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Abstract

In this paper we suggest a method by which reference broasigashronization (RBS),
and other methods of estimating clock values, can be incatpd in standard clock synchro-
nization algorithms to improve synchronization qualitye \Advocate a logical separation of
the task of estimating the clock values of other nodes in #tevork from the task of using
these estimates to output a logical clock value.

The separation is achieved by means of a virastimate graphoverlaid on top of the real
network graph, which represents the information variousesacan obtain about each other.
RBS estimates are represented in the estimate graph asheEtge®n nodes at distance 2 from
each other in the original network graph. A clock synchratian algorithm then operates on
the estimate graph as though it were the original network.

To illustrate the merits of this approach, we modify a reagstimal gradient clock syn-
chronization algorithm to work in this setting. The modifialgjorithm transparently takes
advantage of RBS estimates and any other means by which cadesstimate each others’
clock values.

1 Introduction

The evolving field of wireless networks poses new and interesting chaliettgtime synchro-
nization, leading to renewed attention to this venerable problem in recerst y@ansor networks
in particular are subject to constraints on computation power and enengyroption, and often
require a greater degree of synchronization than traditional distribpfatations.

In a multi-hop sensor network it is frequently the case that neighboringshadist be closely
synchronized, while far-apart nodes can tolerate greater clock skeiyhboring nodes interfere
with each other when they try to transmit, and are also more likely to cooperatefpurpose of
some local computation. This gives rise to the problemratiient clock synchronizatigin which
the synchronization between two nodes improves the closer they are tothach The problem
was first formulated in [6], where it is shown that in a network of diam&eno algorithm can



guarantee a skew that is better tiiaflog D/ log log D) even between adjacent nodes. Subsequent
work has improved the lower bound €(log D), and come up with algorithms that match it [11,
12].

The wireless broadcast medium also offers opportunities for bettehsymzation. Although
contention may cause unpredictable delays before a message is btpadcas message is trans-
mitted, it is received by all nodes in the sender’s neighborhood almoshtas&ously. Reference
broadcast synchronization (RBS) [4] takes advantage of this to |eighborsof the sender esti-
mate each other’s clock values with great accuracy. RBS can be edtemdailti-hop networks,
to allow any node in the network to estimate the clock value of any other nodeevdo, by it-
self, RBS does not outputlagical clockat every node, and so it is not a clock synchronization
algorithm in the traditional sense.

In this paper we suggest an approach by which RBS, or any other estimaithiod (including
external time sources), can be seamlessly incorporated in many clodkegization algorithms,
in order to reduce the effective diameter of the network and achieve lsgtiehronization. We
suggest a separation between éstimate layerwhich is responsible for estimating other nodes’
clock values, and the algorithm that uses these estimates to compute a locldtagik. The es-
timate layer runs underneath the algorithm and provides it wittséimate grapl:*st. Each edge
{u,v} of G*' represents an estimate that nadean get for node’s clock value (and vice-versa),
along with an associateghcertainty RBS estimates are representediff® as edges between
nodes at distance 2 from each other in the original network graph.

Almost any clock synchronization algorithm can be used on top of the estinyate s long
as the algorithm can handle networks with non-uniform uncertainty on the lirthe resulting syn-
chronization between nodesv depends on thegffective distancdist(u, v), and on theeffective
diameterof the network graph. These are defined by the corresponding distémthe estimate
graphG®. Using RBS it is possible to reduce the effective diamet&ttp - 7 + uey) - D+ T),
whereD is the diameter of the original network,is a bound on the message delais a bound on
clock drift (typically very small), and.,., is a bound on the receiver uncertainty (also very small
[4]), which bounds the time it takes a node to process a message it ieceive

Our main contributions are as follows. In Section 4 we define the estimate daykshow how
to incorporate point-to-point messages and RBS. In Section 5, we illusteaggiicability of our
approach by modifying the algorithm of [12] to work on top of the estimate lagagnificantly,
this involves extending it to a heterogeneous network; in [12] it is assunaedlttinks are subject
to the same bounds on message delay. Finally, in Section 6 we prove thatdhthaigachieves
gradient clock synchronization, with the skew between nedasdv bounded byO (dist(u, v) -
logy/,, D) in networks with effective diameted and drift bounded by. This is asymptotically
optimal. The proof is based on the proofin [12], but in our view it is cleamersomewhat simpler.

In a companion paper to this one [10], we consider the problem of grtadl@k synchroniza-
tion in dynamicnetworks, and show that the weighted-graph approach employed hesefid in
that context as well.



