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ABSTRACT
To date, all concurrent search structures that can support
predecessor queries have had depth logarithmic in m, the
number of elements. This paper introduces the SkipTrie,
a new concurrent search structure supporting predecessor
queries in amortized expected O(log log u + c) steps, inser-
tions and deletions in O(c log log u), and using O(m) space,
where u is the size of the key space and c is the contention
during the recent past. The SkipTrie is a probabilistically-
balanced version of a y-fast trie consisting of a very shallow
skiplist from which randomly chosen elements are inserted
into a hash-table based x-fast trie. By inserting keys into
the x-fast-trie probabilistically, we eliminate the need for
rebalancing, and can provide a lock-free linearizable imple-
mentation. To the best of our knowledge, our proof of the
amortized expected performance of the SkipTrie is the first
such proof for a tree-based data structure.

Categories and Subject Descriptors
E.1 [Data]: Data Structures—distributed data structures

Keywords
concurrent data structures, predecessor queries, amortized
analysis

1. INTRODUCTION
In recent years multicore software research has focused on

delivering improved search performance through the devel-
opment of highly concurrent search structures [11, 14, 7, 16,
5, 4]. Although efficient hash tables can deliver expected
constant search time for membership queries [11, 19, 12, 9,
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13], all concurrent search structures that support predeces-
sor queries have had depth and search time that is logarith-
mic in m, the number of keys in the set (without accounting
for the cost of contention, which is typically not analyzed).
This contrasts with the sequential world, in which van Emde
Boas Trees [21], x-fast tries and y-fast tries [22] are known to
support predecessor queries in O(log logu) time, where u is
the size of the key universe. This is, in many natural cases,
a significant performance gap: for example, with m = 220

and u = 232, logm = 20 while log logu = 5. Though one
can lower this depth somewhat by increasing internal node
fanout [5, 16], in the concurrent case the resulting algorithms
involve complex synchronization, and their performance has
never been analyzed.

This paper aims to bridge the gap between the sequential
and the concurrent world by presenting the SkipTrie,1 a new
probabilistically-balanced data structure which supports ef-
ficient insertions, deletions and predecessor queries. We give
a lock-free and linearizable implementation of the SkipTrie
from CAS and DCSS instructions (see below for the rea-
soning behind our choice of primitives), and we analyze its
expected amortized step complexity: we show that if c(op)
is the maximum interval contention of any operation that
overlaps with op (that is, the maximum number of opera-
tions that overlap with any operation op′ that itself overlaps
with op), each SkipTrie operation op completes in expected
amortized O(log logu+c(op)) steps. We can also tighten the
bound and replace the term c(op) by the point contention
of op—that is, the maximum number of operations that run
concurrently at any point during the execution of op—by
introducing more “helping” during searches.

The SkipTrie can be thought of as a y-fast trie [22] whose
deterministic load balancing scheme has been replaced by a
probabilistic one, negating the need for some of the complex
operations on trees that the y-fast trie uses. Let us begin
by recalling the construction of the x-fast trie and the y-fast
trie from [22].

Willard’s x-fast trie and y-fast trie.Given a set of integer
keys S ⊆ [u], each represented using logu bits, an x-fast trie
over S is a hash table containing all the prefixes of keys in
S, together with a sorted doubly-linked list over the keys
in S. We think of the prefixes in the hash table as forming

1The name “SkipTrie” has been previously used in the con-
text of P2P algorithms to describe an unrelated algorithm
[15] that involves a traditional trie and a distributed skip-
graph. We nevertheless decided to use it, as we believe it is
the most fitting name for our construction.



a prefix tree, where the children of each prefix p are p · 0
and p · 1 (if there are keys in S starting with p0 and p1,
respectively). If a particular prefix p has no left child (i.e.,
there is no key in S beginning with p · 0), then in the hash
table entry corresponding to p we store a pointer to the
largest key beginning with p · 1; symmetrically, if p has no
right child p · 1, then in the entry for p we store a pointer to
the smallest key beginning with p · 0. (Note that a prefix is
only stored in the hash table if it is the prefix of some key
in S, so there is always either a left child or a right child or
both.)

To find the predecessor of a key x in S, we first look for
the longest common prefix of x with any element in S, using
binary search on the length of the prefix: we start with the
top half of x (the first logu/2 bits), and query the hash
table to check if there is some key that starts with these
bits. If yes, we check if there is a key starting with the first
3 logu/4 bits of x; if not, we check for the first logu/4 bits of
x. After O(log logu) such queries we have found the longest
common prefix p of x with any element in the set S. This
prefix cannot have both left and right children, as then it
would not be the longest common prefix. Instead it has a
pointer down into the doubly linked list of keys; we follow
this pointer. If p has no left child, then we know that x
begins with p ·0, and the pointer leads us to the predecessor
of x, which is the smallest key beginning with p · 1; we are
done. If instead p has no right child, then x begins with
p · 1, and the pointer leads us to the successor of x, which
is the largest key beginning with p · 0. In this case we take
one step back in the doubly-linked list of leaves to find the
predecessor of x.

The x-fast trie supports predecessor queries in O(log logu)
steps, but it has two disadvantages: (1) insertions and dele-
tions require O(logu) steps, as every prefix of the key must
be examined and potentially modified; and (2) the space re-
quired for the hash table is O(|S| · logu), because the depth
of the prefix tree is logu. To remedy both concerns, Willard
introduced the y-fast trie. The idea is to split the keys in S
into “buckets” of O(logu) consecutive keys, and insert only
the smallest key from every bucket into an x-fast trie. Inside
each bucket the keys are stored in a balanced binary search
tree, whose depth is O(log logu).

The cost of predecessor queries remains the same: first we
find the correct bucket by searching through the x-fast trie
in O(log logu); then we search for the exact predecessor by
searching inside the bucket’s search tree, requiring another
O(log logu) steps.

