub-sequences.

Analysis: Choosing proper k and s is very important. For larger k values we get more
buckets, but in every one of them there more true sub-sequence values. When k is small, we
get less buckets, but in every one of them there are more false positives.

Known good values for k and s are: k =1-d - 1 (to keep average bucket size small)
s = 2t(L — 1+ 1) /4" where L is the average promoter length.
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The probability for a motif instance to hash into its bucket is
l—d
k
o=——=r=
[
(4)

since [ — d known positions define a bucket.
The probability that fewer than s (out of ¢) motif instances hash to the motif bucket (in
a single iteration) is
g , .
AN 7 - t'—1
B(a, s,t') = Z ( ; >a(1 a)
0<i<s
The probability that s or more motif instances hash to the motif bucket in at least 1 (out
of m) iteration is
1 — (B(a,s, t')™

Thus, the number of iterations required to ensure a certain success rate, p is

log(B(a, s,1))
Refinement procedure: Definitions:
e S is a multi-set of I-mers that are hashed to a specific bucket.

e f; is the BG distribution of base i

o A W = 4 x l-matrices

The algorithm:
e Initialize A;; (# l-mers in S with base i at pos j) = f;
pi,j)

Wij 105—’52(7

Pij = AiJ/Zk Ak
e Repeat until convergence

— Reset A: A, , fi.

— Score all I-mers in promoters using W.

Add to A each l-mer with positive score.
Compute W’ from A.
if(entropy(W') < entropy(W)) = (W — W)

e Scan promoters using W, select best l-mer from each promoter (with positive score),
and output their consensus.
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MEME algorithm

MEME uses the method of Bailey and Elkan (see [1]) to identify likely motifs within the
input set of sequences. You may specify a range of motif widths to target, as well as the
number of unique motifs to search for. MEME uses Bayesian principles to incorporate prior
knowledge of the similarities among amino acids into its predictions of likely motifs. The
resulting motifs are output as profiles. A profile is a log-odds matrix used to judge how well
an unknown sequence segment matches the motif.

MEME is one of the most popular programs for motif finding. It uses the expectation-
maximization (EM [8]) approach: first obtain an initial motif (which may not be very good),
then iteratively obtain a better motif with the following two steps:

Expectation: compute the statistical composition of the current motif and find the proba-
bility of finding the site at each position in each sequence.
Maximization: These probabilities are used to update the statistical composition. (see [16])

The Algorithm (Mixture Model version)

The data we are starting with is a promotor DNA sequence. We should look at all overlap-
ping sequential I-mers in the input and analyze the probability of the motif we are suggesting.
We'll define the input data as follows: X = (Xj,...,X,,) : X; is an input l-mer.

Let’s assume the X;s were generated by a two-component mixture model - § = (61, 65):
Motif model = 0;: f;;, = Probability of base b at position i in a motif, i = 1..Li (an example
of the PWM model can be seen in Figure 8.16).

BG model = 6,: fy;, = Probability of base b at any position.

Mixing parameter: A = (A\; , X\y) \; = Probability that model j is used (as noted in the
definition above, the motif model is marked as 1 and the BG model is marked as 2). (A\; +
)\2:1)

After understanding the input data and the probability model, let’s define the missing data
format. We define a random variables set:

Z = (Zh 7Zn)7Zl = (Zinﬂ)

Zi; = 1if X; is from model j and 0 otherwise. Z;; is an indicator to the fact that the i'th
l-mer is was create by model j.
Next we define the likelihood of the data according to the probability model’s parameters:

L(O,\X, Z) = P(X,Z]0,)) = [ P(X,Z|0,))

1=1...n

Usually, when searching for the maximum or minimum of a function, it is easier to look at
the function’s logarithm:

log(L)= > Y Zjlog(A\;P(X;|6;))

i=1..nj=1,2

After the problem model was defined, our goal now is to maximize the the expected log-
likelihood by changing the 6’s and \’s. As noted, the EM algorithm will be used.

Outline of EM algorithm
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e Choose starting (@, A\(©
e Repeat until convergence of 6:

— E-step: Re-estimate Z from 6, A\, X.
— M-step: Re-estimate 6, A from X, Z.

e Repeat all of the above for various 80, \(9) starting points.

E-step:
Let us compute the expectation of log L over Z:

logL| X, Z] = Y > Z log (A P(X;]0;))

i=1...n j=1,2
(Eq.7.1)
Where:

P(Zy =1, X090, 20)
P(X;]00©, \©) o

2 = ElZy] = P(Z; =110, \, X;) =

v

 P(Z; =1, X09\0)
C Yhe12 P(Zi = 1, X000, 0@)

(0) (0)
_ NPXeY)
ie12 A P(X[600)

After getting a simple expression of the expected log likelihood, we can find 6 and A that
maximize it.