2 Related Work

The problem of establishing a common notion of time is at the core of many disttigyséems and
applications and has thus been widely studied, both from a theoreticalaadtacal point of view.
In most of the existing work on clock synchronization, the nodes of a mktemmpute estimates
about each others’ clock values by exchanging messages. Baseslabtained information, each
node computes a local logical clock. Typically, the accuracy of clock etdsnia determined
by the uncertainty about the propagation delay of messages. In [13]slitoisn that even if
hardware clocks experience no drift, no clock synchronization algorithn prevent a clock skew
of (D) in a network of diameteD. This lower bound on the maximum clock skew between
any two nodes is matched by an algorithm described in [18] and by mangqudrst algorithms
(e.g.[2, 5,12, 11, 14, 15]). Clock synchronization algorithms and ideends that accommodate
non-uniform propagation delays are described, for example, in [, 3,

In [6], Fan and Lynch introduced the gradient clock synchronizatrablpm. It is shown that
even on a path of length, no algorithm can guarantee a clock skew smaller fddog D/ log log D)
between adjacent nodes. This bound has been improvedlég D) in [12] and it is shown in
[11, 12] that the new bound in indeed tight.

The special properties, constraints, and requirements of wirelesscaahdosensor networks
make clock synchronization especially challenging. There is a considenatmunt of work on the
problem (e.g. [5, 16, 17, 19]). Particularly interesting is the work oarezfce broadcast synchro-
nization [4, 8], which exploits the property of sharing a single communicati@micel to obtain
high accuracy clock estimates of nearby nodes.

3 Preliminaries

In the sequel we usB=" to denote the set of non-negative reals &t to denote the positive
integers.

We model a wireless network as an undirected graph- (V, E), whereV is the set of
nodes, andu,v} € Eiff w is in range ofv and vice-versa. We abstract away low-level details
of contention management, message loss and so on, by assuming reliablgentedsary with
message delays bounded by a parani&ter

Each nodey in the network has access to a local hardware cldgkwhich is subject to drift
bounded by < 1. We assume that for all < o,

(1= p)(ta — t1) < Hy(t2) — Hyo(t1) < (14 p)(t2 — t1).

It is also assumed that the hardware clock increases continuouslyocaidgfanalysis) is differen-
tiable.

The goal of gradient clock synchronization is to output a local logicalkclo, at every node
v, which is closely-synchronized with all the other logical clocks. Formalyalgorithm is said
to achievef-gradient clock synchronization, for a functigh: R=° — R=0, if it satisfies the
following requirement.



Requirement 3.1. For all u,v € V and times we have
Ly(t) — Ly(t) < f (dist(u,v)) .

Heredist(u, v) stands for the distance betweermndv; informally, the distance corresponds
to the quality of information: andv can acquire about each other. Traditionadlist(u, v) was
defined to be the minimal sum of uncertainties about message delays ortlabepeeen, andv.

In this work we re-definelist(u, v) to take into account reference broadcast synchronization; for
details, see Sec. 5.

In addition to f-gradient synchronization, we require the logical clocks to behave [tkesdl
clock. Specifically, the logical clocks should be non-decreasing, andstould always be within
a linear envelope of real time. This is captured by the following requirement.

Requirement 3.2. There existv € (0,1) and3 > 0 such that for allt; < t,,
(1—a)(ta —t1) < Ly(ta) — Lu(t1) < (1 + B)(t2 — t1).

In particular, the logical clocks are continuous. The algorithm we ptdaeBec. 5 outputs
logical clocks that are also differentiable if the hardware clocks arerdiftiable.

4 The Estimate Layer

The estimate layer encapsulates point-to-point messages, refereadedsiosynchronization, and
any other means the nodes in the network have of obtaining information #itmldgical clock
values of other nodes. The estimate layer provides an undirestdate graptz*t = (V, E*"),
where each edge, v € E*' represents some method by which nodeandv can estimate each
others’ logical clock values. Note thats' can be different from the underlying network gra@gh

for example, RBS is representedd* as edges connecting nodes at distance 2 from each other
in G. We useN (u) to denoteu’s neighborhood irG**: N (u) := {v € V |u,v € E*'}.

The estimate layer provides each nade V' with a set of local variable{iﬁ NS N(u)},

which represent’s current estimates for the logical clock values of its neighbofs®i. Since the
estimates are typically inaccurate, we associate with every edgé’*s* anuncertaintye.. The
estimate layer guarantees the following property.

Property 4.1 (Estimate quality) For any edg€(u, v) € E*' and timet, we have
Lv(t) — €luw} < EZ(t) < L’U(t) + €{u,0}-

Some common methods of obtaining logical clock estimates are described betatesdfibe
each method and bound the error associated with it, and then show how tmeamiitiple meth-
ods so as to guarantee Property 4.1.



