Predictive Model for Detection of Colorectal Cancer in Primary Care by Analysis of Complete Blood Counts

Slides: Dan Coster
Colorectal Cancer (CRC)

- Globally more than 1 million people get colorectal cancer every year (In 2012, 1.4 million new cases).
- 2nd most common cause of cancer in women (9.2% of diagnoses)
- 3rd most common in men (10% of diagnoses)
- Screening Tests:
 - Colonoscopy (recommended above age 50)
 - gFOBT (guaiac fecal occult blood test)

- Many avoid both tests and CRC discovered too late. Can regular blood tests help?
Data

• **Data Sets:**
 - **Maccabi Health Care** - persons of age 40+ between 01/2003 - 06/2011
 - **The Health Improvement Network (THIN)** - UK data, persons of age 40+ between 01/2007 - 05/2012

• **CRC Labeling:**
 - **Maccabi** - via Israel National Cancer Registry
 - **THIN** - based on patients records (documented Tumors / medications)
Data

Input data

Derivation (training) set data (Israeli dataset)

466,107 individuals with CBC / 2,437 CRC patients

<table>
<thead>
<tr>
<th>Patient (#)</th>
<th>Date of birth</th>
<th>Gender</th>
<th>CRC diagnosis date</th>
<th>CBC date</th>
<th>CBC parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>5.8.39</td>
<td>M</td>
<td>10.10.04</td>
<td>8.1.03</td>
<td>MCH 30.4, WBC 6.0, MCV 89</td>
</tr>
<tr>
<td>#2</td>
<td>2.3.44</td>
<td>F</td>
<td>Healthy</td>
<td>5.1.06</td>
<td>MCH 29, WBC 6.7, MCV 87</td>
</tr>
<tr>
<td>#</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>#466,107</td>
<td>7.2.57</td>
<td>F</td>
<td>Healthy</td>
<td>8.8.06</td>
<td>MCH 28, WBC 6.8, MCV 90</td>
</tr>
</tbody>
</table>
Table 2: CBC characteristics of females in the Israeli and UK datasets

<table>
<thead>
<tr>
<th>CBC values, median (Q1–Q3)</th>
<th>CRC patients</th>
<th>Cancer-free individuals<sup>d</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Israel<sup>a</sup></td>
<td>UK<sup>b</sup></td>
</tr>
<tr>
<td>Red Blood Cell Count (RBC)</td>
<td>4.2 (3.9–4.6)</td>
<td>4.2 (3.8–4.5)</td>
</tr>
<tr>
<td>White Blood Cell Count (WBC)</td>
<td>7 (5.8–8.4)</td>
<td>8 (6.6–9.9)</td>
</tr>
<tr>
<td>Mean Platelet Volume (MPV)</td>
<td>10.6 (10–11.3)</td>
<td>9 (8.1–10)</td>
</tr>
<tr>
<td>Hemoglobin</td>
<td>11.7 (9.6–12.8)</td>
<td>11 (9.4–12.8)</td>
</tr>
<tr>
<td>Hematocrit</td>
<td>36.2 (31.4–39.6)</td>
<td>34.5 (30.3–39.2)</td>
</tr>
<tr>
<td>Mean Corpuscular Volume (MCV)</td>
<td>85 (80–89)</td>
<td>85 (77.5–89.3)</td>
</tr>
<tr>
<td>Mean Corpuscular Hemoglobin (MCH)</td>
<td>27.4 (24.8–29.1)</td>
<td>27.5 (24.4–29.4)</td>
</tr>
<tr>
<td>Mean Corpuscular Hemoglobin Concentration (MCHC)</td>
<td>31.8 (30.8–32.7)</td>
<td>32.2 (30.9–33.1)</td>
</tr>
<tr>
<td>Red blood cell Distribution Width (RDW)</td>
<td>14.6 (13.7–16)</td>
<td>NA (NA–NA)</td>
</tr>
<tr>
<td>Platelets</td>
<td>296 (246.8–366)</td>
<td>362 (284–444)</td>
</tr>
<tr>
<td>Eosinophils (#)</td>
<td>0.16 (0.1–0.26)</td>
<td>0.13 (0.1–0.23)</td>
</tr>
<tr>
<td>Eosinophils (%)</td>
<td>2.3 (1.4–3.6)</td>
<td>2.2 (1.7–3)</td>
</tr>
<tr>
<td>Neutrophils (#)</td>
<td>4.1 (3.3–5.3)</td>
<td>5.3 (4.2–7)</td>
</tr>
<tr>
<td>Neutrophils (%)</td>
<td>60 (53.7–66.5)</td>
<td>68.7 (63.1–72.2)</td>
</tr>
<tr>
<td>Monocytes (#)</td>
<td>0.58 (0.46–0.72)</td>
<td>0.6 (0.5–0.8)</td>
</tr>
<tr>
<td>Monocytes (%)</td>
<td>8.2 (7.1–9.9)</td>
<td>7.9 (6.8–9.9)</td>
</tr>
<tr>
<td>Basophils (#)</td>
<td>0.03 (0.02–0.04)</td>
<td>0.02 (0–0.09)</td>
</tr>
<tr>
<td>Basophils (%)</td>
<td>0.4 (0.3–0.6)</td>
<td>0.35 (0.2–1)</td>
</tr>
<tr>
<td>Lymphocytes (#)</td>
<td>1.9 (1.5–2.4)</td>
<td>1.7 (1.3–2.2)</td>
</tr>
<tr>
<td>Lymphocytes (%)</td>
<td>28.5 (22.9–34)</td>
<td>20.3 (17–26.5)</td>
</tr>
</tbody>
</table>

