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Abstract

In this paper we suggest a method by which reference broadcast synchronization (RBS),
and other methods of estimating clock values, can be incorporated in standard clock synchro-
nization algorithms to improve synchronization quality. We advocate a logical separation of
the task of estimating the clock values of other nodes in the network from the task of using
these estimates to output a logical clock value.

The separation is achieved by means of a virtualestimate graph, overlaid on top of the real
network graph, which represents the information various nodes can obtain about each other.
RBS estimates are represented in the estimate graph as edgesbetween nodes at distance 2 from
each other in the original network graph. A clock synchronization algorithm then operates on
the estimate graph as though it were the original network.

To illustrate the merits of this approach, we modify a recentoptimal gradient clock syn-
chronization algorithm to work in this setting. The modifiedalgorithm transparently takes
advantage of RBS estimates and any other means by which nodescan estimate each others’
clock values.

1 Introduction

The evolving field of wireless networks poses new and interesting challenges to time synchro-
nization, leading to renewed attention to this venerable problem in recent years. Sensor networks
in particular are subject to constraints on computation power and energy consumption, and often
require a greater degree of synchronization than traditional distributed applications.

In a multi-hop sensor network it is frequently the case that neighboring nodes must be closely
synchronized, while far-apart nodes can tolerate greater clock skew: neighboring nodes interfere
with each other when they try to transmit, and are also more likely to cooperate for the purpose of
some local computation. This gives rise to the problem ofgradient clock synchronization, in which
the synchronization between two nodes improves the closer they are to eachother. The problem
was first formulated in [6], where it is shown that in a network of diameterD, no algorithm can

1



guarantee a skew that is better thanΩ(log D/ log log D) even between adjacent nodes. Subsequent
work has improved the lower bound toΩ(log D), and come up with algorithms that match it [11,
12].

The wireless broadcast medium also offers opportunities for better synchronization. Although
contention may cause unpredictable delays before a message is broadcast, once a message is trans-
mitted, it is received by all nodes in the sender’s neighborhood almost instantaneously. Reference
broadcast synchronization (RBS) [4] takes advantage of this to let theneighborsof the sender esti-
mate each other’s clock values with great accuracy. RBS can be extended to multi-hop networks,
to allow any node in the network to estimate the clock value of any other node. However, by it-
self, RBS does not output alogical clockat every node, and so it is not a clock synchronization
algorithm in the traditional sense.

In this paper we suggest an approach by which RBS, or any other estimation method (including
external time sources), can be seamlessly incorporated in many clock synchronization algorithms,
in order to reduce the effective diameter of the network and achieve bettersynchronization. We
suggest a separation between theestimate layer, which is responsible for estimating other nodes’
clock values, and the algorithm that uses these estimates to compute a local logical clock. The es-
timate layer runs underneath the algorithm and provides it with anestimate graphGest. Each edge
{u, v} of Gest represents an estimate that nodeu can get for nodev’s clock value (and vice-versa),
along with an associateduncertainty. RBS estimates are represented inGest as edges between
nodes at distance 2 from each other in the original network graph.

Almost any clock synchronization algorithm can be used on top of the estimate layer, as long
as the algorithm can handle networks with non-uniform uncertainty on the links. The resulting syn-
chronization between nodesu, v depends on theireffective distancedist(u, v), and on theeffective
diameterof the network graph. These are defined by the corresponding distances in the estimate
graphGest. Using RBS it is possible to reduce the effective diameter toO((ρ · T +urcv) ·D + T ),
whereD is the diameter of the original network,T is a bound on the message delay,ρ is a bound on
clock drift (typically very small), andurcv is a bound on the receiver uncertainty (also very small
[4]), which bounds the time it takes a node to process a message it receives.

Our main contributions are as follows. In Section 4 we define the estimate layer,and show how
to incorporate point-to-point messages and RBS. In Section 5, we illustrate the applicability of our
approach by modifying the algorithm of [12] to work on top of the estimate layer. Significantly,
this involves extending it to a heterogeneous network; in [12] it is assumed that all links are subject
to the same bounds on message delay. Finally, in Section 6 we prove that the algorithm achieves
gradient clock synchronization, with the skew between nodesu andv bounded byO(dist(u, v) ·
log1/ρ D) in networks with effective diameterD and drift bounded byρ. This is asymptotically
optimal. The proof is based on the proof in [12], but in our view it is cleanerand somewhat simpler.

In a companion paper to this one [10], we consider the problem of gradient clock synchroniza-
tion in dynamicnetworks, and show that the weighted-graph approach employed here isuseful in
that context as well.
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2 Related Work

The problem of establishing a common notion of time is at the core of many distributed systems and
applications and has thus been widely studied, both from a theoretical and apractical point of view.
In most of the existing work on clock synchronization, the nodes of a network compute estimates
about each others’ clock values by exchanging messages. Based on the obtained information, each
node computes a local logical clock. Typically, the accuracy of clock estimates is determined
by the uncertainty about the propagation delay of messages. In [13], it isshown that even if
hardware clocks experience no drift, no clock synchronization algorithm can prevent a clock skew
of Ω(D) in a network of diameterD. This lower bound on the maximum clock skew between
any two nodes is matched by an algorithm described in [18] and by many subsequent algorithms
(e.g. [2, 5, 12, 11, 14, 15]). Clock synchronization algorithms and lower bounds that accommodate
non-uniform propagation delays are described, for example, in [1, 3,7].

In [6], Fan and Lynch introduced the gradient clock synchronization problem. It is shown that
even on a path of lengthD, no algorithm can guarantee a clock skew smaller thanΩ(log D/ log log D)
between adjacent nodes. This bound has been improved toΩ(log D) in [12] and it is shown in
[11, 12] that the new bound in indeed tight.