Direct estimates. As in [12], we assume that every node broadcasts its logical clock vahle to

its neighbors once every subjectiXed time units (that is, after its hardware clock has increased
by AH), whereAH is a parameter. These messages provide a direct estimate of the node’s logic
clock value. When &eceive(u, v, L) message occurs at timenodeu sets

Ez,direct — L.
Between messages fromnodeu increased.” 4" at the rate of its own hardware clock.
In Appendix A we show that the error of a direct estimate is bounded by

AH 0 di AH
~(a+p) (1_p ¥ T) < Ly(t) — B2 (1) < (4 p) <1_p ¥ T) F(1-pT.
(Note that at this point our error bound is asymmetric. We later show howrtee agp with a
symmetric guarantee in the style of Prop. 4.1.)

RBS estimates. An RBS estimate is obtained by comparing the logical clock values that various
nodes recorded when some common event occurred; in our casenth@mocevent is a broadcast
by a shared neighbor. We usg, to denote node’s history, a set of triplet§x, H, L) wherez is a
unique eventidentifier anl, L are node.’s hardware and logical clock values (respectively) when
it observed the event. After recording an event, the node serg®a(u, z, L) message, which
is propagated by other nodes until it reaches all other nodes thatvetsbe same event. In our
casereport(-) messages need to be re-broadcast only once, so that they reacheigh2erhood
of the node that originated the report.

The accuracy of RBS depends on two factors.

1. Receiver uncertainty: this is the time required for nodes to proces®theaon event and
record their logical clock value. The receiver uncertainty is bounded.f, if whenever
an eventr occurs at real time, there is somed., € [L,(t), L,(t + urev)] Such that for all
t' >t + urey We have(z, L) € H,(t).

2. Propagation delayteport(-) messages are subject to the usual message delay. This con-
tributes to the inaccuracy of the estimate, because while the report is pteddge clocks
may continue to drift apart.

We say that the propagation delay is boundedrbyf whenever a node. experiences an
eventz at real timet, every nodey € N?(u) receives aeport(u, r, L) message no later than
timet + P.

In our case, becauseport(-) messages need to be re-broadcast only once, the propagation
delay is bounded b < vy + 2 (% + T): after observing the event, nodewaits at

most% time units and then broadcasts the message, which takes aZmise units to
arrive; its neighbors do the same.



When nodeu receives aeport(v, z, L) message at time it looks up the corresponding triplet
(x, H', L") recorded in its own history. It us€$, — H' to estimate the time that has passed since
x occurred, and sets

L™ — L+ H, - H.

Every broadcast by a node is an event that its neighbors can use dstipeates of each others’
logical clock values.
In Appendix A we show that RBS estimates are accurate up to the followingdoou

—(a+p) (1A_h; + 77) — (1 = @)tpey < Ly(t) — LU™3(1) <

<(B+p) <1A_Hp + 73) + (1 = p)ttrey-

Combining multiple estimates. As we have seen, each node may have multiple ways of esti-

mating the clock values of its neighborsGt. Let L., ..., L™ be the various estimates that
has forv's logical clock value, and let]. ,...,€" andellligw .-, Ehign, D€ €rror bounds such that

foralli € {1,...,m} and timet,

_efow < Lv(t) - Ezﬂ(t) < efﬂgh' (1)

Nodew computes a combined estimate with symmetric error, given by

min (L37(1) + ehign ) — max (LE7(E) — el )

Lo(t) == 5

)

The uncertainty of the combined estimate is bounded by

i i
. ] €low T €nign
€fu,p} =MD —— o o
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5 An Optimal Gradient Clock-Synchronization Algorithm

In this section we modify the algorithm of [12] to work on top of the estimation lgyesented
in the previous section. To satisfy Requirement 3.2, the algorithm incré@sésgical clock in a
continuous manner, with no discrete jumps. At each point during the exaautiode is either in
fast modeor in slow mode In slow modeyw increases its logical clock at a rate%fHu(t); in fast
mode, the logical clock rate {d + p) 4 H,(t), wherey is a parameter.

Each node continually examines its estimates for the logical clock values ofigishoes in
G, To compensate for the uncertainty on edgee use a parameter,, which must satisfy the
following.



Property 5.1 (Requirement om:.). For any edge: € E we requirex, > % - €0, Where) < % is
some constant.

If a nodew finds that it is too far behind, it goes into fast mode and uses the fast frate o
(1+ u)%Hu(t). The following rule is used to determine when to go into fast mode; informally, it
states that some neighbor is far ahead, and no neighbor is too far behind.

Definition 5.1 (Fast conditiorFC). At timet, a nodeu € V satisfies thdast condition denoted
FC, if there is some integer € N for which following conditions are satisfied:

(FC1) 3v € N(u) : LY(t) — Lu(t) > (s — 1 = A) Ky}, and
(FC2) Vv € N(u) : Ly(t) — LY(t) < (s — 1+ \) Ky}
Conversely, if a node is far ahead of some neighbor, and no otherhegightoo far ahead of

it, it enters slow mode and uses the slow rate. The following rule is used tordeéawhen to enter
slow mode.

