Lecture 7:
Gene finding and regulatory motif analysis

December 1, 2015
Gene Finding

Sources:
• Lecture notes of Larry Ruzzo, UW.
• Slides by Nir Friedman, Hebrew U.
• Slides by Chuong Huynh on Gene Prediction, NCBI
• Durbin’s book, Ch. 3
• Pevzner’s book, Ch. 9
Motivation

• ~3Gb human DNA in GenBank
• Only ~1.5% of human DNA is coding for proteins
• 202,237,081,559 total bases in GenBank (10/2015)
• Hundreds of species have been sequenced, thousands to follow
• Total number of species represented in UniProtKB/Swiss-Prot (2015): 13,251
• Need to locate the genes!
• **Goal**: Automatic finding of genes
Reminder: The Genetic Code

1 start, 3 stop codons
Genes in Prokaryotes

- High gene density (e.g. 70% coding in H. Influenza)
- No introns
- most long ORFs are likely to be genes.
Open Reading Frames

- **Reading Frame:** 3 possible ways to read the sequence (on each strand).
 - ACCUUAGCGUA = Threonine-Leucine-Alanine
 - ACCUUAGCGUA = Proline-Stop-Arginine
 - ACCUUAGCGUA = Leucine-Serine-Valine
- **Open Reading Frame (ORF):** Reading frame with no stop codons.
 - ORF is maximal if it starts right after a stop and ends in a stop
- **Untranslated region (UTR):** ends of the mRNA (on both sides) that are not translated to protein.
Finding long ORFs

- In random DNA, one stop codon every $64/3 \rightarrow 21$ codons on average
- Average protein is ~300 AA long
- => search long ORFs
- Problems:
 - short genes
 - many more ORFs than genes
 - In E. Coli one finds 6500 ORFs but only 1100 genes.
 - Call the remaining Non-coding ORF (NORFS)
 - Overlapping long ORFs on opposite strands
Codon Frequencies

• Coding DNA is not random:
 - In random DNA, expect
 • Leucine:Alanine:Tryptophan ratio of 6:4:1
 - In real proteins, 6.9:6.5:1
 - In some species, 3rd position of the codon, up to 90% A or T

• Different frequencies for different species.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th>frequency of usage of each codon (per thousand)</th>
<th>relative freq of each codon among synonymous codons</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gly</td>
<td>GGG</td>
<td>17.08 0.23</td>
<td></td>
<td>Arg</td>
<td>AGG</td>
<td>12.09 0.22</td>
</tr>
<tr>
<td>Gly</td>
<td>GGA</td>
<td>19.31 0.26</td>
<td></td>
<td>Arg</td>
<td>AGA</td>
<td>11.73 0.21</td>
</tr>
<tr>
<td>Gly</td>
<td>GGT</td>
<td>13.66 0.18</td>
<td></td>
<td>Ser</td>
<td>AGT</td>
<td>10.18 0.14</td>
</tr>
<tr>
<td>Gly</td>
<td>GGC</td>
<td>24.94 0.33</td>
<td></td>
<td>Ser</td>
<td>AGC</td>
<td>18.54 0.25</td>
</tr>
<tr>
<td>Glu</td>
<td>GAG</td>
<td>38.82 0.59</td>
<td></td>
<td>Lys</td>
<td>AAG</td>
<td>33.79 0.6</td>
</tr>
<tr>
<td>Glu</td>
<td>GAA</td>
<td>27.51 0.41</td>
<td></td>
<td>Lys</td>
<td>AAA</td>
<td>22.32 0.4</td>
</tr>
<tr>
<td>Asp</td>
<td>GAT</td>
<td>21.45 0.44</td>
<td></td>
<td>Asn</td>
<td>AAT</td>
<td>16.43 0.44</td>
</tr>
<tr>
<td>Asp</td>
<td>GAC</td>
<td>27.06 0.56</td>
<td></td>
<td>Asn</td>
<td>AAC</td>
<td>21.3 0.56</td>
</tr>
<tr>
<td>Val</td>
<td>GTG</td>
<td>28.6 0.48</td>
<td></td>
<td>Met</td>
<td>ATG</td>
<td>21.86 1</td>
</tr>
<tr>
<td>Val</td>
<td>GTA</td>
<td>6.09 0.1</td>
<td></td>
<td>Ile</td>
<td>ATA</td>
<td>6.05 0.14</td>
</tr>
<tr>
<td>Val</td>
<td>GTT</td>
<td>10.3 0.17</td>
<td></td>
<td>Ile</td>
<td>ATT</td>
<td>15.03 0.35</td>
</tr>
<tr>
<td>Val</td>
<td>GTC</td>
<td>15.01 0.25</td>
<td></td>
<td>Ile</td>
<td>ATC</td>
<td>22.47 0.52</td>
</tr>
<tr>
<td>Ala</td>
<td>GCG</td>
<td>7.27 0.1</td>
<td></td>
<td>Thr</td>
<td>ACG</td>
<td>6.8 0.12</td>
</tr>
<tr>
<td>Ala</td>
<td>GCA</td>
<td>15.5 0.22</td>
<td></td>
<td>Thr</td>
<td>ACA</td>
<td>15.04 0.27</td>
</tr>
<tr>
<td>Ala</td>
<td>GCT</td>
<td>20.23 0.28</td>
<td></td>
<td>Thr</td>
<td>ACT</td>
<td>13.24 0.23</td>
</tr>
<tr>
<td>Ala</td>
<td>GCC</td>
<td>28.43 0.4</td>
<td></td>
<td>Thr</td>
<td>ACC</td>
<td>21.52 0.38</td>
</tr>
</tbody>
</table>