As we insert and remove elements from the y-fast trie, a
bucket may grow too large or too small, and we may need
to split it into two sub-buckets or merge it with an adjacent
bucket, to preserve a bucket size of, say, between logu and
4 logu elements (the constants are arbitrary). To split a
bucket, we must split its search tree into two balanced sub-
trees, remove the old representative of the bucket from the
x-fast trie, and insert the representatives of the new buck-
ets. This requires O(logu) steps, but it is only performed
“once in everyO(log u) insertions”, because there is a slack of
O(log u) in the allowed bucket size. Therefore the amortized
cost is O(1). Similarly, to merge a bucket with an adjacent
bucket, we must merge the balanced search-trees, remove
the old representatives and insert the new one; we may also
need to split the merged bucket if it is too large. All of this

requires O(logu) steps but is again performed only once in
every O(logu) operations, for an amortized cost of O(1).

The y-fast trie has an amortized cost of O(log logu) for
all operations (the search for the predecessor dominates the
cost), and its size is O(m). However, this only holds true
if we continuously move the elements among the collection
of binary trees, so that each tree always has about logu
elements. This kind of rebalancing—moving items between
binary trees, into and out of the x-fast trie, and finally rebal-
ances the trees—is quite easy in a sequential setting, but can
prove to be a nightmare in a concurrent one. It is more com-
plex than simply implementing a balanced lock-free binary
search tree, of which no completely proven implementation
is known to date [7]. One might instead use a balanced B+
tree, for which there is a known lock-free construction [3];
but this construction is quite complicated, and furthermore,
the cost it incurs due to contention has not been analyzed.
Instead we suggest a more lightweight, probabilistic solution,
which does not incur the overhead of merging and splitting
buckets.

The SkipTrie.The main idea of the SkipTrie is to replace
the y-fast trie’s balanced binary trees with a very shallow,
truncated skiplist [18] of depth log logu. Each key inserted
into the SkipTrie is first inserted into the skiplist; initially
it rises in the usual manner, starting at the bottom level
and tossing a fair coin to determine at each level whether
to continue on to the next level. If a key rises to the top
of the truncated skiplist (i.e., to height log logu), we insert
it into the x-fast trie (see Fig. 1). We do not store any
skiplist levels above log logu. The nodes at the top level
of the skiplist are also linked backwards, forming a doubly-
linked list. The effect is a probabilistic version of the y-fast
trie: when a key x rises to the top of the skiplist and is
inserted into the x-fast trie, we can think of this as splitting
the bucket to which x belongs into two sub-buckets, one
for the keys smaller than x and one for the keys at least
as large as x. The probability that a given node will rise
to level log logu is 2− log log u = 1/ logu, and therefore in
expectation the number of keys between any two top-level
keys is O(log u). Thus we achieve in a much simpler manner
the balancing among buckets required for the y-fast trie. In
our version, we never have to rebalance, or take keys in and
out of the x-fast trie to make sure they are “well spaced-out.”

To find the predecessor of x in the SkipTrie, a thread first
traverses the x-fast trie to find the predecessor of x among
the top-level skiplist elements, and then traverses the skiplist
to find the actual predecessor of x. Finding the right top-
level skiplist element takes O(log logu) steps, and searching
the skiplist takes an expected O(log logu) additional steps,
for a total of O(log logu). To delete a key, we first delete
it from the skiplist, and if it was a top-level node, we also
remove it from the x-fast trie. As with the y-fast trie, insert-
ing or removing a key from the x-fast trie requires O(log u)
steps, but the amortized cost is O(1), because in expecta-
tion only one in every O(log u) keys rises into the x-fast trie.
Finally, the expected size of the SkipTrie is O(m), where m
is the number of keys: the skiplist’s size is well-known to
be O(m) (in our case it is even smaller, because it is trun-
cated), and an x-fast trie over an expected O(m/ logu) keys
requires O(m) space in expectation.

So how do we design a concurrent SkipTrie? Our data
structure is the composition of a concurrent hash table, a
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Figure 1: Illustration of a SkipTrie. The bottom is a truncated skiplist comprising log logu levels. Top-level skiplist nodes
are linked in a doubly-linked list and inserted into an x-fast trie.

concurrent skiplist, a doubly-linked list (or two singly-linked
lists sorted in opposite directions), and a concurrent im-
plementation of an x-fast trie. For the hash table we use
Split-Ordered Hashing [19], a resizable lock-free hash table
that supports all operations in expected O(1) steps. The
other components we construct and analyze in this paper:
although lock-free versions exist in the literature (e.g.,[8, 11,
14]), their step complexity has not been analyzed, and it ap-
pears that the penalty these implementations take for con-
tention is too high for our desired amortized bounds. In
terms of the construction itself, the most novel part is the
x-fast trie, which to our knowledge has never been imple-
mented concurrently before; in this extended abstract we
focus on the x-fast trie and give only a quick sketch of the
skiplist implementation. In addition, for lack of space, we
give a high-level description of the analysis.

On the choice of atomic primitives.Our implementation
of the SkipTrie uses single-word compare-and-swap (CAS)
and double-wide double-compare-single-swap (DCSS) oper-
ations. A DCSS(X, old X , new X , Y , old Y ) instruction
sets the value of X to new X , conditioned on the current
values of X and Y being old X and old Y , respectively. We
use DCSS to avoid swinging list and trie pointers to nodes
that are marked for deletion: we condition the DCSS on the
target of the pointer being unmarked, so that we can rest
assured that once a node has been marked and physically
deleted, it will never become reachable again.

