Testing Basic Boolean Formulae

Michal Parnas Dana Ron Alex Samorodinsky
The Goal:

- Finding Property Testers for:
 1. Singletons.
 2. Monomials.
 3. DNF functions.

- Having query complexity better than corresponding Learning algorithms.
The functions:

- \(f : \{0,1\}^n \rightarrow \{0,1\} \).

- **Singletons**: \(f(x) = x_i \) / \(f(x) = \overline{x}_i \)

- **k-Monomials**: \(f(x) = x_{i_1} \land \overline{x}_{i_2} \land \cdots \land x_{i_k} \)

- **\(l \)-term DNF**: \(f(x) = (x_{i_1} \land x_{i_2}) \lor \cdots \lor (x_{i_1} \land x_{i_j} \land x_{i_n}) \)
Motivation:

- 2 views of Property Testing:
 1. Relaxation of *exact decision*.
 Testing combinatorial objects – *Graphs*.
 2. *Learning* perspective.
 Testing- *Functions*.
The Results:

- **Sub-Linear** query complexity
- **Independent** of the input size – n.
- For all 3 Property Testers:
 1. Singletons – $O(1/\varepsilon)$.
 2. Monomials – $O(1/\varepsilon)$.
 3. Monotone ℓ-term DNFs – $\tilde{O}(\ell^2/\varepsilon)$.
This Talk:

- Singletons – Natural Algorithm - $O(1/\varepsilon^2)$.
- Monomials – Generalization - $O(1/\varepsilon^2)$.
- Singletons – Second Algorithm - $O(1/\varepsilon)$.
- Monomials – Structure - $O(1/\varepsilon)$.
Property Tester:

• Testing algorithm:
 • Is given:
 1. Distance parameter – ε. ($0 < \varepsilon < 1$)
 2. Query access to f.
 • Outputs: (with probability at least $2/3$)
 1. Accept - for any $f \in F$.
 2. Reject - for any f that is ε-far from F.
Distance definitions:

• Distance between functions - f, g:

$$
\text{dist}(f, g) \equiv \Pr_{x \in \{0,1\}^n} [f(x) \neq g(x)]
$$

• Distance between function and group - f, F:

$$
\text{dist}(f, F) \equiv \min_{g \in F} \text{dist}(f, g)
$$
Testing Singleton Functions
Testing Algorithm I
Claim 1:

- f is a monotone k-monomial if and only if:
 1. $\Pr[f = 1] = 1/2^k$
 2. $\forall x, y:\ f(x \land y) = f(x) \land f(y)$
Claim 1 – proof:

1. \(f(x) = 0 \quad \forall \ |x| < k \)

2. Let \(-\ y = \bigwedge_{x \in F_1} x\)
 \[f(y) = f\left(\bigwedge_{x \in F_1} x \right) = \bigwedge_{x \in F_1} f(x) = 1 \]
 \[|y| \geq k \]
 \[y_{i_1} = y_{i_2} = \cdots = y_{i_k} = 1 \]
 \[x_{i_1} = x_{i_2} = \cdots = x_{i_k} = 1 \quad , \quad \forall x \in F_1 \]

3. Let \(-\ g(x) = x_{i_1} \land \cdots \land x_{i_k}\)
 \[F_1 = G_1 \]
 \[f(x) = g(x) \]
Natural Algorithm:

- A **natural** algorithm:
 - Uniformly samples pairs - x, y.
 1. Verify - $\Pr[f = 1] \approx 1/2$
 2. Verify – $f(x \land y) = f(x) \land f(y)$, $\forall x, y$

- This algorithm is proven correct for:
 - Functions that are not too far from singletons.

\[
\delta = \text{dist}(f, F) \leq 1/2 - \lambda
\]
Algorithm 1:

• Testing singletons with lower bound – λ:

1. Size test:
 I. Uniformly sample $m = \Theta(1/\varepsilon^2)$.
 II. If $|a - 1/2| > \varepsilon/4$ – Reject.

2. Closure under intersection test:
 I. Repeat $\Theta(1/(\varepsilon\lambda))$:
 » Uniformly select a pair - x, y.
 » If $f(x \land y) \neq f(x) \land f(y)$ – Reject.