Human codon usage

http://genome.imim.es/courses/Lisboa01/slide3.8.html
First Order Markov Model

- Use two Markov models (similar to CpG islands) to discriminate genes from NORFs
- Given a sequence of nucleotides X_1, \ldots, X_n we compute the log-odds ratio:

$$\log \frac{P(X_1, \ldots, X_n \mid G)}{P(X_1, \ldots, X_n \mid R)} = \sum_i \log \frac{A^G_{X_iX_{i+1}}}{A^R_{X_iX_{i+1}}}$$

- Bit= unit when log base 2 is used
First Order Markov Model

- Average log-odds per nucleotide in genes: 0.018
- Average log-odds per nucleotide in NORFs: 0.009
- But the variance makes it useless for discrimination (similar results for 2nd-order MM)

Test on E. Coli data

Durbin et al pp.74
Using codons

- Translate each ORF into a sequence of codons
- Form a 64-state Markov chain
 - Codon is more informative than its translation
- Estimate probabilities in coding regions and NORFs
Using Codon Frequencies

• Assume each codon is iid
• For codon \(abc\) calculate frequency \(f_{abc}\) in coding region
• Given coding sequence \(a_1b_1c_1, \ldots, a_{n+1}b_{n+1}c_{n+1}\)
• Calculate

\[
\begin{align*}
 p_1 &= f_{a_1b_1c_1} \ast f_{a_2b_2c_2} \ast \ldots \ast f_{a_nb_nc_n} \\
 p_2 &= f_{b_1c_1a_2} \ast f_{b_2c_2a_3} \ast \ldots \ast f_{b_nc_na_{n+1}} \\
 p_3 &= f_{c_1a_2b_2} \ast f_{c_2a_3b_3} \ast \ldots \ast f_{c_na_{n+1}b_{n+1}}
\end{align*}
\]

• The probability that the \(i\)-th reading frame is the coding region:

\[
P_i = \frac{p_i}{p_1 + p_2 + p_3}
\]
RNA Transcription

- Not all ORFs are expressed.
- Transcription depends on regulatory signals.
- Minimal regulatory region - core promoter to which RNA polymerase and initiation factors bind to start transcription.
- At the termination signal the polymerase releases the RNA and disconnects from the DNA.
E. coli promoters

consensus sequence:

\[\text{nnnTTGACA} \text{nnnnnnnnnnnnnnnnnnnnnnnnnnnnTATAAT} \text{nNNnnnnnn} \text{nnn} \]

-35 \[\text{ mRNA start}\]

-12

- • “**TATA box**” (or Pribnow Box)
- • Not exact
Positional Weight Matrix (PWM)

- $f_{b,j}$: frequency of base b in position j.
- Assumes independence btw positions
- For TATA box:

<table>
<thead>
<tr>
<th>pos:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td>95</td>
<td>26</td>
<td>59</td>
<td>51</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>9</td>
<td>2</td>
<td>14</td>
<td>13</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td>G</td>
<td>10</td>
<td>1</td>
<td>16</td>
<td>15</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>79</td>
<td>3</td>
<td>44</td>
<td>13</td>
<td>17</td>
<td>96</td>
</tr>
</tbody>
</table>