Although DCSS is not supported as a hardware primi-
tive, we believe that given current trends in hardware and
software transactional memory, it is quite reasonable to use
lightweight transactions to implement a DCSS; indeed, sup-
port for hardware transactional memory is available in In-
tel’s new Haswell microarchitecture, and the specialized STM
of [6] sometimes outperforms hardware atomic primitives for
very short transactions. Our implementation requires DCSS
only for its amortized performance guarantee; we prove that
even if some or all DCSS instructions are replaced with CAS
(by dropping the second guard), the implementation remains
linearizable and lock-free. In particular, after attempting
the DCSS some fixed number of times and aborting, it is
permissible to fall back to CAS.

We believe that our explicit use of DCSS captures some de-
sign patterns that are implicit in, e.g., [8], and other lock-free
data structures built from CAS alone; these data structures

often “need” a DCSS, so they implement it from CAS, in
a way that essentially amounts to a pessimistic transaction.
We believe that on modern architecture it is preferable to
use an actual DCSS (i.e., a short transaction) for this type
of operation, as this allows for an optimistic implementa-
tion (as well as the pessimistic one if desired). Using DCSS
also reduces the amount of “helping”, which we view as an
advantage (see below).

The disadvantage to using non-pessimistic transactional
memory is that transactions may abort spuriously, while
our analysis assumes the usual semantics of a DCSS, with
no spurious aborts. However, a reasonable interpretation,
at least for hardware transactional memory with very short
transactions, is that spurious aborts occur only with very
low probability, so their cumulative expected effect is small.
Moreover, because our implementation remains correct even
if DCSS is replaced with CAS, we can place a limit on the
number of times a DCSS spuriously aborts, after which we
fall back

Addressing the cost of contention.In order to bound the
step complexity of operations as a function of the contention,
we show that each step taken by an operation op can be
charged to some operation op ′ that is part of the“contention”
on op′. For example, if op traverses across a deleted node u,
this step will be charged to the operation op′ that deleted
node u; we must then show that op and op′ contend with
each other, and also that op′ is only charged a constant
number of times by op.

The literature defines several measures for the amount of
contention on an operation op. Among them are interval
contention [1], which is the number of operations that over-
lap with op, and the point contention [2], which counts the
maximum number of operations that run concurrently at
any point during op. However, we believe that attempting
to bound the step complexity as a function of the interval
or point contention may be too pessimistic a design philoso-
phy, as it spends significant effort addressing situations that
are unlikely to arise in practice; it requires every operation
to eagerly help operations in its vicinity to complete. This
creates extra write contention.

Let us illustrate this idea using the doubly-linked list that
will be presented in Section 3. The list maintains both next

and prev pointers in each node, but since we do not use a
double-compare-and-swap (DCAS), we cannot update both
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Figure 2: The doubly-linked list from the example in Sec-
tion 1

pointers at the same time. Therefore, when inserting a new
node, we first update the next pointer of its predecessor
(this is the linearization point of an insert), and then we
update the prev pointer of its successor. There is a short
interval during which the next pointer of the predecessor
already points to the new node, but the prev pointer of the
successor points behind it.

Suppose that the list contains nodes 1 and 7, and we begin
to insert node 5 (see Fig. 2). (We abuse notation slightly
by using a number i ∈ N to refer to both the key i and
the node that stores key i.) After linking node 5 in the
forward direction, but before updating the prev pointer of
node 7, the thread inserting node 5 is preempted. Then
other threads insert nodes 2 and 3 into the list. We now
have a gap of 3 nodes in the backwards direction: the prev

pointer of node 7 still points to node 1, but in the forward
direction we have nodes 2, 3 and 5 between nodes 1 and 7.

If a predecessor query Q searching for 6 begins at node
7 (e.g., because it has found node 7 by searching the x-fast
trie), it will step back to node 1, then forward across nodes
2, 3, and 5. We must account for the three extra steps taken
by Q. Note that the insertion of node 5 is not yet complete
when Q begins its search, so stepping across node 5 can
be charged to the point contention of Q. But what about
nodes 2 and 3? The operations inserting them are done by
the time Q begins. We cannot charge these steps to the
point or interval contention of Q. There are two solutions:

(1) Prevent this situation from arising, by requiring inserts
to “help” other inserts. If we wish to charge the extra
steps to the interval or point contention of Q, the op-
erations insert(2) and insert(3) must not be allowed
to complete until the list has been repaired. This can
be achieved by adding a flag, u.ready, which indicates
whether the prev pointer of u’s successor has been set
to u. In order to set u.ready to 1, a thread must first
ensure that u.next.ready = 1 (helping u.next if nec-
essary), then it must set u.next.prev to point back to
u, and only then can it set u.ready to 1. Because of
the transitive nature of helping, we may have chains of
inserts helping each other; however, there can be no
deadlock, because nodes only help their successors.

If we use this solution, then in our example, when insert(5)
is preempted, the ready flag of node 5 will not be set. Hence,
insert(3) will help insert(5) by trying to set 7.prev to node
5. In turn, if insert(2) and insert(3) proceed in lockstep,
then insert(2) will observe that insert(3) needs its help;
it will help node 3 by helping node 5. As a result we will
have insert(2), insert(3) and insert(5) all contending on
7.prev.

If our search query, starting from node 7 and searching for
node 6, encounters the scenario depicted in Fig. 2, we can

now charge insert(2) and insert(3) for the extra steps,
because these operations cannot have completed when the
query begins. However, in order to avoid the potential ex-
tra reads by search queries that may or may not happen,
we have created extra write contention by eagerly helping
other operations complete. This pattern is common; for ex-
ample, in the singly-linked list of [8], search queries must
help clean the data structures by removing marked nodes
that they come across, even though there is already a pend-
ing delete operation that will remove the marked node before
it completes. This creates extra write contention on the base
objects accessed by the pending delete, and is likely to slow
its progress. We believe that such eager helping is not, in
fact, helpful.2

The alternative is the following:

(2) Forgo eager helping, and instead relax our guarantee on
the step complexity. This is the choice we make in the
current paper. We observe that the “damage” caused
by insert(2) and insert(3) is transient, and will be re-
paired as soon as insert(5) completes, setting 7.prev to
node 5. In practice, it is unlikely that long gaps will form
in the list.3 Furthermore, the temporary gap in the list
affects only searches, causing them to make extra reads;
it does not create extra writes for any operation. Thus
we allow the scenario depicted in Fig. 2, and similar sce-
narios. We allow operations to ignore temporary local
obstacles that they come across as they traverse the list,
as long as it is guaranteed that some operation will cor-
rect the problem before it completes.