The special properties, constraints, and requirements of wireless ad hoc and sensor networks
make clock synchronization especially challenging. There is a considerable amount of work on the
problem (e.g. [5, 16, 17, 19]). Particularly interesting is the work on reference broadcast synchro-
nization [4, 8], which exploits the property of sharing a single communication channel to obtain
high accuracy clock estimates of nearby nodes.

3 Preliminaries

In the sequel we useR≥0 to denote the set of non-negative reals andN
>0 to denote the positive

integers.
We model a wireless network as an undirected graphG = (V, E), whereV is the set of

nodes, and{u, v} ∈ E iff u is in range ofv and vice-versa. We abstract away low-level details
of contention management, message loss and so on, by assuming reliable message delivery with
message delays bounded by a parameterT .

Each nodev in the network has access to a local hardware clockHv, which is subject to drift
bounded byρ < 1. We assume that for allt1 ≤ t2,

(1− ρ)(t2 − t1) ≤ Hv(t2)−Hv(t1) ≤ (1 + ρ)(t2 − t1).

It is also assumed that the hardware clock increases continuously and (for the analysis) is differen-
tiable.

The goal of gradient clock synchronization is to output a local logical clock Lv at every node
v, which is closely-synchronized with all the other logical clocks. Formally, an algorithm is said
to achievef -gradient clock synchronization, for a functionf : R

≥0 → R
≥0, if it satisfies the

following requirement.
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Requirement 3.1. For all u, v ∈ V and timest we have

Lv(t)− Lu(t) ≤ f (dist(u, v)) .

Heredist(u, v) stands for the distance betweenu andv; informally, the distance corresponds
to the quality of informationu andv can acquire about each other. Traditionally,dist(u, v) was
defined to be the minimal sum of uncertainties about message delays on any path betweenu andv.
In this work we re-definedist(u, v) to take into account reference broadcast synchronization; for
details, see Sec. 5.

In addition tof -gradient synchronization, we require the logical clocks to behave like a“real”
clock. Specifically, the logical clocks should be non-decreasing, and they should always be within
a linear envelope of real time. This is captured by the following requirement.

Requirement 3.2. There existα ∈ (0, 1) andβ ≥ 0 such that for allt1 ≤ t2,

(1− α)(t2 − t1) ≤ Lu(t2)− Lu(t1) ≤ (1 + β)(t2 − t1).

In particular, the logical clocks are continuous. The algorithm we present in Sec. 5 outputs
logical clocks that are also differentiable if the hardware clocks are differentiable.

4 The Estimate Layer

The estimate layer encapsulates point-to-point messages, reference broadcast synchronization, and
any other means the nodes in the network have of obtaining information aboutthe logical clock
values of other nodes. The estimate layer provides an undirectedestimate graphGest = (V, Eest),
where each edgeu, v ∈ Eest represents some method by which nodesu andv can estimate each
others’ logical clock values. Note thatGest can be different from the underlying network graphG;
for example, RBS is represented inGest as edges connecting nodes at distance 2 from each other
in G. We useN(u) to denoteu’s neighborhood inGest: N(u) :=

{

v ∈ V | u, v ∈ Eest
}

.

The estimate layer provides each nodeu ∈ V with a set of local variables
{

L̃v
u : v ∈ N(u)

}

,

which representu’s current estimates for the logical clock values of its neighbors inGest. Since the
estimates are typically inaccurate, we associate with every edgee ∈ Eest anuncertaintyεe. The
estimate layer guarantees the following property.

Property 4.1 (Estimate quality). For any edge(u, v) ∈ Eest and timet, we have

Lv(t)− ε{u,v} ≤ L̃v
u(t) ≤ Lv(t) + ε{u,v}.

Some common methods of obtaining logical clock estimates are described below. We describe
each method and bound the error associated with it, and then show how to combine multiple meth-
ods so as to guarantee Property 4.1.
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Direct estimates. As in [12], we assume that every node broadcasts its logical clock value toall
its neighbors once every subjective∆H time units (that is, after its hardware clock has increased
by ∆H), where∆H is a parameter. These messages provide a direct estimate of the node’s logical
clock value. When areceive(u, v, L) message occurs at timet, nodeu sets

L̃v,direct
u ← L.

Between messages fromv, nodeu increases̃Lv,direct
u at the rate of its own hardware clock.

In Appendix A we show that the error of a direct estimate is bounded by

−(α + ρ)

(

∆H

1− ρ
+ T

)

≤ Lv(t)− L̃v,direct
u (t) ≤ (β + ρ)

(

∆H

1− ρ
+ T

)

+ (1− ρ)T .

(Note that at this point our error bound is asymmetric. We later show how to come up with a
symmetric guarantee in the style of Prop. 4.1.)

RBS estimates. An RBS estimate is obtained by comparing the logical clock values that various
nodes recorded when some common event occurred; in our case, the common event is a broadcast
by a shared neighbor. We useHu to denote nodeu’s history, a set of triplets(x, H, L) wherex is a
unique event identifier andH, L are nodeu’s hardware and logical clock values (respectively) when
it observed the event. After recording an event, the node sends areport(u, x, L) message, which
is propagated by other nodes until it reaches all other nodes that observed the same event. In our
case,report(·) messages need to be re-broadcast only once, so that they reach the 2-neighborhood
of the node that originated the report.

The accuracy of RBS depends on two factors.