- f_b: background frequency.
Scoring Function

• For sequence $S=B_1 B_2 B_3 B_4 B_5 B_6$

\[
P(S \mid \text{promoter}) = \prod_{i=1}^{6} f_{B_i,i}
\]

\[
P(S \mid \text{non-promoter}) = \prod_{i=1}^{6} f_{B_i}
\]

• Log-likelihood ratio score:

\[
\log \left(\frac{P(S \mid \text{promoter})}{P(S \mid \text{non-promoter})} \right) = \log \left(\frac{\prod_{i=1}^{6} f_{B_i,i}}{\prod_{i=1}^{6} f_{B_i}} \right) = \sum_{i=1}^{6} \log \left(\frac{f_{B_i,i}}{f_{B_i}} \right)
\]
Gene finding: coding density

- As the coding/non-coding length ratio decreases, exon prediction becomes more complex

- Human
- Fugu
- Worm
- E.coli
Eukaryote gene structure

Eukaryotes
Typical structure at DNA level
(not to scale)

- 5' Untranslated region (UTR)
- Intron(s)
- Terminal exon
- Polyadenylation site
- 3' UTR
- Promoter
- Start codon
- Initial exon
- Internal exon
- Donor site
- Acceptor site
- Splice sites
- Transcription start site
Typical figures: vertebrates

- TF binding site: ~6bp; 0-2kbp upstream of TSS
- 5' UTR: ~750 bp, 3' UTR: ~450bp
- Gene length: 30kb, coding region: 1-2kb
- Average of 6 exons, 150bp long
- Huge variance: - dystrophin: 2.4Mb long
 - Blood coagulation factor: 26 exons, 69bp to 3106bp; intron 22 contains another unrelated gene
Splicing

• Splicing: the removal of the introns.
• Performed by complexes called spliceosomes, containing both proteins and snRNA.
• The snRNA recognizes the splice sites through RNA-RNA base-pairing.
• Recognition must be precise: a 1nt error can shift the reading frame making nonsense of its message.
• Many genes have alternative splicing, which changes the protein created.
Exon-intron junctions

Donor site: AGGUAAGU

Branchpoint: CTGAC

Acceptor site: NCAGG

- Pyrimidine [C,T] rich
- 1st approach: positional weight matrices
 - Problematic with weak/short signals
 - Does not exploit all info (reading frames, intron/exon stats...)

⇒ try integrated approaches!
Length Distribution

Since an HMM is a memory-less process, the only length distribution that can be modeled is geometric.

Above is a simple HMM for gene structure.

The length of each exon (intron) has a geometric distribution:

\[P(\text{exon of length } k) = p^k (1 - p) \]

Since an HMM is a memory-less process, the only length distribution that can be modeled is geometric.
Exon Length Distribution

• **Intron length distribution** seems approximately geometric.
• This is not so for **exons**.
• Length seems to have a functional role on the splicing itself:
 - Too short (under 50bps): the spliceosomes have no room
 - Too long (over 300bps): ends have problems finding each other.
 - But as usual there are exceptions.

=> Need a different model for exons.
Generalized HMM
(Burge & Karlin, J. Mol. Bio. 97 268 78-94)

- Hidden Markov states $q_1, \ldots q_n$
- State q_i has output length distribution f_i
- Output of each state can have a separate probabilistic model (weight matrix, MM...)
- Initial state probability distribution π
- State transition probabilities T_{ij}
GenScan Model

Exon
Intron
Exon init/term
5'/3' UTR
Promoter/PolyA

Fig. 2. Gene model

Forward strand

Backward strand

Burge & Karlin JMB 97
GenScan model

- states = functional units on a gene
- The allowed transitions ensure the order is biologically consistent.
- As an intron may cut a codon, one must keep track of the reading frame, hence the three I phases:
 - phase I_0: between codons
 - phase I_1: introns that start after 1st base
 - phase I_2: introns that start after 2nd base
Signal Models

• Genscan uses different models to model the different biological signals
 - Weight Matrix Model
 • Position specific distribution.
 • Each column is independent
 - Used for
 • Translation initiation signal
 • Translation termination signal
 • promoters
 • polyadenylation signals
Splice Sites

• Correct recognition of these sites greatly enhances ability to predict correct exon boundaries.