Definition 5.2 (Slow conditionSC). At timet, a nodeu € V satisfies thelow condition denoted
SC, if there is an integes € N>0 for which the following conditions are satisfied:

(SC1) Jv € N(u) : Lu(t) — LE(t) = (s — 3 — A) * Ky}, and

(SC2) Vv € N(u) : LY(t) — Lu(t) < (s — 2+ A) - K-

To show that the algorithm is realizable, we show that the two conditions goéndlis
Lemma 5.2. No node can satisf@C and FC at the same time.

Proof. Suppose by way of contradiction thatsatisfies bott5C andFC at time¢. Then there is
an integers € N>0 for which

(SC1) v € N(u): Ly(t) — LY(t) = (s — & = \) - K0}, and
(SC2) Vv € N(u) : LY(t) — Lu(t) < (s — 2+ A) - K

and there is another integg€re N> such that

(FCL) Jv € N(u) : LY(t) — Lu(t) > (s’ — 1 = A) - Ky}, and

(FC2) Yv € N(u) : Ly(t) — LE(t) < (5" = 1+ A) - K01



For the node» whose existence is stipulated in conditi®fC1’), we have

(FC1) .

(Sl —1- )\) “K{up) < LY (t) — Ly ()

which

(sC1) ,
*Kluw} < Lu(t) - Lu (t) < (3 —1+ /\) *Rluw}s

..,U/

(sc2)

<

1
(5= 5+ o

which implies thats’ < s + % + 2\. However, from conditioSC1), there exists a node for

(FC2)

and hence’ > s + 1 — 2)\. Since) < 1, together we have < s’ < s + 1, which is impossible
because ands’ are integers.

O]

(

\_

slow mode
d d
—L,=—H,
dt dt

\

J

FC

(

dt

SC

\_

fast mode

d d
Ly=(1+p)—H,
(L +p)-

~N

J

Figure 1: The automaton from Alg. 1

A formal description of the algorithm, in the form of a timed I/O automaton (seei@piven
in Alg. 1. The switching between the modes is depicted in Figure 1.

6 Analysis

We define a parameter > 2, which serves as the base for the logarithm in the gradient skew
bound. The correctness of the algorithm relies on the following assumpttuoh (informally)

states that is large enough to allow nodes that are behind to catch up.

Property 6.1 (Requirement om). We require

P
I—0p

u> 4o

®3)



automatonCl ockSync

signature
| internal ent er _f ast _node, enter _sl ow.nobde
variables
H,:Real:=0
L, :Real:=0

LY : Real:= 0, for eactw € N (u)
mult,, : discreteReal:= 1

| mode, : Boolean:= slow
transitions

internal ent er _f ast _node
precondition:

FC

effect:
mode,, := fast
mult ;=14

internal ent er _s| ow_node

precondition:
SC

effect:
mode,, := slow
mult ;=1

trajectories
stop when
(SC holds andnode,, = fast) or (FC holds andnode,, = slow)

evolve
1-p<4H,<1+p

%Lu = mult,, - %Hu

Algorithm 1: A TIOA formulation for the algorithm from Section 5




Let P denote the set of all paths in the gra@tt® (including non-simple paths), and IB{(v) C
P denote the set of paths that start at nedeGiven a pathP = vg,...,v; € P, we denote
Kp = Zfz‘ol K{vvi.1}- GlVEN two nodes, v € V, the distance betweenandv is defined by

dist(u,v) := min kp, 4)

and the diameter of the graglf is defined by

D := maxdist(u,v). (5)
We show that the following invariant, which we dendleis maintained throughout any exe-
cution of the algorithm.

Definition 6.1 (Legal State) We say that the network is inlaegal stateat timet if and only if for
all s € N>0 and all pathsP = vy, . . ., vy, if
2D
kp(t) > Cs = e
g
then
Ly, (t) — Ly (t) < s - Kp.

In particular, if the network is legal at time then for every two nodes, v and integes > 1
such thatlist(u, v) > Cy, we haveL,, (t) — L,(t) < s - dist(u, v).

To show that the network is always in the safety region defined by thedegal condition, we
show that whenever some path comes close to having illegal skew, the atyadth to decrease
the skew, pulling the system back into the safety region.

We cannot guarantee that a node will always “realize” when it is on atpatthas too much
skew: each node only has knowledge of its local neighborhood, anldthismage may not reflect
a large skew further down the path. We can, however, show that wieskéw is close to being
illegal, the nodes that are “the most behind” or “the most ahead” (in theesdfned formally
below)dorealize that they must act to correct the skew. We will show that suchsrertter fast or
slow mode as appropriate.

Since we can only argue about nodes that, roughly speaking, maximizenstioreof weighted
skew (defined below), we will employ the following technical lemma several times

Lemma 6.2. Letgi, ..., g, : RZ0 — R2Y be differentiable functions, and lét, b] be an interval
such that for alli € {1,...,n} andz € (a,b), if g;(¥) = max; g;(z) then-Lg;(x) < r. Then for
all x € [a, b], max; gi(z) < max; gi;(a) + 7 - (x — a).