Israel: median of 8 CBC tests in 7 years

UK: 3
Design

• Derivation (training) Set:
 - 80% of Maccabi’s data (466,107 patients, 2,437 with CRC)
 - Patients with other types of cancer were excluded.
 - Each individual was assigned a single score to avoid bias of over-representing individuals with many blood counts.
 - **Cases**: The most recent CBC within a defined **time window** (3-6 months/ 0-30 days) prior to CRC diagnosis was used
 - Individuals with no CBC in the time window were excluded.
 - **Controls**:
 • Individuals aged 50-75 (per current CRC screening guidelines)
 • A single randomly selected CBC was used *(age bias?)*

• Validation Sets:
 - **Israel validation set**: other 20% - 139,205 patients, 698 with CRC
 - **UK validation set**: THIN data - 25,613 patients, 5,061 with CRC.
Data Preparation

- Generated 62 features per patient:
 - Age (on CBC date)
 - Gender
 - 20 CBC values on CBC date
 - 20 CBC estimated values* 18 + 36 months before current CBC date

*Computed by linear regression on past CBCs of the individual
Algorithm

- Using Random Forest & Gradient Boosting.
Decision Trees (reminder)

Split (node, {Examples}):
1. $A \leftarrow$ The best feature for splitting the {examples}
2. Decision feature for this node $\leftarrow A$
3. For each value of A, create new child node
4. Split training examples to child nodes
5. For each child node / subset:
 1. If subset is pure: STOP
 2. Else: Split (child_node, {subset})

Splitting criterion:
Information gain

Random Forest

1. Select $ntree$, no. of trees to grow, and $mtry$, no. of vbls to use.
2. For $i = 1$ to $ntree$:
 1. Draw a bootstrap sample (subsample with replacement) from the data. Call those not in the sample the out-of-bag data.
 2. Grow a tree, where at each node, the best split is chosen among $mtry$ randomly selected variables. The tree is grown to maximum size and not pruned.
 3. Use the tree to predict out-of-bag data.
6. In the end, use the predictions on out-of-bag data to form majority votes.
7. Prediction of test data is done by majority votes from predictions from the ensemble of trees.

www.rci.rutgers.edu/~cabrera/587/
Results

- On Israel validation set:
 - AUC 0.82 ± 0.01
 - OR at FP=0.5% 26 ± 5
 - Specificity at 50% sensitivity $88\% \pm 2\%$

- On UK validation set:
 - AUC 0.81
 - OR at FP=0.5% 40
 - Specificity at 50% sensitivity 94%
Sensitivity at 0.5% specificity
Variable importance

• Want to find out which vbls are most important for the prediction.
• Age is the most important contributing parameter ($AUC = 0.72$ with age alone)
• What about the contribution of blood variables?
• Problem: Some of the blood variables are highly correlated
• Soln here:
 - Compute two parameters **Contribution & Redundancy**
 - Use **iterative removal of parameters** from the model
 - Evaluate performance by AUC
Computing variable importance

Repeat for each CBC variable \(p \): (example: Hg)

1. Let \(\Delta_0 \) be the decrease of AUC between the full model and the model without \(p \).
2. Sort the other 19 vbls by their correlation with \(p \).
3. For \(K = 1, 19 \):
 1. Remove from the data the \(K \) vbls most correlated with \(p \) (but not \(p \) itself!). Construct a new partial model on these data.
 2. Let \(\lambda_k \) be the decrease in AUC between the full model and the new partial model.
 3. Let \(\Delta_k = \lambda_k - \Delta_0 \)
4. Define the contribution of \(p \) as \(\max_i \{ \Delta_i \} \).
5. Define the redundancy of \(p \): \(\min \{ i | \Delta_i > \text{Threshold} \} \).

An important vbl: high contribution, low redundancy
Variable importance

Contribution of parameters to AUC at 90–180 days before diagnosis

- Hgb
- MCH
- MCHC
- Hct
- MCV
- RDW
- Plts
- RBC
- Mon#
Using the model + gFOBT

• Compared the method’s CRC detection rate to that of gFOBT on the Israeli cohort.
• Data: 75,822 gFOBT tests for 63,847 individuals, compared to 210,923 individuals with CBCs.
• The gFOBT positive rate was 5%, detecting 170 CRC cases.
• The model discovered 252 CRC cases.
• By considering individuals who were identified either by the model or by gFOBT the number of CRC cases detected would increase by 115%: from 70 to 365.
Performance on other cancers

- Does the same model detect other cancer types?
- Applied the model; examined the sensitivity at a FP rate of 3% (shifted from 0.5% to get reliable results on less common cancers).
Early predictions?

- Results using only CBCs performed 0-2 months, 2-4, ..., 20-22 months prior to CRC diagnosis
בריאותו

111 איש אחרי כנפיים סוכן לחoldt בטרון

המוות הנכון

מודרב בדיקה חסינת פיתוחה בקופת חוליםобщаיגי • נשטת על המשכילים שנהנו
הבריאת בדיקה כיוןMohammad של ספורט עלי הרג

משה יונה בירור //

http://www.israelhayom.co.il/article/436995 12/2016

ABDBM © Ron Shamir

http://www.israelhayom.co.il/article/436995 12/2016
Recap

• CRC predictor based on age, gender, temporal blood measurements
• Uses decision tree ensemble methods: RF, gradient boosting
• “Feature engineering” key to the results
• Results improve over FOBT, anemia guidelines
• Can detect risk of CRC 3-6 (12?) months ahead of time
• Great potential