To account for “transient” inconsistencies in the data struc-
ture, which are incurred during a recent operation and will
be eliminated when the operation completes, we use the fol-
lowing definition:

Definition 1.1 (Overlapping-Interval Contention).
The overlapping-interval contention cOI(op) of an operation
op is the maximum interval contention of an operation op′

that overlaps with op.

In our example above, the overlapping-interval contention of
the query Q is at least the interval contention of insert(5),
because these two operations overlap. In turn, the interval
contention of insert(5) is at least 3, because, in addition
to insert(5) itself, the operations insert(2) and insert(3)
overlap with insert(5). Therefore we can charge the extra
steps taken by Q to its overlapping-interval contention.

We remark that in our data structure, the overlapping-
interval contention is only used to account for reads, never
writes. The number of extra write steps performed by an
operation op is bounded by the point contention of op.

Organization.The remainder of the paper is organized as
follows. In Section 2 we sketch our new skiplist and its amor-
tized analysis; for lack of space, we give only a brief overview.
In Section 3 we give the construction of the doubly-linked
list of the SkipTrie, and in Section 4 we construct the x-fast

2In Hebrew and Danish, the appropriate phrase is “a bear’s
help”, referring to the tale of a man whose pet bear saw a
fly on the man’s nose and swatted him to death to get rid
of it.
3For use-cases where many inserts or deletes with successive
keys are frequent, it seems that approaches like flat combin-
ing are better suited in the first place.



trie and sketch the proof of its linearizability and amortized
step complexity.

Notation and definitions.We use p � p′ to denote the
fact that p is a prefix of p′, and p ≺ p′ to denote a proper
prefix. When referring to a trie node representing a prefix
p, the 0-subtree (resp. 1-subtree) of p is the set of trie nodes
representing prefixes or keys p′ such that p0 � p′ (resp. p1 �
p′). The direction of a key x under a prefix p ≺ x is the bit
d such that x belongs to the d-subtree of p.

We let pi denote the i-th bit of p, and p[i,...,j] denote bits
i through j of p (inclusive), and we use lcp(x, y) to denote
the longest common prefix of x and y.

2. AN EFFICIENT LOCK-FREE CONCUR-
RENT SKIPLIST: A BRIEF OVERVIEW

For lack of space, we give only a brief overview of our
skiplist construction. Our skiplist is constructed along simi-
lar lines as Lea’s skiplist [14], and uses the idea of back links
from [8, 20, 17]. It achieves an expected amortized cost of
O(log logu+ cI), where cI is the interval contention. If we
also have traversals “help” inserts and deletes by raising and
lowering towers of nodes they come across, we can tighten
the bound and replace cI with the point contention cP .

The skiplist consists of log logu levels, each of which is
itself a sorted linked list. We use the logical deletion scheme
from [10], storing each node’s next pointer together with its
marked bit in one word. In addition, a list node contains
a pointer back pointing backwards in the list, which allows
operations to recover if the node is deleted “from under their
feet”; a Boolean flag, stop, which is set to 1 when an opera-
tion begins deleting the node’s tower in order to stop inserts
from raising the tower further; and a pointer down, which
points to the corresponding tower node on the level below.

A key procedure of the skiplist implementation is the
search procedure, listSearch(x, start), which takes a node
start on some level ℓ with start.key < x, and returns a
pair (left, right) of nodes on level ℓ such that left.key <
x ≤ right.key, and moreover, at some point during the in-
vocation, left and right were both unmarked, and we had
left.next = right. A similar function is used in the linked
lists of [10] and [8]. This function also performs cleanup
if necessary: if a marked node prevents it from finding an
unmarked pair of nodes (left, right) as required (e.g., be-
cause there is a marked node between left and right), then
listSearch will unlink the node. We use listSearch when-
ever we need to find the predecessor of a key x on a given
level.

A traversal of the skiplist to find the predecessor of a key
x begins at the top level, TOP, from some node startTOP
that has startTOP.key < x. When we descend to level ℓ, we
make a call to listSearch(x,startℓ), where startℓ is the
point from which we began the traversal on level ℓ, to obtain
a pair (leftℓ, rightℓ) bracketing the key x. Then we set
startℓ−1 ← leftℓ.down and descend to the next level, where
we call listSearch(x, startℓ−1). Eventually we reach level
0; if right0.key = x then we return right0, and otherwise
we return left0.

To insert a new key x, we first descend down the skiplist
and locate the predecessor of x on every level. We choose a
height H(x) ∼ Geom(1/2) for x. We first create a new node
for x and insert it on the bottom level; this node is called

the root. Then we move up and insert x into every level
up to min {H(x),TOP}. Each insertion is conditioned on the
stop flag of the root remaining unset. To delete a key x,
we find the root node of the tower corresponding to x, and
set its stop flag. Then we delete x’s tower nodes top-down,
starting at the highest level on which x has been inserted.

Perhaps the most interesting feature of our skiplist is the
analysis of its expected amortized step complexity. There
are two key ideas:

1. How many times can an insert or delete operation
“interfere” with other operations?If an insert or delete
op causes a CAS or DCSS performed by another operation
op′ to fail, then op is charged for the extra step by op′. As
two inserts go up the skiplist in parallel, or as two deletes go
down, they may interfere with each other at most once on
every level, because one successful CAS or DCSS is all that
is necessary for an operation to move on from its current
level.4 However, they can interfere with each other on mul-
tiple levels. This might seem to lead to an amortized cost
of O(cOI · log logu) instead of O(log logu+ cOI), as we may
end up charging each operation once per level. However, we
are saved by observing that an operation operation working
on key x only “interferes” on levels h ≤ H(x), and H(x) is
geometrically distributed. Thus, in expectation, each oper-
ation only interferes with others on a constant number of
levels, and the cost of contention is linear in expectation.