We define two different notions of “weighted skew”: one captures howhrau nodev is
ahead of any other node, and the other captures how far behind itasydilghts in both cases are
proportional to the uncertainty on the path, but use different constihsse notions correspond
exactly to the the fast and slow conditions, respectively.

10



Definition 6.2. Given an integek € N, a timet, and a pathP = vy, ..., v; € P, we define

Ep(t) := Ly, (t) — Ly, (t) — (s — 1) -kp, and Z; () := max Z=p().

g

PeP(vg)
Definition 6.3. Given an integek € N, a timet, and a pathP = vy, ..., v; € P, we define
S 1 S S
Wh(0)i= Lo ()~ Lu(0) = (5= 3 ) e and W,(0)= max W50

These definitions induce “inner safety regio&” := [max, = < 0] and¥?® := [max, U5 <
0] for anys € N>9, with 2% C ¥* C L (see Fig. 2).

Outside w*: trail-
~ing nodes are in fast
 mode, leading nodes

are in slow mode

Outside 2°: trail-
~ing nodes are in fast
mode

Figure 2: Region&’, ¥° and L. Arrows illustrate the possible dynamics acting on the weighted
skew in each region.

The next lemma can be thought of as bounding how far the system carmstsige the bound-
ary of 2° and ¥* while still being in a legal state.

Lemma 6.3. If the network is in a legal state at timtethen for all nodes: € V and integerss > 1
we have=s (1) < Cs_q Ui (t) < Cs—1.

Proof. It is sufficient to show that for all path8 = w,...,v and foralls > 1,
?
Ly(t) — Ly(t) — (s = 1) - kp < Cs_1. (6)

Letr > 1 be the minimal integer such thaist(u,v) > C,. (Note thatdist(u,v) < D < Cj, and
thereforer is well-defined.) Because the system is in a legal state ati#ime have

Lu(t) - Lv(t) <r- diSt(u,v) <r-kp,
which can be re-written as

L,(t)—Ly(t)—(s—=1)-kp<(r—s+1)-kp.

11



It is therefore sufficient to show that

?
(r—s+1)-kp < Cs_1. (7)

If » < s, the left-hand side of (7) is at most 0. Sin€g_; > 0, (7) holds in this case. Otherwise,
if » > s, then by choice of we havexp < C,._1, and therefore,

r—s+1

O—T’*S

(r—s+1)-kp<(r—s+1)-Cr_q = <Cs1 < Cs_1.
The last inequality holds becauset- 1 < 2% for all x € N ando > 2. This shows that (7) holds
in this case as well. O

Next we show that while the system is outside the re@énnodes that are “the most behind”
(maximizeZ with respect to some other node) will be acting to catch up, and while the system
outside the regionP®, nodes that are “the most ahead” (maximizevith respect to some other
node) will be held back from moving too quickly.

Lemma 6.4. Givens € N, a nodevy € V, and a timet, let P = vy, ...,v; € P(vo) be a path
starting atvy for which2%(t) = 25 (t). If Z5_(t) > 0, thenvy, is in fast mode.

V0
Lemma 6.5. Givens € N, anodeyy € V, and atimel, let P = vy, ..., v, € P(vo)(t) be a path
starting atvg for which Wi, (t) = W3 (t). If U5 (t) > 0, thenwy, is in slow mode.

The proofs of the two lemmas are very similar.

Proof of Lemma 6.4We set out to show that, satisfied=C.
Consider any pat?’ = vo,...,v € P(vg) that ends at a neighbaerof v;. SinceZ=%,(t) =
E5o (t) = maxqep(yy) EG (1), we havess, (t) < Ex(1); thatis,

Ee
Ly (t) — Ly(t) — (s = 1) - kpr < Ly (t) — Ly, (t) — (s — 1) - kp.
Re-arranging yields.,(t) — L, (t) > (s — 1) - (kp — kpr), and applying Property 4.1 we obtain

LY (t) = Loy (£) = Lo(t) — €y — Loy () >

>
> (s=1) - (kp —Kpr) — €fp0,}- (8)

To show(FC1) is satisfied, le”’ be the subpathy, ..., v;_; of P, wherev,_; € N(v). Note
that since=p(t) > 0 it must be that: > 0, and thusv;,_ is well-defined. For this choice d?’,
(8) yields

[’:z:il(t) - L'Uk (t) Z (S - ]‘) ’ (I{P - ’%Pl) - E{kal,’l}k} =

(Prop. 5.1)
=(s—1)- Klog-_1ok} ~ €op-ron} > (s—1-2) Flog—1,00}-

12



This shows thafFC1) is satisfied. To show thgFC2) holds, letv € N(vy) be any neighbor of
vg, and letP’ = vy, ..., v, v be the path obtained by appendingo the pathP. In this case (8)
yields