1. Receiver uncertainty: this is the time required for nodes to process the common event and
record their logical clock value. The receiver uncertainty is bounded by urcv if whenever
an eventx occurs at real timet, there is someL ∈ [Lu(t), Lu(t + urcv)] such that for all
t′ ≥ t + urcv we have(x, L) ∈ Hu(t′).

2. Propagation delay:report(·) messages are subject to the usual message delay. This con-
tributes to the inaccuracy of the estimate, because while the report is propagated the clocks
may continue to drift apart.

We say that the propagation delay is bounded byP if whenever a nodeu experiences an
eventx at real timet, every nodev ∈ N2(u) receives areport(u, x, L) message no later than
time t + P.

In our case, becausereport(·) messages need to be re-broadcast only once, the propagation

delay is bounded byP ≤ urcv + 2
(

∆H
1−ρ + T

)

: after observing the event, nodeu waits at

most ∆H
1−ρ time units and then broadcasts the message, which takes at mostT time units to

arrive; its neighbors do the same.
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When nodeu receives areport(v, x, L) message at timet, it looks up the corresponding triplet
(x, H ′, L′) recorded in its own history. It usesHu −H ′ to estimate the time that has passed since
x occurred, and sets

L̃v,rbs
u ← L + Hu −H ′.

Every broadcast by a node is an event that its neighbors can use to getestimates of each others’
logical clock values.

In Appendix A we show that RBS estimates are accurate up to the following bound.

−(α + ρ)

(

∆H

1− ρ
+ P

)

− (1− α)urcv ≤ Lv(t)− L̃v,rbs
u (t) ≤

≤ (β + ρ)

(

∆H

1− ρ
+ P

)

+ (1− ρ)urcv.

Combining multiple estimates. As we have seen, each node may have multiple ways of esti-
mating the clock values of its neighbors inGest. Let L̃v,1

u , . . . , L̃v,m
u be the various estimates thatu

has forv’s logical clock value, and letε1low, . . . , εm
low andε1high, . . . , ε

m
high be error bounds such that

for all i ∈ {1, . . . , m} and timet,

−εi
low ≤ Lv(t)− L̃v,i

u (t) ≤ εi
high. (1)

Nodeu computes a combined estimate with symmetric error, given by

L̃v
u(t) :=

min
i

(

L̃v,i
u (t) + εi

high

)

−max
i

(

L̃v,i
u (t)− εi

low

)

2
. (2)

The uncertainty of the combined estimate is bounded by

ε{u,v} := min
i

{

εi
low + εi

high

2

}

.

5 An Optimal Gradient Clock-Synchronization Algorithm

In this section we modify the algorithm of [12] to work on top of the estimation layerpresented
in the previous section. To satisfy Requirement 3.2, the algorithm increasesthe logical clock in a
continuous manner, with no discrete jumps. At each point during the execution a node is either in
fast modeor in slow mode. In slow mode,u increases its logical clock at a rate ofd

dtHu(t); in fast
mode, the logical clock rate is(1 + µ) d

dtHu(t), whereµ is a parameter.
Each node continually examines its estimates for the logical clock values of its neighbors in

Gest. To compensate for the uncertainty on edgee we use a parameterκe, which must satisfy the
following.
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Property 5.1 (Requirement onκe). For any edgee ∈ E we requireκe > 1
λ · εe, whereλ < 1

4 is
some constant.

If a nodeu finds that it is too far behind, it goes into fast mode and uses the fast rate of
(1 + µ) d

dtHu(t). The following rule is used to determine when to go into fast mode; informally, it
states that some neighbor is far ahead, and no neighbor is too far behind.

Definition 5.1 (Fast conditionFC). At timet, a nodeu ∈ V satisfies thefast condition, denoted
FC, if there is some integers ∈ N for which following conditions are satisfied:

(FC1) ∃v ∈ N(u) : L̃v
u(t)− Lu(t) ≥ (s− 1− λ) κ{u,v}, and

(FC2) ∀v ∈ N(u) : Lu(t)− L̃v
u(t) ≤ (s− 1 + λ) κ{u,v}.

Conversely, if a node is far ahead of some neighbor, and no other neighbor is too far ahead of
it, it enters slow mode and uses the slow rate. The following rule is used to determine when to enter
slow mode.

Definition 5.2 (Slow conditionSC). At timet, a nodeu ∈ V satisfies theslow condition, denoted
SC, if there is an integers ∈ N

>0 for which the following conditions are satisfied:

(SC1) ∃v ∈ N(u) : Lu(t)− L̃v
u(t) ≥

(

s− 1
2 − λ

)

· κ{u,v}, and

(SC2) ∀v ∈ N(u) : L̃v
u(t)− Lu(t) ≤

(

s− 1
2 + λ

)

· κ{u,v}.

To show that the algorithm is realizable, we show that the two conditions are disjoint.

Lemma 5.2. No node can satisfySC andFC at the same time.

