Homework 4

Lecturer: Ronitt Rubinfeld

Due Date: June 10, 2009

Homework guidelines: Same as for homework 1.

1. Dictator functions, also called projection functions, are the functions mapping $\{+1, -1\}^n$ to $\{+1, -1\}$ of the form $f(x) = x_i$ for i in [n].

Consider the following test for whether a function f is a dictator: Given parameter δ , the test chooses $x, y, z \in \{1, -1\}^n$ by first choosing x, y uniformly from $\{1, -1\}^n$, next choosing w by setting each bit w_i to -1 with probability δ and +1 with probability $1 - \delta$ (independently for each i), and finally setting z to be $x \circ y \circ w$, where \circ denotes the bitwise multiply operation. Finally, the test accepts if f(x)f(y)f(z) = 1 and rejects otherwise.

- Show that the probability that the test accepts is $\frac{1}{2} + \frac{1}{2} \sum_{s \subseteq [n]} (1 2\delta)^{|S|} \hat{f}(S)^3$.
- Show that if f is a dictator function, then f passes with probability at least 1δ .
- Show that if f passes with probability at least 1ϵ then there is some S such that $\hat{f}(S)$ is at least $1 2\epsilon$ and such that f is ϵ -close to χ_S .
- Why isn't this enough to give a dictator test? (i.e., what nondictators might pass?) Give a simple fix.
- 2. Show that if there is a PAC learning algorithm for a class C (sample complexity $poly(\log n, 1/\epsilon, 1/\delta)$) then there is a PAC learning algorithm for C with sample complexity dependence on δ (the confidence parameter) that is only $\log 1/\delta$ i.e., the "new" PAC algorithm should have sample complexity $poly(\log n, 1/\epsilon, \log 1/\delta)$. (It is ok to assume that the learning algorithm is over the uniform distribution on inputs, although the claim is true in general.)
- 3. Show that for any monotone function $f : \{+1, -1\}^n \to \{+1, -1\}$, the influence of the i^{th} variable is equal to the value of the Fourier coefficient of $\{i\}$, that is $\inf_i(f) = \hat{f}(\{i\})$.
 - Show that the majority function $f(x) = \operatorname{sign}(\sum_i x_i)$ maximizes the total influence among *n*-variable monotone functions mapping $\{+1, -1\}^n$ to $\{+1, -1\}$, for *n* odd.
- 4. Consider the sample complexity required to learn the class of monotone functions mapping $\{+1, -1\}^n$ to $\{+1, -1\}$ over the uniform distribution (without queries).

(a) Show that

$$\sum_{|S| \ge \mathrm{Inf}(f)/\epsilon} \widehat{f}(S)^2 \le C \cdot \epsilon$$

where Inf(f) is the influence of f, and C is an absolute constant.

(b) Show that the class of monotone functions can be learned to accuracy ϵ with $n^{\Theta(\sqrt{n}/\epsilon)} = 2^{\tilde{O}(\sqrt{n}/\epsilon)}$ samples under the uniform distribution.

Useful definitions:

1. For $x = (x_1, \ldots, x_n) \in \{+1, -1\}^n$, $x^{\oplus i}$ is x with the *i*-th bit flipped, that is,

$$x^{\oplus i} = (x_1, \dots, x_{i-1}, -x_i, x_{i+1}, \dots, x_n).$$

The influence of the i-th variable on $f: \{+1, -1\}^n \to \{+1, -1\}$ is

$$\operatorname{Inf}_{i}(f) = \Pr_{x} \left[f(x) \neq f\left(x^{\oplus i}\right) \right]$$

The *total influence* of f is

$$\operatorname{Inf}(f) = \sum_{i=1}^{n} \operatorname{Inf}_{i}(f).$$

2. A function $f : \{+1, -1\}^n \to \{+1, -1\}$ is monotone if for all $x, y \in \{+1, -1\}^n$ such that $x_i \leq y_i$ for each $i, f(x) \leq f(y)$. Assume that -1 < +1.