Lo () = Ly, (8) < (s = 1) - (kpr = KP) + o} =
(Prop. 5.1)
= (8 - 1) *K{vu,} + €lo,u} < (s -1+ )‘) “K{vu}-
Hence, the second condition is satisfied as well, and ngdkein fast mode. O

Proof of Lemma 6.5We set out to show that, satisfiesSC.
Consider any patt®’ = vg,...,v € P(vg) that ends at a neighberof v;. As before, since
Ui (t) = W3, (1) = maxqgep(vy) V5 (t), we can write

1 1
Ly(t) — Ly (t) — (s - 2) ckpr < Ly, (t) — Ly, (t) — (s - 2) - Kp, 9)
and again applying Property 4.1 we obtain

LY (t) = Loy (£) < Lo(t) + €qpp) — Loy () <

1

For(SC1), consider the subpatt = vy, ..., vx_1 Of P, wherevy_; € N(uv). Inequality (10)
yields

~ 1
ka(t) - Lzzil(t) > <8 - 2> : (RP - KP’) T Yo} T
1
=\s5— 9/ K{vg_1,op} — €log_1,05} =~
(Prop. 5.1) 1
> s — 5~ A - K {vp_1,08} 4

and so(SC1) is satisfied. Fo(SC2), let v € N(v;) be any neighbor ofy, and letP’ =
v, . . . , Uk, v be the path obtained by appendintp P. Inequality (10) now gives

=0 1
E4,(6) = Lo (0) < (5= 5 ) - o = )+ =

1
= (8 - 2) Ry T e} <

(Prop. 5.1) 1
< 8—5—}—)\ “K{vp}s

which shows tha(SC2) is satisfied as well. O

13



Suppose that at time nodev has=%(¢) > 0. From Lemma 6.4, all the nodes that maximize
=? are in fast mode, trying to catch uptoand their logical clock rate is at leagt — p)(1 + u).
Thus, whenever it is positiv&;S decreases at an average rate of at Ielast p)(1 + p), minusthe
rate by whichv increases its own logical clock. To formalize this observation, define

Iv(tl, tQ) = Lv(tg) — Lv(tl) (11)

to be the amount by which increases its logical clock over the time interVal, t5]. Since
4 L,(t) > 4 H,(t) > 1— pwe have the following property.

Property 6.6. For all nodesv and timest1, to, we haveZ, (t1,t2) > (1 — p)(ta — t1).
Now we can state the following lemma.

Lemma 6.7 (Catch-Up Lemma) Let vy be a node and l€fty, ¢1] be a time interval such that for
all ¢t € (to,t1) we have=? (t) > 0. Then for allt € [to, 1],

Vo

Eoo (1) < E5, (o) + Loy (to, 1) — (1 = p)(1 4 p)(t — to)- (12)

Similarly, whenevef; (¢) > 0, the nodes that maximiz&; are in slow mode, and their logical
clocks increase at a rate of at mostp. Thus, whenever itis positiva;; (¢) increases at an average
rate of at mosfl + p, again minusy’s increase to its own logical clock. This is captured by the
following lemma.

Lemma 6.8(Waiting Lemma) Letv, be a node and left, ¢1] be a time interval such that for all
t € (to,t1) we havel; (t) > 0. Then for allt € [to, 1],

Wi (8) < W5, (o) = Zug (o, 1) + (1 + p)(t = to). (13)

The proofs of Lemmas 6.7 and 6.8 involve a straightforward application i 6.2.

Proof of Lemma 6.7Consider the set of function{Sgp}Pep(Uo) defined bygp(t) = E%(t) —
Ty, (to, t). Observe that for al,

x| gp(t) = max (Ep(t) — Lu,(to, 1)) =

= <m]§X E}gg (t)) — I’UO (t()v t) =
=5, (1) — Lo (to,1)- (14)

= S0
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In addition,Z,,, (to, to) = 0. Therefore (12) can be re-written as
plhax gp(t) < Pl gp(to) — (1= p)(1+ p)(t — to). (15)
Next, substituting the definition fag; (¢) andZ,, (to,t) we obtain
gp(t) = Lyg(t) — Lo, (t) — (s = 1) - kp — Ly (t) + Loy (to) =
= =Ly, () = (s = 1) - kp — Ly (to),
and therefore,

%gp(t) _ —%ka (). (16)

If P is a path such thatp(t) = maxg g(t), thenP also hassy(t) = =5 (). Since=; (t) > 0

Vo

for anyt € (to,t1), we can apply Lemma 6.4 to obtain that wheneyeft) = maxq gg(t) where
P =y, ..., v, nodeyy, is in fast mode and, L, (t) = (1 + p) L H,, (t) > (1 — p)(1 + ). This
is sufficient to apply Lemma 6.2 to the interyaJ, t], which yields (15). O