Proof. Suppose by way of contradiction thatu satisfies bothSC andFC at timet. Then there is
an integers ∈ N

>0 for which

(SC1) ∃v ∈ N(u) : Lu(t)− L̃v
u(t) ≥

(

s− 1
2 − λ

)

· κ{u,v}, and

(SC2) ∀v ∈ N(u) : L̃v
u(t)− Lu(t) ≤

(

s− 1
2 + λ

)

· κ{u,v},

and there is another integers′ ∈ N
>0 such that

(FC1’) ∃v ∈ N(u) : L̃v
u(t)− Lu(t) ≥ (s′ − 1− λ) · κ{u,v}, and

(FC2’) ∀v ∈ N(u) : Lu(t)− L̃v
u(t) ≤ (s′ − 1 + λ) · κ{u,v}.
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For the nodev whose existence is stipulated in condition(FC1’), we have

(

s′ − 1− λ
)

· κ{u,v}

(FC1’)
≤ L̃v

u(t)− Lu(t)
(SC2)
≤

(

s−
1

2
+ λ

)

· κ{u,v},

which implies thats′ ≤ s + 1
2 + 2λ. However, from condition(SC1), there exists a nodev′ for

which
(

s−
1

2
− λ

)

· κ{u,v}

(SC1)
≤ Lu(t)− L̃v′

u (t)
(FC2’)
≤

(

s′ − 1 + λ
)

· κ{u,v},

and hences′ ≥ s + 1
2 − 2λ. Sinceλ < 1

4 , together we haves < s′ < s + 1, which is impossible
becauses ands′ are integers.

slow mode

d

dt
Lu =

d

dt
Hu

fast mode

d

dt
Lu = (1 + µ)

d

dt
Hu

FC

SC

Figure 1: The automaton from Alg. 1

A formal description of the algorithm, in the form of a timed I/O automaton (see [9]), is given
in Alg. 1. The switching between the modes is depicted in Figure 1.

6 Analysis

We define a parameterσ ≥ 2, which serves as the base for the logarithm in the gradient skew
bound. The correctness of the algorithm relies on the following assumption,which (informally)
states thatµ is large enough to allow nodes that are behind to catch up.

Property 6.1 (Requirement onµ). We require

µ > 4σ
ρ

1− ρ
. (3)
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automatonClockSync
signature

internal enter fast mode, enter slow mode

variables
Hu : Real:= 0
Lu : Real:= 0
L̃v

u : Real:= 0, for eachv ∈ N(u)
multu : discreteReal:= 1
modeu : Boolean:= slow

transitions
internal enter fast mode

precondition:
FC

effect:
modeu := fast
mult := 1 + µ

internal enter slow mode
precondition:

SC

effect:
modeu := slow
mult := 1

trajectories
stop when

(SC holds andmodeu = fast) or (FC holds andmodeu = slow)

evolve
1− ρ ≤ d

dtHu ≤ 1 + ρ
d
dtLu = multu ·

d
dtHu

Algorithm 1 : A TIOA formulation for the algorithm from Section 5
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LetP denote the set of all paths in the graphGest (including non-simple paths), and letP(v) ⊆
P denote the set of paths that start at nodev. Given a pathP = v0, . . . , vk ∈ P, we denote
κP :=

∑k−1
i=0 κ{vi,vi+1}. Given two nodesu, v ∈ V , the distance betweenu andv is defined by

dist(u, v) := min
P=u,...,v

κP , (4)

and the diameter of the graphGest is defined by

D := max
u,v

dist(u, v). (5)

We show that the following invariant, which we denoteL, is maintained throughout any exe-
cution of the algorithm.

Definition 6.1 (Legal State). We say that the network is in alegal stateat timet if and only if for
all s ∈ N

>0 and all pathsP = v0, . . . , vk, if

κP (t) ≥ Cs :=
2D

σs
,

then
Lvk

(t)− Lv0
(t) ≤ s · κP .

In particular, if the network is legal at timet, then for every two nodesu, v and integers ≥ 1
such thatdist(u, v) ≥ Cs, we haveLu(t)− Lv(t) ≤ s · dist(u, v).

To show that the network is always in the safety region defined by the legalstate condition, we
show that whenever some path comes close to having illegal skew, the algorithm acts to decrease
the skew, pulling the system back into the safety region.

We cannot guarantee that a node will always “realize” when it is on a paththat has too much
skew: each node only has knowledge of its local neighborhood, and thislocal image may not reflect
a large skew further down the path. We can, however, show that when the skew is close to being
illegal, the nodes that are “the most behind” or “the most ahead” (in the sense defined formally
below)do realize that they must act to correct the skew. We will show that such nodes enter fast or
slow mode as appropriate.

Since we can only argue about nodes that, roughly speaking, maximize somenotion of weighted
skew (defined below), we will employ the following technical lemma several times.

Lemma 6.2. Let g1, . . . , gn : R
≥0 → R

≥0 be differentiable functions, and let[a, b] be an interval
such that for alli ∈ {1, . . . , n} andx ∈ (a, b), if gi(x) = maxj gj(x) then d

dxgi(x) ≤ r. Then for
all x ∈ [a, b], maxi gi(x) ≤ maxi gi(a) + r · (x− a).

We define two different notions of “weighted skew”: one captures how much a nodev0 is
ahead of any other node, and the other captures how far behind it is. The weights in both cases are
proportional to the uncertainty on the path, but use different constants.These notions correspond
exactly to the the fast and slow conditions, respectively.
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Definition 6.2. Given an integers ∈ N, a timet, and a pathP = v0, . . . , vk ∈ P, we define

Ξs
P (t) := Lv0

(t)− Lvk
(t)− (s− 1) · κP , and Ξs

v0
(t) := max

P∈P(v0)
Ξs

P (t).

Definition 6.3. Given an integers ∈ N, a timet, and a pathP = v0, . . . , vk ∈ P, we define

Ψs
P (t) := Lvk

(t)− Lv0
(t)−

(

s−
1

2

)

· κP , and Ψs
v0

(t) := max
P∈P(v0)

Ψs
P (t).

These definitions induce “inner safety regions”Ξ
s := [maxv Ξs

v ≤ 0] andΨ
s := [maxv Ψs

v ≤
0] for anys ∈ N

>0, with Ξ
s ⊆ Ψ

s ⊆ L (see Fig. 2).