2. How can we bound the expected amortized cost of a
skiplist traversal?We modify the beautiful analysis due
to Pugh in [18], where he argues as follows: consider the
traversal in reverse order, from the node found on the bot-
tom level back to the top. Each time we make a“left” step in
the inverted traversal, this corresponds to a node that made
it to the current level, but did not ascend to the next level—
otherwise we would have found it there, and we would not
have needed to move to it on the level below. The proba-
bility of this is 1/2, and the expected number of “left” steps
between “up” steps is 2. Therefore, in expectation, the total
number of “left” steps in the traversal is on the order of the
height of the skiplist.

In our case, in addition to “left” and “up” (i.e., reversed
“right” and “down”) steps, we also have the following types
of reversed steps:
• “Right”(reversed“left”): the current node in the traver-

sal was marked, and we had to backtrack using its
back pointer. We charge this step to the operation
that marked the node. We show that the operation
overlaps with the traversal, so this is permitted, and
that we never step back over this node again.
• “Cleanup”: the traversal stays in place, but CAS-es a

marked node out of the list. This is again charged to
the operation that marked the node.
• “Left that should have been up”: we move to a node

u on level ℓ, but the “true” height H(u) chosen for u
is greater than ℓ. Pugh’s analysis does not account for
this case, because it concerns only the “true” heights
chosen for the nodes. In our case, we can show that
since u’s “true” height is greater than ℓ, we were “sup-

4Unless the CAS or DCSS is performed in order to “help”
some other operation, but then the other operation will be
charged instead.



posed” to find it before descending to level ℓ, and the
reason we did not is that either u’s tower is currently
being raised by an insert, that had not reached level
ℓ+ 1 when we descended to level ℓ, or u’s tower is be-
ing lowered by a delete that had already removed the
tower node from level ℓ + 1 but has not yet reached
level ℓ. We charge the inserting or deleting operation.
Note that because traversals do not “help” inserts or
deletes, we may charge the insert or delete once for
every traversal that it overlaps with; this is why our
bound is stated in terms of the interval contention
rather than the point contention. To get the bound
down to the point contention, traversals must help
raise or lower towers, so that this situation is avoided.

The only steps that are not accounted for by charging
other operations are the steps that Pugh’s original analy-
sis covers. Thus the expected amortized step complexity is
O(log logu+ cI).

3. THE DOUBLY-LINKED LIST
Our doubly-linked list is built on top of the skiplist sketched

in Section 2. We add to each top-level skiplist node a pointer,
prev, which points to a node with a strictly smaller key. For
linearizability we rely only on the forward direction of the
list; the prev pointers are used only as “guides”.

To insert a key into the list we call topleveLinsert, a
procedure whose code is omitted here. In topleveInsert we
create a new node, u, and insert it into the skiplist. If node
u has reached the top level of the skiplist, we call fixPrev
to set node u’s prev pointer. Inside fixPrev, we locate node
u’s predecessor v in the list by calling listSearch with u’s
key, and then we attempt to set u.prev to v, provided that
v remains unmarked and has v.next = u. If our attempt
fails, we re-try, until we either succeed in setting u.prev or
node u becomes marked. Upon success we set u.ready ← 1
to indicate that we have finished inserting node u into the
doubly-linked list.

To delete a node u from the top level of the skiplist, we
first ensure that u has been completely inserted (i.e., its
prev pointer has been set), and if not, we finish inserting
u by calling fixPrev. Then we delete it from all levels of
the skiplist (top-down), which ensures that no next pointer
points to u on any level. Finally, we remove u from the
backwards direction on the top level by finding its successor
v on the top level, and calling fixPrev to adjust v.prev so
that it will no longer point back to u. If v became marked
in the process, we find the new successor of u and try again.
This ensures a type of local consistency for the doubly-linked
list: the operation deleting u cannot complete until it has
“observed” (inside fixPrev) a pair of unmarked nodes w, z
that bracket u’s key (w.key < u.key ≤ z.key) and have
w.next = z and z.prev = w.

The key property of the top-level prev pointers is the fol-
lowing (addressing the scenario we described in Section 1
and Fig. 2):

Lemma 3.1. Suppose that u is an unmarked top-level node
with u.prev = v, and there is a chain of nodes u0, . . . , uk

such that k > 1, u0 = v, uk = u and for each i = 0, . . . , k−1
we have ui.next = ui+1, then the operation op inserting node
uk−1 is still active, and furthermore, if k > 2, the operations
that inserted nodes u1, . . . , uk−2 overlap with op.

Lemma 3.1 allows us to account for extraneous forward-steps

in the list: it shows that if, after following the prev pointer
of some node u, we must step forward across a chain of nodes
u0, . . . , uk, then the extra steps to cross nodes u1, . . . , uk−1

are covered under the interval contention of the operation
inserting node uk−1, and this operation is still active.

In addition to the lemma, we also rely on the fact that
prev pointers are never set to marked nodes (this is a condi-
tion of the DCSS in fixPrev). Thus, if we follow a pointer
u.prev and reach a marked node v, we know that v was
marked after u.prev was updated for the last time. We will
see in Section 4.2 that we only need to follow u.prev if node
u was inserted during the current operation. Therefore we
can conclude that crossing the marked node, v, is covered
under the overlapping-interval contention of the current op-
eration.

4. A LOCK-FREE CONCURRENT IMPLE-
MENTATION OF AN X-FAST TRIE

In this section we describe our lock-free implementation
of an x-fast trie, and sketch its proof of linearizability and
the analysis of its expected amortized performance.