• Used Weighted Array Model: a generalization of PWM that allows for dependencies between adjacent positions

• Accurate modeling of these sites led to substantial improvement in performance.
GenScan Performance

Accuracy of GENSCAN for different signal and exon types.

(a) Prediction of individual splice sites and translational signals.

<table>
<thead>
<tr>
<th>Type of signal</th>
<th>Type of exon</th>
<th>Annotated exons</th>
<th>Predicted exons</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Number</td>
<td>% Correctly predicted</td>
</tr>
<tr>
<td>Initiation</td>
<td>Initial only</td>
<td>570</td>
<td>66</td>
</tr>
<tr>
<td>Termination</td>
<td>Terminal only</td>
<td>570</td>
<td>78</td>
</tr>
<tr>
<td>5’ splice site</td>
<td>Initial only</td>
<td>570</td>
<td>88</td>
</tr>
<tr>
<td>5’ splice site</td>
<td>Internal only</td>
<td>1510</td>
<td>93</td>
</tr>
<tr>
<td>5’ splice site</td>
<td>Initial and internal</td>
<td>2080</td>
<td>91</td>
</tr>
<tr>
<td>3’ splice site</td>
<td>Terminal only</td>
<td>570</td>
<td>81</td>
</tr>
<tr>
<td>3’ splice site</td>
<td>Internal only</td>
<td>1510</td>
<td>92</td>
</tr>
<tr>
<td>3’ splice site</td>
<td>Internal and terminal</td>
<td>2080</td>
<td>89</td>
</tr>
</tbody>
</table>

Note:

- Predicts correctly 80% of exons
- Prediction accuracy per bp > 90%
Fig. 12. GENSCAN PostScript output for sequence HSNCAMX1

Key: □ Initial exon □ Internal exon △ Terminal exon ▽ Single-exon gene
- Annotated exon
- Predicted exon
Sam Karlin, Chris Burge
Regulatory sequence analysis

Slides with Chaim Linhart
Regulation of Transcription

- A gene’s transcription regulation is mainly encoded in the DNA in a region called the **promoter**
- Each promoter contains several short DNA subsequences, called **binding sites (BSs)** that are bound by specific proteins called **transcription factors (TFs)**
Regulation of Transcription (II)

Assumption:

Co-expression

\[\downarrow \]

Transcriptional co-regulation

\[\downarrow \]

Common BSs
WH-questions

• √ Why are we looking for common BSs?
• What exactly are we trying to find?
• Where should we look for it?
• How can we find it?
What is the promoter region?

- **Upstream Transcription Start Site (TSS)**
 - Too short → miss many real BSs (false negatives)
 - Too long → lots of wrong hits (false positives)
 - Length is species dependent (e.g., yeast ~600bp, thousands in human)
 - Common practice: ~ 500-2000bp

- **Consider both strands?**
 - Common practice: Yes
What: Models for Binding Sites
(I) Exact string(s)

Example:

\[BS = \text{TACACC}, \text{TACGGC} \]

CAATGCAGGAT\text{TACACC}GATCGGTA
GGAG\text{TACGGC}AAAGTCCCCCATGTGA
AGGCTGGGACCA\text{TACACC}CTC

In red: hits
(II) String with mismatches

Example:

\[\text{BS} = \text{TACACC} + 1 \text{ mismatch} \]

CAATGCGAGGATTCACCAGATCGGTA
GGAGTACAGCAAGTCCCCATGTGA
AGGCTGGACCAGACTCTACCTA
(III) Degenerate string

Example:

BS = TASDAC \(S = \{ C, G \} \quad D = \{ A, G, T \} \)

CAATGCAGGATACACGATCGGTA
GGAGTAGTACAAGTCCCCATGTGA
AGGCTGGAGCCAGACTCTCCTACGACTA
(IV) Position Weight Matrix (PWM)

a.k.a Position Specific Scoring Matrix (PSSM)

Example:

Score: product of base probabilities.