L

Ψ
s

Ξ
s

Outside Ψ
s: trail-

ing nodes are in fast
mode, leading nodes
are in slow mode

Outside Ξ
s: trail-

ing nodes are in fast
mode

Figure 2: RegionsΞs, Ψs andL. Arrows illustrate the possible dynamics acting on the weighted
skew in each region.

The next lemma can be thought of as bounding how far the system can strayoutside the bound-
ary ofΞs andΨ

s while still being in a legal state.

Lemma 6.3. If the network is in a legal state at timet, then for all nodesu ∈ V and integerss ≥ 1
we haveΞs

u(t) < Cs−1 Ψs
u(t) < Cs−1.

Proof. It is sufficient to show that for all pathsP = u, . . . , v and for alls ≥ 1,

Lu(t)− Lv(t)− (s− 1) · κP
?
< Cs−1. (6)

Let r ≥ 1 be the minimal integer such thatdist(u, v) ≥ Cr. (Note thatdist(u, v) ≤ D < C0, and
thereforer is well-defined.) Because the system is in a legal state at timet, we have

Lu(t)− Lv(t) ≤ r · dist(u, v) ≤ r · κP ,

which can be re-written as

Lu(t)− Lv(t)− (s− 1) · κP ≤ (r − s + 1) · κP .
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It is therefore sufficient to show that

(r − s + 1) · κP
?
< Cs−1. (7)

If r < s, the left-hand side of (7) is at most 0. SinceCs−1 > 0, (7) holds in this case. Otherwise,
if r ≥ s, then by choice ofr we haveκP < Cr−1, and therefore,

(r − s + 1) · κP < (r − s + 1) · Cr−1 =
r − s + 1

σr−s
· Cs−1 ≤ Cs−1.

The last inequality holds becausex + 1 ≤ 2x for all x ∈ N andσ ≥ 2. This shows that (7) holds
in this case as well.

Next we show that while the system is outside the regionΞ
s, nodes that are “the most behind”

(maximizeΞ with respect to some other node) will be acting to catch up, and while the systemis
outside the regionΨs, nodes that are “the most ahead” (maximizeΨ with respect to some other
node) will be held back from moving too quickly.

Lemma 6.4. Givens ∈ N, a nodev0 ∈ V , and a timet, let P = v0, . . . , vk ∈ P(v0) be a path
starting atv0 for whichΞs

P (t) = Ξs
v0

(t). If Ξs
v0

(t) > 0, thenvk is in fast mode.

Lemma 6.5. Givens ∈ N, a nodev0 ∈ V , and a timet, let P = v0, . . . , vk ∈ P(v0)(t) be a path
starting atv0 for whichΨs

P (t) = Ψs
v0

(t). If Ψs
v0

(t) > 0, thenvk is in slow mode.

The proofs of the two lemmas are very similar.

Proof of Lemma 6.4.We set out to show thatvk satisfiesFC.
Consider any pathP ′ = v0, . . . , v ∈ P(v0) that ends at a neighborv of vk. SinceΞs

P (t) =
Ξs

v0
(t) = maxQ∈P(v0) Ξs

Q(t), we haveΞs
P ′(t) ≤ Ξs

P (t); that is,

Lv0
(t)− Lv(t)− (s− 1) · κP ′ ≤ Lv0

(t)− Lvk
(t)− (s− 1) · κP .

Re-arranging yieldsLv(t)− Lvk
(t) ≥ (s− 1) · (κP − κP ′), and applying Property 4.1 we obtain

L̃v
vk

(t)− Lvk
(t) ≥ Lv(t)− ε{v,vk} − Lvk

(t) ≥

≥ (s− 1) · (κP − κP ′)− ε{v,vk}. (8)

To show(FC1) is satisfied, letP ′ be the subpathv0, . . . , vk−1 of P , wherevk−1 ∈ N(v). Note
that sinceΞP (t) > 0 it must be thatk > 0, and thusvk−1 is well-defined. For this choice ofP ′,
(8) yields

L̃
vk−1
vk

(t)− Lvk
(t) ≥ (s− 1) · (κP − κP ′)− ε{vk−1,vk} =

= (s− 1) · κ{vk−1,vk} − ε{vk−1,vk}

(Prop. 5.1)
> (s− 1− λ)κ{vk−1,vk}.
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This shows that(FC1) is satisfied. To show that(FC2) holds, letv ∈ N(vk) be any neighbor of
vk, and letP ′ = v0, . . . , vk, v be the path obtained by appendingv to the pathP . In this case (8)
yields

Lvk
(t)− L̃v

vk
(t) ≤ (s− 1) · (κP ′ − κP ) + ε{v,vk} =

= (s− 1) · κ{v,vk} + ε{v,vk}

(Prop. 5.1)
< (s− 1 + λ) · κ{v,vk}.

Hence, the second condition is satisfied as well, and nodevk is in fast mode.