In a sequential x-fast trie, only unary nodes, which are
missing either a 0-subtree or a 1-subtree, store pointers into
the linked list of keys. This is sufficient, because a binary
search for the longest common prefix can never end at a
binary node—if a prefix has both 0-children and 1-children,
it is not the longest common prefix with any key. However,
in a concurrent implementation it is useful to store pointers
into the linked list even in binary nodes: suppose that a
predecessor query Q looking for the predecessor of x looks
up a prefix p ≺ x and sees that it exists in the trie, but
the node representing it is binary and therefore stores no
pointer into the linked list. Immediately afterwards, delete
operations remove all the 0-children of p. Because Q found
p in the trie, its future lookups will all be for longer prefixes
p′, where p · 0 � p′. But because all 0-children of p were
deleted, these lookups will all fail, leaving Q “stuck”with no
pointer into the linked list. The only possible recovery is to
try to backtrack up the trie or to re-start the search, but
these solutions are too expensive. Instead, we store in each
trie node two pointers, to the largest child in the 0-subtree
and the smallest child in the 1-subtree. This ensures that
a query always holds a pointer to a top-level skiplist node,
and indeed to a node that is not too far from its destination
(and is updated to closer and closer nodes as the search
progresses).

The data structure.The concurrent x-fast trie consists of
a hash table prefixes, mapping prefixes to tree nodes rep-
resenting them. A tree node n has a single field, n.pointers,
which stores two pointers n.pointers[0], n.pointers[1] to
the largest element in the 0-subtree and the smallest element
in the 1-tree, respectively. Recall that “underneath” the x-
fast trie we store all keys in a skiplist; the nodes pointed to
by n.pointers[d] for d ∈ {0, 1} are top-level skiplist nodes.
A value of n.pointers[d] = null indicates that node n has
no children in its d-subtree (except possibly new children
currently being inserted).

Our goal is to ensure that n.pointers[0] always points
to the largest node in the 0-subtree that has been com-
pletely inserted (and not deleted yet), and symmetrically for
n.pointers[1]; and furthermore, that if the deletion of top-



1 (left, right)← listSearch(node.key, pred)
2 while !node.marked do

3 node prev← node.prev
4 if DCSS(node.prev, node prev, left, left.succ, (node, 0)) then return
5 (left, right)← listSearch(node.key, pred)

6 node.ready← 1

Algorithm 1: fixPrev(pred, node)

1 if !node.ready then
2 fixPrev(pred, node)
3 skiplistDelete(pred, node)
4 repeat

5 (left, right)← listSearch(node.key, right)
6 fixPrev(left, right)
7 until !right.marked

Algorithm 2: toplevelDelete(pred, node)

level skiplist node u has completed, then it is not pointed
to by any trie node. In a sense, we can think of each trie
node as a linearizable pair of pointers, reflecting all insert
and delete operations that have already “crossed” the level
of the trie node.

The hash table.As mentioned in Section 1, we use Split-
Ordered Hashing [19] to implement the prefixes hash table.
We require one additional method, compareAndDelete(p, n),
which takes a prefix p and a trie node n, and removes p from
prefixes iff the entry corresponding to p contains node n.
This is easily achieved in the hash table of [19] by simply
checking that p’s entry corresponds to n before marking it.

4.1 X-Fast Trie Operations

Predecessor queries.For convenience, we divide our pre-
decessor query into three procedures.

To find the predecessor of a key x, we first find its longest
common prefix in the x-fast-trie using the LowestAncestor

function, which performs a binary search on prefix length to
locate the lowest ancestor of x in the tree; this is the node
representing the longest common prefix that x has with any
key in the trie. During the binary search, the query always
remembers the “best” pointer into the linked list it has seen
so far— the node whose key is closest to x. After log logu
steps, LowestAncestor finishes its binary search and returns
the “best” pointer into the doubly-linked list (i.e., the top
level of the skiplist) encountered during the search.

The node returned by LowestAncestor may be marked
for deletion, and its key may be greater than x. Therefore,
inside the procedure xFastTriePred, we traverse back point-
ers (if the node is marked) or prev pointers (if the node is
unmarked) until we reach a top-level skiplist node whose key
is no greater than x. Finally, we call skiplistPred to find
the true predecessor of x among all the keys in the SkipTrie.

1 curr← LowestAncestor(key)
2 while curr.key > key do

3 if curr.marked then curr← curr.back
4 else curr← curr.prev

5 return curr

Algorithm 4: xFastTriePred(key)

1 return skiplistPred(key, xFastTriePred(key))

Algorithm 5: predecessor(key)

Insert operations.To insert a new key x, we first insert it
into the skiplist; this is the linearization point of a successful
insert, as after this point all searches will find x (until it is
deleted). Then, if x reached the top level of the skiplist,
we insert the prefixes of x into the trie as follows: for each
prefix p � x from the bottom up (i.e., longer prefixes first),
we look up the tree node corresponding to p in the prefixes
hash table. If no such node is found, we create a new tree
node pointing down to x and try to insert it into prefixes.
Upon success, we return; upon failure, we start the current
level over.

If a node is found but its pointers field is (null, null),
we know that it is slated for deletion from prefixes; we help
the deleting operation by deleting the node from prefixes

ourselves. Then we start the current level over.
Finally, suppose that a tree node n is found in the hash

table, and it has n.pointers 6= (null, null). Let d be
the direction of x’s subtree under p, that is, d ∈ {0, 1}
satisfies p · d � x. If d = 0, then n.pointers[d] should
point to the largest key in n’s subtree and if d = 1 then
n.pointers[d] should point to the smallest key in n’s sub-
tree. Thus, if d = 0 and n.pointers[d].key ≥ x, or if d = 1
and n.pointers[d].key ≤ x, then x is adequately represented
in n, and we do not need to change anything; otherwise we
try to swing the respective pointer n.pointers[d] to point
down to x, conditioned on x remaining unmarked.