Need to set score threshold for hits.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.1</td>
<td>0.8</td>
<td>0</td>
<td>0.7</td>
<td>0.2</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0.1</td>
<td>0.5</td>
<td>0.1</td>
<td>0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
<td>0.1</td>
<td>0.4</td>
<td>0.1</td>
</tr>
<tr>
<td>T</td>
<td>0.9</td>
<td>0.1</td>
<td>0</td>
<td>0.1</td>
<td>0</td>
<td>0.3</td>
</tr>
</tbody>
</table>

ATGCAGGATACACCAGATCGGTA 0.0605
GGAGTAGAGCAAGTCCCGTGA 0.0605
AAGACTCTACAATTTATGGCGGT 0.0151
How: Experimental techniques
Protein Binding Microarrays
Berger et al, Nat. Biotech 2006

- Generate an array of double-stranded DNA with all possible k-mers
- Detect TF binding to specific k-mers
Chromatin Immunoprecipitation (ChIP)

DNA-binding proteins are crosslinked to DNA with formaldehyde in vivo.

Isolate the chromatin. Shear DNA along with bound proteins into small fragments.

Bind antibodies specific to the DNA-binding protein to isolate the complex by precipitation. Reverse the cross-linking to release the DNA and digest the proteins.

Identify bound DNA via microarray hybridization or sequencing

http://www.bio.brandeis.edu/haberlab/jehsite/chip.html
How: Analyzing known motifs
Goal: Identify enriched TFs = TFs whose BSs are over-represented in promoters of co-regulated genes

- Prepare a dictionary of motif hits
- Compute enrichment of hits in the given promoter set compared to a background set.
Computation of Motif Hits

Computing a threshold for a PWM:

- Compute 2nd-order Markov-Model of background sequences
- Generate random sequences using MM (e.g., 1,000 sequences of length 1,000)
- Set threshold s.t. PWM has \(~5\%\) hits at random.

This “ensures” a pre-defined false-positive rate, but no guarantee on false-negative rate.
Motif Enrichment

Each promoter is hit or not.

Let: \(B \) = total # of promoters (BG)
 \(T \) = # of target-set promoters
 \(b \) = total # of promoters that are hit
 \(t \) = # of target-set promoters that are hit

Then (hypergeometric distribution assumption):

Prob. for \(t \) hits in target-set:

\[
P(t) = \binom{b}{t} \binom{B-b}{T-t} / \binom{B}{T}
\]

Prob. for at least \(t \) hits:

\[
p-value = \sum_{i=t}^{\min\{b,T\}} P(i)
\]
TF Synergism

Find pairs of TFs that tend to occur in the same promoters

Let: \(T = \# \text{ of promoters in target-set} \)

\(t_1, t_2 = \# \text{ of promoters hit by TF 1,2} \)

\(t_{12} = \# \text{ of promoters hit by both TFs (w/o overlaps!)} \)

Then:

Prob. for co-occurrence of at least \(t_{12} \):

\[
\text{synergism \ p-value} = \sum_{i \geq t_{12}} \binom{t_1}{i} \binom{T - t_1}{t_2 - i} \binom{T}{t_2}
\]
Whitfield et al. (’02) identified 568 genes that are periodically expressed in the human cell-cycle and partitioned them into the 5 phases of the cell-cycle.
PRIMA: results on HCC

PRIMA found 8 enriched TFs in the 568 HCC genes (w.r.t. 13K BG promoters):
Results on HCC (III)

Co-occurring pairs of TFs:
How: Motif finding
Bailey & Elkan ZOOPS model

• n sequences, m possible motif positions per sequence.
• **Assumption**: each sequence contains zero or one occurrence of the motif.
• Prior probability for one occurrence: γ
• Prior probability for motif in position j: $\lambda = \gamma/m$
• *What is the hidden data?*
• *What is the Q function?*
• Z_{ij} indicator for motif at sequence i, position j.
• Q_i indicator for motif in sequence i.

$$\log Pr(X, Z|\theta, \gamma)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} Z_{i,j} \log Pr(X_i|Z_{i,j} = 1, \theta)$$

$$+ \sum_{i=1}^{n} (1 - Q_i) \log Pr(X_i|Q_i = 0, \theta)$$

$$+ \sum_{i=1}^{n} (1 - Q_i) \log(1 - \gamma) + \sum_{i=1}^{n} Q_i \log \lambda$$

$Z_{i,j}^{(t)} = \frac{f_i}{f_0 + \sum_{k=1}^{m} f_k}$, where

$f_0 = Pr(X_i|Q_i = 0, \theta^{(t)})(1 - \gamma^{(t)})$, and

$f_j = Pr(X_i|Z_{i,j} = 1, \theta^{(t)})\lambda^{(t)}$, $1 \leq j \leq m$

(ex.)