Proof of Lemma 6.5.We set out to show thatvk satisfiesSC.
Consider any pathP ′ = v0, . . . , v ∈ P(v0) that ends at a neighborv of vk. As before, since

Ψs
P (t) = Ψs

v0
(t) = maxQ∈P(v0) Ψs

Q(t), we can write

Lv(t)− Lv0
(t)−

(

s−
1

2

)

· κP ′ ≤ Lvk
(t)− Lv0

(t)−

(

s−
1

2

)

· κP , (9)

and again applying Property 4.1 we obtain

L̃v
vk

(t)− Lvk
(t) ≤ Lv(t) + ε{v,vk} − Lvk

(t) ≤

≤

(

s−
1

2

)

· (κP ′ − κP ) + ε{v,vk}. (10)

For(SC1), consider the subpathP ′ = v0, . . . , vk−1 of P , wherevk−1 ∈ N(vk). Inequality (10)
yields

Lvk
(t)− L̃

vk−1
vk

(t) ≥

(

s−
1

2

)

· (κP − κP ′)− ε{vk−1,vk} =

=

(

s−
1

2

)

· κ{vk−1,vk} − ε{vk−1,vk} >

(Prop. 5.1)
>

(

s−
1

2
− λ

)

· κ{vk−1,vk},

and so(SC1) is satisfied. For(SC2), let v ∈ N(vk) be any neighbor ofvk, and letP ′ =
v0, . . . , vk, v be the path obtained by appendingv to P . Inequality (10) now gives

L̃v
vk

(t)− Lvk
(t) ≤

(

s−
1

2

)

· (κP ′ − κP ) + ε{v,vk} =

=

(

s−
1

2

)

· κ{v,vk} + ε{v,vk} <

(Prop. 5.1)
<

(

s−
1

2
+ λ

)

· κ{v,vk},

which shows that(SC2) is satisfied as well.
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Suppose that at timet, nodev hasΞs
v(t) > 0. From Lemma 6.4, all the nodes that maximize

Ξs
v are in fast mode, trying to catch up tov, and their logical clock rate is at least(1 − ρ)(1 + µ).

Thus, whenever it is positive,Ξs
v decreases at an average rate of at least(1− ρ)(1 + µ), minusthe

rate by whichv increases its own logical clock. To formalize this observation, define

Iv(t1, t2) := Lv(t2)− Lv(t1) (11)

to be the amount by whichv increases its logical clock over the time interval[t1, t2]. Since
d
dtLv(t) ≥

d
dtHv(t) ≥ 1− ρ we have the following property.

Property 6.6. For all nodesv and timest1, t2 we haveIv(t1, t2) ≥ (1− ρ)(t2 − t1).

Now we can state the following lemma.

Lemma 6.7(Catch-Up Lemma). Let v0 be a node and let[t0, t1] be a time interval such that for
all t ∈ (t0, t1) we haveΞs

v0
(t) > 0. Then for allt ∈ [t0, t1],

Ξs
v0

(t) ≤ Ξs
v0

(t0) + Iv0
(t0, t)− (1− ρ)(1 + µ)(t− t0). (12)

Similarly, wheneverΨs
v(t) > 0, the nodes that maximizeΨs

v are in slow mode, and their logical
clocks increase at a rate of at most1+ρ. Thus, whenever it is positive,Ψs

v(t) increases at an average
rate of at most1 + ρ, again minusv’s increase to its own logical clock. This is captured by the
following lemma.

Lemma 6.8(Waiting Lemma). Letv0 be a node and let[t0, t1] be a time interval such that for all
t ∈ (t0, t1) we haveΨs

v0
(t) > 0. Then for allt ∈ [t0, t1],

Ψs
v0

(t) ≤ Ψs
v0

(t0)− Iv0
(t0, t) + (1 + ρ)(t− t0). (13)

The proofs of Lemmas 6.7 and 6.8 involve a straightforward application of Lemma 6.2.

Proof of Lemma 6.7.Consider the set of functions{gP }P∈P(v0)
defined bygP (t) := Ξs

P (t) −
Iv0

(t0, t). Observe that for allt,

max
P∈P(v0)

gP (t) = max
P

(Ξs
P (t)− Iv0

(t0, t)) =

=

(

max
P

Ξs
P (t)

)

− Iv0
(t0, t) =

= Ξs
v0

(t)− Iv0
(t0, t). (14)

14



In addition,Iv0
(t0, t0) = 0. Therefore (12) can be re-written as

max
P∈P(v0)

gP (t)
?
≤ max

P∈P(v0)
gP (t0)− (1− ρ)(1 + µ)(t− t0). (15)

Next, substituting the definition forΞs
v0

(t) andIv0
(t0, t) we obtain

gP (t) = Lv0
(t)− Lvk

(t)− (s− 1) · κP − Lv0
(t) + Lv0

(t0) =

= −Lvk
(t)− (s− 1) · κP − Lv0

(t0),

and therefore,

d

dt
gP (t) = −

d

dt
Lvk

(t). (16)

If P is a path such thatgP (t) = maxQ gQ(t), thenP also hasΞs
P (t) = Ξs

v0
(t). SinceΞs

v0
(t) > 0

for anyt ∈ (t0, t1), we can apply Lemma 6.4 to obtain that whenevergP (t) = maxQ gQ(t) where
P = v0, . . . , vk, nodevk is in fast mode andddtLvk

(t) = (1 + µ) d
dtHvk

(t) ≥ (1− ρ)(1 + µ). This
is sufficient to apply Lemma 6.2 to the interval[t0, t], which yields (15).

Proof of Lemma 6.8.Consider the set of functions{gP }P∈P(v0)
defined bygP (t) := Ψs

P (t) +
Iv0

(t0, t). Observe that for allt,

max
P∈P(v0)

gP (t) = max
P

(Ψs
P (t) + Iv0

(t0, t)) =

=

(

max
P

Ψs
P (t)

)

+ Iv0
(t0, t) =

= Ψs
v0

(t) + Iv0
(t0, t). (17)

In addition,Iv0
(t0, t0) = 0. Therefore (13) can be re-written as

max
P∈P(v0)

gP (t)
?
≤ max

P∈P(v0)
gP (t0) + (1 + ρ)(t− t0). (18)

Next, substituting the definitions forΨs
v0

(t) andIv0
(t0, t) we obtain

gP (t) = Lvk
(t)− Lv0

(t)−

(

s−
1

2

)

· κP + Lv0
(t)− Lv0

(t0) =

= Lvk
(t)−

(

s−
1

2

)

· κP − Lv0
(t0),

and therefore,

d

dt
gP (t) =

d

dt
Lvk

(t). (19)
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If P is a path such thatgP (t) = maxQ gQ(t), thenP also hasΨs
P (t) = Ψs

v0
(t). SinceΨs

v0
(t) > 0

for anyt ∈ (t0, t1), we can apply Lemma 6.5 to obtain that whenevergP (t) = maxQ gQ(t) where
P = v0, . . . , vk, nodevk is in slow mode andd

dtLvk
(t) = d

dtHvk
(t) ≤ 1 + ρ. This is sufficient to

apply Lemma 6.2, which yields (18).