Delete operations.To delete a key x, we first locate its pre-
decessor pred among all top-level skiplist nodes, then try to
delete x from the skiplist by calling either skiplistDelete,
if the node is not a top-level node, or toplevelDelete if it
is a top-level node. If we succeed, and if x was a top-level
skiplist node, then we need to update x’s prefixes in the trie
so that they do not point down to the node u we just deleted.
We go over the prefixes top-down (in increasing length), and
for each prefix p ≺ x, we check if prefixes contain an entry
for p; if not, we move on to the next level. If it does contain
an entry n for p, but n.pointers does not point down to
u, we also move on. Finally, if n.pointers[d] = u (where
d is the direction of u under p, that is, p · d � x), then we



1 common prefix← ε
2 start← 0 // The index of the first bit in the search window

3 size← logu/2 // The size of the search window

4 ancestor← prefixes.lookup(ε).pointers[key0] // The lowest ancestor found so far

5 while size > 0 do

6 query← common prefix ·
(

key[start,start+size−1]

)

7 direction ← keystart+1

8 query node← prefixes.lookup(query)
9 if query node 6= null then

10 candidate ← query node.pointers[direction]
11 if candidate 6= null and query � candidate.key then

12 if |key− candidate.key| ≤ |key− ancestor.key| then
13 ancestor ← candidate

14 common prefix← query
15 start← start + size

16 size← size/2

17 return ancestor

Algorithm 3: LowestAncestor(key)

1 pred← xFastTriePred(key); if pred.key = key then return false
2 node← toplevelInsert(key, pred)
3 if node = null then return false // key was already present

4 if node.orig height 6= TOP then return true // A non-top-level node was created

// Insert into the prefix tree

5 for i = logu− 1, . . . , 0 do

6 p← key[0,...,i]; direction ← keyi+1

7 while !node.marked do

8 tn← prefixes.lookup(p)
9 if tn = null then // Create an entry for prefix p

10 tn← new treeNode()
11 tn.pointers[direction]← node
12 if prefixes.insert(p, tn) then break

13 else if tn.pointers = (null, null) then // The entry for p is in the process of being deleted; help delete it

14 prefixes.compareAndDelete(p, tn)
15 else

16 curr← tn.pointers[direction]
17 if curr 6= null and [(direction = 0 and curr.key ≥ key) or (direction = 1 and curr.key ≤ key)] then break

18 node next = node.next
19 if DCSS(tn.pointers[direction], curr, node, node.succ, (node next, 0)) then break

20 return true

Algorithm 6: insert(key)

call listSearch to find a pair of nodes (left, right) that
“bracket” key x on the top level of the skiplist: these nodes
satisfy left.next = right and left.key < x ≤ right.key,
and both of them are unmarked. If d = 0, then we swing
n.pointers[d] backwards to point to left, and if d = 1 we
swing n.pointers[d] forward to point to right. In both
cases we condition the switch on the new target, left or
right, remaining unmarked and adjacent to right or left
(respectively) on the top level of the skiplist.

4.2 Analysis of the Trie
Because prefixes is a linearizable hash table, our anal-

ysis treats it as an atomic object. For convenience we let
prefixes[p] denote the value currently associated with p in
the hash table (or null if there is none); that is, the result of
prefixes.lookup[p]. We also abuse notation slightly by us-
ing insert(u) and delete(u) to refer to an operation in the
SkipTrie whose top-level skiplist node is u (i.e., an insert

that created node u, or a delete that marked node u).

Linearizability of the trie is very easy to show: all we
have to show is that for each prefix p and direction d, if
prefixes[p] 6= null and prefixes[p].pointers[d] 6= null,
then prefixes[p].pointers[d] points to some node that was
reachable in the top level of the skiplist at some point in
time. This holds even if CAS is used instead of DCSS. The
properties of the doubly-linked list and the skiplist, which
are themselves linearizable, then guarantee that we will find
the predecessor of x.

For the amortized step complexity, we define the notion
of an operation crossing a certain level, which is informally
when its changes “take effect” on that level. We say that
insert(u) crosses level ℓ when one of the following occurs
inside the ℓ-th iteration of the for-loop: (1) a new node
for prefix p is successfully inserted into prefixes in line 12,
(2) the condition in line 17 evaluates to true, or (3) a success-
ful DCSS occurs in line 19. We say that delete(u) crosses
level ℓ when one of the following occurs inside the ℓ-th itera-
tion of the for-loop: (1) we set tn to null in line 8, or (2) we



1 pred← pedecessor(key − 1);
2 (left, node)← listSearch(key, pred)
3 if node.orig height 6= TOP then return skiplistDelete(left, node)
4 if !toplevelDelete(left, node) then return false

5 for i = 0, . . . , logu− 1 do

6 p← key[0,...,i]
7 direction ← keyi+1

8 tn← prefixes.lookup(p)
9 if tn = null then continue

10 curr← tn.pointers[direction]
11 while curr = node do

12 (left, right)← listSearch(key, left)
13 if direction = 0 then
14 DCSS(pointers[direction], curr, left, left.succ, (right, 0))
15 else

16 makeDone(left, right)
17 DCSS(pointers[direction], curr, right, (right.prev, right.marked), (left, 0))
18 curr← tn.pointers[direction]

19 if !(p � curr.key) then // the sub-tree corresponding to p · direction has become empty

20 CAS(tn.pointers[direction], curr, null)

21 if tn.pointers = (null, null) then // the entire sub-tree corresponding to p has become empty

22 prefixes.compareAndDelete(p, tn)

23 return true

Algorithm 7: delete(key)

set curr to a value different from node in line 10 or line 18.
We can show that once an operation has crossed a certain
level, its effects on that level are persistent. For insert(u),
this means that the trie points to a node “at least as good
as u”, and for delete(u), this means that u will never be
reachable from the trie.