3. If no step caused rejection – Accept.
Algorithm I - proof:

- If f is a singleton:
 1. Pass Size test with probability at least 2/3:
 \[\Pr[\text{Reject}] < \frac{1}{3} \text{, for sample } m = \left(\frac{15}{\varepsilon^2} \right). \]
 \[\Pr[|a - 1/2| > \varepsilon/4] \leq 2e^{-2\left(\frac{15}{\varepsilon^2}\right)\left(\frac{\varepsilon^2}{4^2}\right)} \]
 2. Always pass Closure under intersection test.

- Algorithm – f is Accepted w.p at least 2/3.
Algorithm I - proof:

- If f is ϵ-far from any singleton
- And If $\left| \Pr[f = 1] - \frac{1}{2} \right| > \frac{\epsilon}{2}$
 1. f is Rejected in Size test w.p at least $\frac{5}{6}$:

- Algorithm – f is Rejected w.p at least $\frac{5}{6}$.
Algorithm 1 - proof:

- If f is ε-far from any singleton
- And - $|\Pr[f = 1] - 1/2| \leq \varepsilon / 2 < \delta / 2$

1. f is Rejected in second step w.p $\geq 5/6$:

 $$\Pr(\text{violating.pair}) \geq \delta / 4(1/2 - \delta) \geq \lambda \varepsilon / 4$$

 This is not bounded from below for distance close to $\frac{1}{2}$.

- Algorithm – f is Rejected w.p $\geq 5/6$.
Natural Algorithm:

- This Algorithm can be generalized for k-monomials:
 - \(\delta = \text{dist}(f, F) \leq \frac{1}{2^k} - \lambda \)
 - Query complexity: \(O(1/\varepsilon^2) \).
Testing
Algorithm II
Singletons using Linearity:

- Testing Singletons using **Linearity** test:
 1. Linearity Test.
 2. Singletons Test assuming **Linearity**.

- Testing Algorithm:
 - No distance constraints.
 - 1 sided error.
 - Query complexity: $O(1/\varepsilon)$.
Linearity test:

- Parity function: (Linear over GF(2))
 \[f : \{0,1\}^n \rightarrow \{0,1\} \]
 \[f(x) = x_{i_1} \oplus x_{i_2} \oplus \cdots \oplus x_{i_k} \]
- All Singletons are Parity functions.
Singletons test:

- **Part 1: Parity test** [Blum, Luby and Rubinfeld]
 - Uniformly picks $O(1/\varepsilon)$ and Checks that
 \[f(x \oplus y) = f(x) \oplus f(y) \]
 - f is parity – test accepts w.p = 1.
 - f is ε-far – test rejects w.p at least $9/10$.

\[yf(x) yf(x) \]
Singletons test:

- Part 2: Singletons test.
 - The analysis of this part depends on the fact that the function is parity.
 - What if f passed the parity test, but it is just ε-close to Parity?
 - Use Self-corrector.
Singletons test:

- **Self-corrector:**
 - For each x –
 - Returns $g(x)$ - The value on x of the linear function that is closest to $f(x)$.
 - f is parity – returns f w.p=1.
 - f is $1/4$-close to parity g – returns g w.p $\geq 9/10$.
Singletons test:

- Part 2: Singletons test:
 - Uniformly select $m=64$ pairs x,y and Check that –
 \[SC(x \land y) = SC(x) \land SC(y) \]
 - g is singleton – test Accepts w.p=1.
 - g (parity) is ϵ-far – test Rejects w.p $\geq 9/10$.
Singletons proof:

Part 2: proof:

- **g is s parity:**
 - \[\Pr[g(x \land y) = g(x) \land g(y)] = \frac{1}{2} + \frac{1}{2^{|s|+1}} \quad , \quad |s| - \text{even} \]
 - \[\Pr[g(x \land y) = g(x) \land g(y)] = \frac{1}{2} + \frac{1}{2^{|s|}} \quad , \quad |s| - \text{odd} \]

- **g is a non-singleton s parity** \(\Rightarrow \) \(|s| \geq 2\):
 - \[\Rightarrow \Pr[g(x \land y) \neq g(x) \land g(y)] > \frac{1}{8} \]

- \[\Rightarrow \Pr(\text{rejecting a pair in step 2} \mid \text{parity}) \geq 1/8. \]
Singletons proof:

- Part 2: f non-singleton, ε-close to parity - g

 - $\Pr(\text{rejecting a pair in Part 2}) = \Pr(\text{rejecting a pair in Part 2 | parity}) \times \Pr(\text{SC returns } g \text{ on all 3 calls}) \\
 \geq (1/8)*(9/10)^3 > 1/16.$

- In sample=64:
 - $\Pr(\text{rejecting } f \text{ in Part 2}) \geq 9/10.$
Algorithm II:

• Testing singletons Algorithm:

1. Parity with min\{1/5, \varepsilon\}, if rejected – Reject.
2. All Zeros - If – \(SC(\vec{1}) = 0 \) – Reject:
3. Singleton test:
 I. Uniformly select 64 pairs.
 II. If \(SC(x \land y) \neq SC(x) \land SC(y) \) – Reject.
4. If no step caused rejection – Accept.
Algorithm II - proof:

• If f is a singleton:

 • f passes all steps w.p = 1.

• Algorithm – f is Accepted w.p = 1.
Algorithm II - proof:

- If f is ε-far from any singleton

 - $\Pr(f$ accepted$) < 1/3$:
 1. $\Pr(\varepsilon$-far from Parity and pass step 1$) \leq 1/10$
 2. $\Pr(\varepsilon$-close to the “all 0s” and pass step 2$) \leq 1/10$
 3. $\Pr(\varepsilon$-close to Parity (s>1) and pass step 3$) \leq 1/10$

- Algorithm – f is Rejected w.p at least $2/3$.
Algorithm II - Summary:

- **If f is a singleton:**
 - f is Accepted w.p = 1.

- **If f is ε-far from any singleton:**
 - f is Rejected w.p at least 2/3.

- Query complexity: $O(1/\varepsilon)$.
Testing Monomial Functions
Affinity test:

- Affine subset: if and only if:

 for every \(y_1, y_2, y_3 \in H \) we have \(y_1 \oplus y_2 \oplus y_3 \in H \)

 for every \(y_1, y_2 \in H, y_4 \notin H \) we have \(y_1 \oplus y_2 \oplus y_4 \notin H \)

- For all Monomials \(F_1 \) is an Affine subset:

 - \(y_1 = \{11\ldots\} \)
 - \(y_2 = \{11\ldots\} \) for \(k=2 \)
 - \(y_3 = \{11\ldots\} \)
 - \(y_4 = \{10\ldots\} \)
Algorithm III:

• Testing Monomials:

1. Size test, Verify \(\Pr[f = 1] \approx 1/2^k \), else - Reject.
2. Affinity test, if rejected – Reject.
3. Closure under intersection test:
 I. Uniformly select 32 \(x \in F_1 \) and \(2^{k+3} \) points \(y \).
 II. If – \(SC(x \land y) \neq SC(x) \land SC(y) \) – Reject.
4. If no step caused rejection – Accept.
Algorithm III - Summary:

- If f is a Monomial:
 - f is Accepted w.p at least $2/3$.

- If f is ϵ-far from any Monomial:
 - f is Rejected w.p at least $2/3$.

- Query complexity: $O(1/\epsilon)$.
If we would like to test Singletons Under a different, unknown distribution Other than the Uniform.

1. Could we use the tests from the first Algorithm?
2. Could we use the tests from the second Algorithm?
3. Same question for testing Monomials.