Proof of Lemma 6.8Consider the set of function§yp} pcp(,,) defined bygp(t) = Wi (t) +
Ty, (to, t). Observe that for al,

t) = U5H(t) + Ly, (to, 1)) =
Pé%a(ﬁqfo)gp() m]’gLX( P(t) + Ly, (to, 1))

= <m1231X \II%(t)) + Ivo (t07 t) =

In addition,Z,,, (to, to) = 0. Therefore (13) can be re-written as

?
t) < t 1 t—1to). 18
ng(}vio)gp( )< Pg%’aﬁfo)gp( o) +(1+2) o) ()

Next, substituting the definitions far; () andZ,,(to, ) we obtain

9(0) = L (6) = L) = (5 5 ) 54 Luglt) = Lunfte) =

Vg - L
1
ka (t) — (S — 2> cRKp — Lvo(t()),

and therefore,

L op(t) = Lo, (1) (19
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If P is a path such thatp(t) = maxq gg(t), thenP also hasby,(t) = ¥y (t). SinceVs (t) >0
for anyt € (to,t1), we can apply Lemma 6.5 to obtain that wheneyeft) = maxq gg(t) where
P = vg,...,v, nodevy, is in slow mode anqi%ka (t) = %Hvk (t) <1+ p. This is sufficient to
apply Lemma 6.2, which yields (18). O

Intuitively, until now we argued that iy is too far ahead of other nodes then those nodes will
be in fast mode, and if; is too far behind other nodes then those nodes will be in slow mode. What
doesy itself do when it is too far behind? Observe that if there is some Pathuvy, . . ., v such
that U'%,(¢) > 0, then for the inverted patR’ = vy, ..., vo we have=$, (t) > U%(t) > 0. Thus,
informally speaking, whenevey, is too far behind some other node it will be “pulled forward” at
the fast rate. The next lemma quantifies how much gragndakes up during an interval in which
it is far behind: it states that given sufficient time, the node makes up all itied imeighted skew
U?, in additionto its minimal rate of progresd ( p).

Lemma 6.9. For any nodevy, integers € N>° and time intervalty, t;] wheret; > to + (fjﬁ,
if the network is in a legal state at tintg, then

T, (to t1) = W3, (to) + (1 — p)(t1 — o).

Proof. If W2 (o) < 0, the claim follows immediately from Property 6.6. Thus, assume that
U2 (to) > 0, and letP = vy, ..., v be a path such thalt}, (o) = V3, (to). From the definitions

of ¥ andZ, for the inverted pathP’ = vy, ...,vg we have=$, (ty) > U%(to), and therefore,
g5, (to) > W3 (t) > 0. If there is a timet € [to, 1] such thaE; (t) < 0, let be the infimum of
such times. Otherwise, lét= ¢;. Observe that

Ly, (t077§> = Ly, (E) — Ly, (to) =
= (L (t0) = Loy (to) = (s = 1) ip) = (Lo, (1) = Loy (£) = (s = 1) Kp) + Ly, (£) — L, (to) =
= i (to) — Ep(8) + Lo (t0, ) >
> Wp(to) — B3, (1) + L, (to, 1) =
= 3, (to) — B3, () + Lo, (fo, ).
Sincet < t; andZ,, (to, -) is non-decreasing and interval-additive, to prove the claim itis sufficient
to show thatZ,, (to,t) > =5, () + (1 — p)(t — to).
Consider first the case whete< t;. In this cas€ is the infimum of times where=; (t) <
0. SinceZ; (-) is continuous, it follows thakE; (f) = 0, and using Property 6.6 we obtain

Ly, (to, t) = =5, (1) + (1 = p)(t — to).
Otherwise, ift = t1, then for allt € [ty, 1) we have=; (t) > 0. Applying Lemma 6.7 to the
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interval(to, ¢;] we obtain

Ey, (t1) < B3, (to) + Ly, (to, t1) — (1 — p)(1 + p)(t1 — to) <

Lemma 6.3 Cs_
S Cs—l +I7Jk(t07tl> - (1_P),U/871

=Ty, (to,t1) — (1 = p)(t1 — to),
which yields the desired result. O]
Now we are ready to put all the pieces together and prove the main theorem:
Theorem 6.10. The network is always in a legal state.