M-step:
Find 6 and A that maximize the expected log-likelihood (Eq. 7.1). To find X it is sufficient

n 70
to maximize Ly = >,_1 , >;-12 Zi; Log(}A;), and get )\5-1) = Z%, j=1,2. To find 0, we

=1

need to solve 6](-1) = argmax Zn: ZZ-(](-))Log(P(Xin)). As seen in Eq. 13-20 in [1], 951) can be
i i=1

calculated easily.

Homology

Homology is the similarity between different organisms due to shared ancestry. Homologous
genes are most likely to have high sequence similarity. Considering homologous genes from
different organisms is often useful; Inside the promoter region, the BSs are significantly more
conserved. This can narrow the search for novel motifs, improving the rate of false hits and
the overall performance (Figure 8.24).
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A Mamumals

E2F sp-1
Human TTGECAT TTEGCECEABATC CCT-TTCC BTG GG TGGEGCTC T- TEGAGRGEUGECET . | .
Dog TTGCATTTGGCBCEARATC CCGGCTCC BEEEEC-BEEECCGAG-GEAGRAGTCGCET . . .
Mouse ATGCTT T'TGGCGCEARRAG TGCGTGCEETEHEC -G GEECTC TG TAC GGAACCGCCAT . . .
Rat CTGCTTTTGGCGCEARATTAGC GTS TG BTG GEC - BEEECTC TGGAC GEAACCGCCAT, . .
FhE EEEEEEEAEEES [ s+ o
CCAAT E2F CCAAT
Human o TCATTGETCAGGTT TEECGCEABATCT-CCRGCTCC TG T TCACGATT GETTCC . 4 .
Dog o TCATTGEGCAGGTT TEECGCOARACCCGUGAGCTCTCGCHCCACGATT BETCGC . . .
Mouse .. . TGATTGEBACGGGTT TEECECEARG TAGCTCAG CTCCTACT CTGTTATT GEC TGA . . .
Rat .. TGATTGGACAGACT TECCECOARG TAGCTCAGCTCCOGCTCCATTATT GEC TGS . o .
PR [ P PP
Sp-1
Human e GGCCETECAGGTCGGAACAGREGE COEBECGGARGCGECGECGE -6
Dog ... GGCCBC CEOCGEEEGEGCGEGCCGAGE GECAGCETCTECEGGGA -52
Mouse . GGTGAGAGGGC GGG GC TAGCCGGAGEC GCGCGCEAAGTGECAGT -1
Rat .. GGTGAGGAGGC GGGGC TAACCAGAGEAGC GCGCGAAGC GG TGGT -97
s w + + P
B. Fish
E2F E2F
Fugu CAAACTGCECGCCARAG——G ~TCCATCTTTT CBCBCGRAAGTCACCCTC —116
Tetraodon AAGACTGCECGCCAAGG——G —TCCATCTTTT CBCBCGARACTCCCTCTE —107
Zebrafish TCACAGTGGCGCGAARATAL GTACAGCATTT CECGCGAARAC TCCTGAR —32
P rak dd o+ kR U +

Figure 8.24: Promoter region of the gene MCM6 and its homologous genes. The BSs of
several TFs are shown above. Note the remarkable similarity of BSs sequences and locations.
Using homologous genes is often useful to discover BSs.

8.4 Promoter analysis - computational challenges

8.4.1 Promoter Analysis - Inherent problems

e Some BSs can bind more than one TF.

Some TFs have multiple BSs in the same promoter.

Some BSs are very far (5,000 nucleotide pairs or more) from the TSS.

Most BSs are too short compared to the large promoter region. Random sequences are
likely to be suspected as BSs.

Promoters are very hard to model mathematically. Different structural signals exist
(for example, G-C content), and it is hard to take everything into account.

8.4.2 Promoter analysis - Implementation problems

Data set is huge: about 500 billion consensus strings of length 10.

8.4.3 Promoter analysis - current status of motif discovery tools

e Extant tools perform reasonably well at finding known and novel motifs in organisms
with short, simple promoters (e.g. yeast), and at identifying some of the known motifs
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in complex species (e.g. TFs whose BSs are ussually close to the TSS), but often fail
in other cases.

e Each tool is custom-built for a specific target score

e For a comparison of tools see [5]
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