Lemma 4.1. Suppose that insert(u) has crossed level ℓ
and u is unmarked. Let p be the length-ℓ prefix of u.key,
and let d ∈ {0, 1} be such that p · d � u.key. Then

(a) prefixes[p] 6= null and prefixes[p].pointers[d] 6= null,
and

(b) If d = 0 then prefixes[p].pointers[d].key ≥ u.key, and
if d = 1 then prefixes[p].pointers[d].key ≤ u.key.

If delete(u) has crossed level ℓ, then either prefixes[p] =
null, or prefixes[p].pointers[d] 6= u.key.

When Q = predecessor(x) finishes the binary search in
the trie and lands in the top level of the skiplist, it may have
to traverse prev pointers, back pointers of deleted nodes,
and next pointers of unmarked nodes that stand between
Q and its destination, the predecessor of x on the top level.
We call the length of this top-level traversal the list cost of
Q. To account for this cost, we calculate the charge that
Q picks up as it searches through the tree: every time Q
queries some level and “misses” an insert or delete that
has not yet crossed that level, that operation pays Q one
budget unit, which Q can then consume to traverse through
the doubly-linked list.

More formally, we represent Q’s binary search through the
trie as a complete binary tree, where each node a is labeled
with a search query q(a) ∈ {0, 1}∗. The root is labeled
with the first query x[0,...,log u/2] performed by the search.
For an inner node a, the left child of a is labeled with the
query performed if q(a) is not found in the hash table, and
the right child of a is labeled with the query performed if

q(a) is found. For example, the root’s children are labeled
x[0,...,log u/4] and x[0,...,3 log u/4] respectively.

The leaves of the tree correspond to the result of the bi-
nary search; for a sequential trie, this is the longest com-
mon prefix of x with any key in the trie. In the concurrent
trie this is no longer true, due to concurrent insertions and
deletions: the contents of the prefixes hash table does not
accurately reflect keys which are currently being inserted or
removed. However, we can show that the search behaves
properly with respect to keys which are not currently being
inserted or removed.

Suppose that inside Q, LowestAncestor(x) eventually re-
turns a node u with u.key = y. The path Q follows through
its binary search tree is the path from the root to lcp(x, y),
as y is the key returned. For a key z 6= y, define the critical
point for z in Q’s binary search tree to be the highest node
where the path from the root to lcp(x, y) diverges from the
path to lcp(x, z). Then using Lemma 4.1 we can show:

Lemma 4.2. If v is an unmarked node with v.key = z
such that |z−x| < |y−x| and sign(z−x) = sign(y−x) (that
is, y and z are “on the same side” of x), and a is the critical
point for z in Q’s binary search tree, then when Q queried
q(a), the operation that inserted v had not yet crossed level
|q(a)|.

Thus, on a very high level, for any unmarked node v that
is closer to the target node (i.e., closer to the predecessor
of x on the top level of the skiplist) than the node returned
by LowestAncestor, we can charge the operation that was
not yet done inserting v when Q passed the critical point
for v.key. In particular, when we follow prev pointers, the
nodes we cross were inserted during Q. For marked nodes
that are traversed, we show that we can charge the operation
that marked them, and this is covered under the overlapping-
interval contention. And finally, if, after moving backwards
following prev pointers, we went “too far back” and must
make extra forward steps, then Lemma 3.1 shows that all
nodes we cross are either newly-inserted nodes or are covered



under the overlapping-interval contention of Q. Therefore Q
is adequately compensated for its list cost, and we can show
that its expected amortized step complexity, considering just
the x-fast trie (i.e., the binary search and the traversal in the
top level of the skiplist), is O(log logu+ cOI).

The remainder of the proof consists of“assigning the blame”
for each DCSS instruction and hash-table operation exe-
cuted by insert and delete. To cross a level, each oper-
ation needs to perform only one successful DCSS or hash-
table operation. Every failed DCSS instruction or opera-
tion on prefixes is charged to the operation that caused
it to fail, by executing some successful DCSS or operation
on prefixes. The various trie operations can charge each
other at most once per level, for a total amortized cost of
at most O(cP · logu) when considering the x-fast trie by it-
self. However, because in expectation only one in every logu
SkipTrie operation must insert or delete from the x-fast trie,
the expected amortized cost of SkipTrie insertions and dele-
tions in the x-fast trie is only O(cP + log logu). Thus, the
dominant cost is the cost of predecessor queries. (Note that
cP ≤ cI ≤ cOI for any operation.)

Because expected amortized step complexity is composi-
tional, we can combine our analysis of the various compo-
nents of the SkipTrie to obtain the following bounds:

Theorem 4.3. The SkipTrie is a linearizable, lock-free
data structure supporting insert, delete and predecessor

queries in expected amortized O(log logu+ cOI), where cOI

is the overlapping-interval contention of the operation.

5. REFERENCES
[1] Yehuda Afek, Gideon Stupp, and Dan Touitou. Long

lived adaptive splitter and applications. Distrib.
Comput., 15(2):67–86, April 2002.

[2] Hagit Attiya and Arie Fouren. Algorithms adapting to
point contention. J. ACM, 50(4):444–468, July 2003.

[3] Anastasia Braginsky and Erez Petrank. A lock-free
b+tree. In Proceedings of the 24th ACM Symposium
on Parallelism in Algorithms and Architectures, SPAA
’12, Pittsburgh, PA, USA, June 25-27, 2012, pages
58–67, 2012.

[4] Nathan G. Bronson, Jared Casper, Hassan Chafi, and
Kunle Olukotun. A practical concurrent binary search
tree. SIGPLAN Not., 45:257–268, January 2010.

[5] R. Brown. Calendar queues: A fast priority queue
implementation for the simulation event set problem.
Communications of the ACM, 31(10):1220–1227, 1988.
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