Proof. Suppose for the sake of contradiction that this is not the case, ahtéethe infimum of
times when the legal state condition is violated. Then there is somdpathy, . . ., vy and some
s > 1 such thatcp > C, but

Ly, (t) — Ly, (t) > s - kp. (20)

For the legal state condition to be violated, the system must be far outsideuhéarg of¥°:

1 (20) 1 1

s 1
Yo (1) = Ly (t) = Lu, (1) — <5 - 2> "Kp 2 9P > 503 = %Csfl- (21)

However, Lemma 6.8 tells us that whenevugy is large it cannot increase quickly, which gives
time to catch up. More specifically, 4§ is the supremum of times< ¢ such thatl;, (¢) <0, then
Lemma 6.8 shows that

(Prop. 6.6

3, (8) S W3, (to) = Lo, (to, ) + (L + p)(E—t0) < 2p(t—to), (22)
_ 3 _
and combining (21) and (22) we see that< ¢ — 042;1 <t- (fj;)lu. According to Lemma 6.9,
this is sufficient time fowy, to increase its clock by
Ly, (to, ) = W3, (to) + (L = p)(t — to), (23)

which we combine with the first inequality of (22) to obtain

(22) _ (23) Cso1 O 1
WS (1) < WS (tg) — Ty, (to, 1t 1 t—t) < 2p—mm— < —
2@ W (t0) = T (to )+ (14 p)(E—t0) < 2 <

in contradiction to (21). O

08—17

As an easy corollary we obtain the following.

Theorem 6.11. The global skew of the algorithm is bounded2.
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Theorem 6.11Theorem 6.10 allows us to use Lemma 6.3 at any timeor any two nodes, v,
let P be a path fromu to v. Lemma 6.3 states (in particular) that

Co > EL({#) > Zh(t) > Ly(t) — Lu(t) — (1 = 1)kp = Ly(t) — Ly (1),
and since”, = 2D, the claim follows. O

Corollary 6.12. If 0 = O(1/p), p = ©(1/(1 — p)) and k. = O(e.) for all e € E*, then
the algorithm achieve® (dist(u, v) - logy/, D) -gradient synchronization, with a global skew of
O(D).
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Appendix

A The Estimate Layer

A.1 Error analysis for direct estimates

To analyze the error in a direct estimate at titnket t,q be the last time node sends a message
that nodeu receives by time. Lett,.., <t be the time whem receives the message, andlebe
the clock value the message carries.

During the intervalt,., t], nodeu increase
therefore

g.0direct ot the rate of its own hardware clock, and

(1= p)(t = trev) < Ly tet(t) = L < (14 p)(t = trev)- (24)
Also, from Requirement 3.2,
(1— )t — tsna) < Lo(t) = L < (1 + B)(t — tena). (25)
Becausé,., € [tsnd, tsna + 7], We can re-write (24) to obtain
(1= p)(t —tsna — T) < LU (1) — L < (1 + p)(t — tena), (26)
and subtracting (26) from (25) yields
—(a+ p)(t — tona) < Lo(t) — LE () < (B+p)(t —tsna) + (1 —p)T. (27
Finally, sincev broadcasts everAH subjective time units, at timg_, < twma + % nodewv
broadcasts again, and the second broadcast is receivedabyimet, , + 7 at the latest. The

second broadcast is not received by titmand it follows thattg,q > ¢ — ffH — 7. Substituting

this bound in (27), we get ’
AH o di AH
a4 (P4 T) <L - L) < (54 (£ 4 T) +0- T

A.2 Error analysis for RBS estimates

Letv € N?(u). Suppose that at time time ¢, is the latest time an eventoccurs such that node
u receives aeport(v, z, L) message by time Lett,., be the time at which receives the report,
and lett? be a time such thalt = L,(t?), and lett? be a time such thai = H, (t%). We know
thatt, <t% t9 < t; + Upcy.

As before, we have
(1 - P)(t - tTCV) < z/Z’rbs(t) —L— Hu(trCV) + HU(tg) < (1 + P)(t - trCV)7 (28)

(1 - p)(trcv - t;) S Hu(trcv) - Hu(t;) S (1 + p)(trcv - t;)a (29)
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and
(I—a)(t—t3) < Ly(t) = L< (1 + B)(t — t3). (30)

Summing (28) and (29) yields
(1= p)(t—15) < Ly™ () = L < (1+p)(t — t3), (31)
and becausé:, t? € [ts, t; + urev], We can re-write (30) and (31) as
(1= p)(t =t — urey) < Ly™(t) = L < (14 p)(t — 1) (32)

and
(1_a)(t_tz_urcv) SLU(t) —L< (1+ﬁ)(t_tx)' (33)

Subtracting (32) from (33) we obtain
—(a+ p)(t = ts) = (1 = @)trey < Lo(t) = LY™(8) < (B4 p)(t — ta) + (1 ptirey.  (34)

Since every node broadcasts ev time units at most, at some tintg < ¢, + % the common
neighbor ofu andv will broadcast again, and both nodes will record the event. The @onekng
report(-) will be received by no later than time,, + P. Since no such message is received before

timet, we have, >t — % — P. Substituting in (34), we get

a4 (S 4P) (- e £ L0~ L0 <

< (B+p) <1A_Hp + 77) + (1 = p)trey-
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