Intuitively, until now we argued that ifv0 is too far ahead of other nodes then those nodes will
be in fast mode, and ifv0 is too far behind other nodes then those nodes will be in slow mode. What
doesv0 itself do when it is too far behind? Observe that if there is some pathP = v0, . . . , vk such
thatΨs

P (t) > 0, then for the inverted pathP ′ = vk, . . . , v0 we haveΞs
P ′(t) > Ψs

P (t) > 0. Thus,
informally speaking, wheneverv0 is too far behind some other node it will be “pulled forward” at
the fast rate. The next lemma quantifies how much groundv0 makes up during an interval in which
it is far behind: it states that given sufficient time, the node makes up all the initial weighted skew
Ψs

v, in additionto its minimal rate of progress (1− ρ).

Lemma 6.9. For any nodev0, integers ∈ N
>0 and time interval[t0, t1] wheret1 ≥ t0 + Cs−1

(1−ρ)µ ,
if the network is in a legal state at timet0, then

Iv0
(t0, t1) ≥ Ψs

v0
(t0) + (1− ρ)(t1 − t0).

Proof. If Ψs
v0

(t0) ≤ 0, the claim follows immediately from Property 6.6. Thus, assume that
Ψs

v0
(t0) > 0, and letP = v0, . . . , vk be a path such thatΨs

P (t0) = Ψs
v0

(t0). From the definitions
of Ψ andΞ, for the inverted pathP ′ = vk, . . . , v0 we haveΞs

P ′(t0) > Ψs
P (t0), and therefore,

Ξs
vk

(t0) > Ψs
v0

(t) > 0. If there is a timet ∈ [t0, t1] such thatΞs
vk

(t) ≤ 0, let t̄ be the infimum of
such times. Otherwise, lett̄ = t1. Observe that

Iv0
(t0, t̄) = Lv0

(t̄)− Lv0
(t0) =

= (Lvk
(t0)− Lv0

(t0)− (s− 1)κP )− (Lvk
(t̄)− Lv0

(t̄)− (s− 1)κP ) + Lvk
(t̄)− Lvk

(t0) =

= Ξs
P ′(t0)− Ξs

P ′(t̄) + Ivk
(t0, t̄) >

> Ψs
P (t0)− Ξs

vk
(t̄) + Ivk

(t0, t̄) =

= Ψs
v0

(t0)− Ξs
vk

(t̄) + Ivk
(t0, t̄).

Sincet̄ ≤ t1 andIv0
(t0, ·) is non-decreasing and interval-additive, to prove the claim it is sufficient

to show thatIvk
(t0, t̄) ≥ Ξs

vk
(t̄) + (1− ρ)(t̄− t0).

Consider first the case wheret̄ < t1. In this casēt is the infimum of timest whereΞs
vk

(t) ≤
0. SinceΞs

vk
(·) is continuous, it follows thatΞs

vk
(t̄) = 0, and using Property 6.6 we obtain

Ivk
(t0, t̄) ≥ Ξs

vk
(t̄) + (1− ρ)(t̄− t0).

Otherwise, ift̄ = t1, then for allt ∈ [t0, t1) we haveΞs
vk

(t) > 0. Applying Lemma 6.7 to the
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interval[t0, t1] we obtain

Ξs
vk

(t1) ≤ Ξs
vk

(t0) + Ivk
(t0, t1)− (1− ρ)(1 + µ)(t1 − t0) ≤

Lemma 6.3
≤ Cs−1 + Ivk

(t0, t1)− (1− ρ)µ ·
Cs−1

(1− ρ)µ
− (1− ρ)(t1 − t0) =

= Ivk
(t0, t1)− (1− ρ)(t1 − t0),

which yields the desired result.

Now we are ready to put all the pieces together and prove the main theorem:

Theorem 6.10.The network is always in a legal state.

Proof. Suppose for the sake of contradiction that this is not the case, and lett̄ be the infimum of
times when the legal state condition is violated. Then there is some pathP = v0, . . . , vk and some
s ≥ 1 such thatκP ≥ Cs but

Lv0
(t̄)− Lvk

(t̄) ≥ s · κP . (20)

For the legal state condition to be violated, the system must be far outside the boundary ofΨs:

Ψs
vk

(t̄) ≥ Lv0
(t̄)− Lvk

(t̄)−

(

s−
1

2

)

· κP

(20)
≥

1

2
κP ≥

1

2
Cs =

1

2σ
Cs−1. (21)

However, Lemma 6.8 tells us that wheneverΨs
vk

is large it cannot increase quickly, which givesvk

time to catch up. More specifically, ift0 is the supremum of timest ≤ t̄ such thatΨs
vk

(t) ≤ 0, then
Lemma 6.8 shows that

Ψs
vk

(t̄) ≤ Ψs
vk

(t0)− Ivk
(t0, t̄) + (1 + ρ)(t̄− t0)

(Prop. 6.6)
≤ 2ρ(t̄− t0), (22)

and combining (21) and (22) we see thatt0 ≤ t̄ − Cs−1

4σρ

(3)
≤ t̄ − Cs−1

(1−ρ)µ . According to Lemma 6.9,
this is sufficient time forvk to increase its clock by

Ivk
(t0, t̄) ≥ Ψs

vk
(t0) + (1− ρ)(t̄− t0), (23)

which we combine with the first inequality of (22) to obtain

Ψs
vk

(t̄)
(22)
≤ Ψs

vk
(t0)− Ivk

(t0, t̄) + (1 + ρ)(t̄− t0)
(23)
≤ 2ρ

Cs−1

(1− ρ)µ

(3)
<

1

2σ
Cs−1,

in contradiction to (21).

As an easy corollary we obtain the following.

Theorem 6.11.The global skew of the algorithm is bounded by2D.
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Theorem 6.11.Theorem 6.10 allows us to use Lemma 6.3 at any timet. For any two nodesu, v,
let P be a path fromu to v. Lemma 6.3 states (in particular) that

C0 > Ξ1
u(t) ≥ Ξ1

P (t) ≥ Lv(t)− Lu(t)− (1− 1)κP = Lv(t)− Lu(t),

and sinceC0 = 2D, the claim follows.1

Corollary 6.12. If σ = Θ(1/ρ), µ = Θ(1/(1 − ρ)) and κe = Θ(εe) for all e ∈ Eest, then

the algorithm achievesO
(

dist(u, v) · log1/ρD
)

-gradient synchronization, with a global skew of

O(D).
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Appendix

A The Estimate Layer

A.1 Error analysis for direct estimates

To analyze the error in a direct estimate at timet, let tsnd be the last time nodev sends a message
that nodeu receives by timet. Let trcv ≤ t be the time whenu receives the message, and letL be
the clock value the message carries.

During the interval[trcv, t], nodeu increases̃Lv,direct
u at the rate of its own hardware clock, and

therefore
(1− ρ)(t− trcv) ≤ L̃v,direct

u (t)− L ≤ (1 + ρ)(t− trcv). (24)

Also, from Requirement 3.2,

(1− α)(t− tsnd) ≤ Lv(t)− L ≤ (1 + β)(t− tsnd). (25)

Becausetrcv ∈ [tsnd, tsnd + T ], we can re-write (24) to obtain

(1− ρ)(t− tsnd − T ) ≤ L̃v,direct
u (t)− L ≤ (1 + ρ)(t− tsnd), (26)

and subtracting (26) from (25) yields

−(α + ρ)(t− tsnd) ≤ Lv(t)− L̃v,direct
u (t) ≤ (β + ρ)(t− tsnd) + (1− ρ)T . (27)

Finally, sincev broadcasts every∆H subjective time units, at timet′snd ≤ tsnd + ∆H
1−ρ nodev

broadcasts again, and the second broadcast is received byu at time t′snd + T at the latest. The
second broadcast is not received by timet, and it follows thattsnd ≥ t − ∆H

1−ρ − T . Substituting
this bound in (27), we get

−(α + ρ)

(

∆H

1− ρ
+ T

)

≤ Lv(t)− L̃v,direct
u (t) ≤ (β + ρ)

(

∆H

1− ρ
+ T

)

+ (1− ρ)T .

A.2 Error analysis for RBS estimates

Let v ∈ N2(u). Suppose that at timet, time tx is the latest time an eventx occurs such that node
u receives areport(v, x, L) message by timet. Let trcv be the time at whichu receives the report,
and lettvx be a time such thatL = Lv(t

v
x), and lettux be a time such thatH = Hu(tux). We know

thattx ≤ tux, tvx ≤ tx + urcv.
As before, we have

(1− ρ)(t− trcv) ≤ L̃v,rbs
u (t)− L−Hu(trcv) + Hu(tux) ≤ (1 + ρ)(t− trcv), (28)

(1− ρ)(trcv − tux) ≤ Hu(trcv)−Hu(tux) ≤ (1 + ρ)(trcv − tux), (29)
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and
(1− α)(t− tvx) ≤ Lv(t)− L ≤ (1 + β)(t− tvx). (30)

Summing (28) and (29) yields

(1− ρ)(t− tux) ≤ L̃v,rbs
u (t)− L ≤ (1 + ρ)(t− tux), (31)

and becausetux, tvx ∈ [tx, tx + urcv], we can re-write (30) and (31) as

(1− ρ)(t− tx − urcv) ≤ L̃v,rbs
u (t)− L ≤ (1 + ρ)(t− tx) (32)

and
(1− α)(t− tx − urcv) ≤ Lv(t)− L ≤ (1 + β)(t− tx). (33)

Subtracting (32) from (33) we obtain

−(α + ρ)(t− tx)− (1− α)urcv ≤ Lv(t)− L̃v,rbs
u (t) ≤ (β + ρ)(t− tx) + (1− ρ)urcv. (34)

Since every node broadcasts every∆H
1−ρ time units at most, at some timety ≤ tx + ∆H

1−ρ the common
neighbor ofu andv will broadcast again, and both nodes will record the event. The corresponding
report(·) will be received byu no later than timety +P. Since no such message is received before
time t, we havetx ≥ t− ∆H

1−ρ − P. Substituting in (34), we get

−(α + ρ)

(

∆H

1− ρ
+ P

)

− (1− α)urcv ≤ Lv(t)− L̃v,rbs
u (t) ≤

≤ (β + ρ)

(

∆H

1− ρ
+ P

)

+ (1− ρ)urcv.
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