Homework 4

Lecturer: Ronitt Rubinfeld

Homework guidelines: Same as for homework 1.

1. Dictator functions, also called projection functions, are the functions mapping $\{+1,-1\}^{n}$ to $\{+1,-1\}$ of the form $f(x)=x_{i}$ for i in $[n]$.
Consider the following test for whether a function f is a dictator: Given parameter δ, the test chooses $x, y, z \in\{1,-1\}^{n}$ by first choosing x, y uniformly from $\{1,-1\}^{n}$, next choosing w by setting each bit w_{i} to -1 with probability δ and +1 with probability $1-\delta$ (independently for each i), and finally setting z to be $x \circ y \circ w$, where \circ denotes the bitwise multiply operation. Finally, the test accepts if $f(x) f(y) f(z)=1$ and rejects otherwise.

- Show that the probability that the test accepts is $\frac{1}{2}+\frac{1}{2} \sum_{s \subseteq[n]}(1-2 \delta)^{|S|} \hat{f}(S)^{3}$.
- Show that if f is a dictator function, then f passes with probability at least $1-\delta$.
- Show that if f passes with probability at least $1-\epsilon$ then there is some S such that $\hat{f}(S)$ is at least $1-2 \epsilon$ and such that f is ϵ-close to χ_{S}.
- Why isn't this enough to give a dictator test? (i.e., what nondictators might pass?) Give a simple fix.

2. Show that if there is a PAC learning algorithm for a class C (sample complexity poly $(\log n, 1 / \epsilon, 1 / \delta)$) then there is a PAC learning algorithm for C with sample complexity dependence on δ (the confidence parameter) that is only $\log 1 / \delta$ - i.e., the "new" PAC algorithm should have sample complexity poly $(\log n, 1 / \epsilon, \log 1 / \delta)$. (It is ok to assume that the learning algorithm is over the uniform distribution on inputs, although the claim is true in general.)
3. - Show that for any monotone function $f:\{+1,-1\}^{n} \rightarrow\{+1,-1\}$, the influence of the $i^{t h}$ variable is equal to the value of the Fourier coefficient of $\{i\}$, that is $\inf _{i}(f)=\hat{f}(\{i\})$.

- Show that the majority function $f(x)=\operatorname{sign}\left(\sum_{i} x_{i}\right)$ maximizes the total influence among n-variable monotone functions mapping $\{+1,-1\}^{n}$ to $\{+1,-1\}$, for n odd.

4. Consider the sample complexity required to learn the class of monotone functions mapping $\{+1,-1\}^{n}$ to $\{+1,-1\}$ over the uniform distribution (without queries).
(a) Show that

$$
\sum_{|S| \geq \operatorname{Inf}(f) / \epsilon} \hat{f}(S)^{2} \leq C \cdot \epsilon
$$

where $\operatorname{Inf}(f)$ is the influence of f, and C is an absolute constant.
(b) Show that the class of monotone functions can be learned to accuracy ϵ with $n^{\Theta(\sqrt{n} / \epsilon)}=$ $2^{\tilde{O}(\sqrt{n} / \epsilon)}$ samples under the uniform distribution.

Useful definitions:

1. For $x=\left(x_{1}, \ldots, x_{n}\right) \in\{+1,-1\}^{n}, x^{\oplus i}$ is x with the i-th bit flipped, that is,

$$
x^{\oplus i}=\left(x_{1}, \ldots, x_{i-1},-x_{i}, x_{i+1}, \ldots, x_{n}\right)
$$

The influence of the i-th variable on $f:\{+1,-1\}^{n} \rightarrow\{+1,-1\}$ is

$$
\operatorname{Inf}_{i}(f)=\operatorname{Pr}_{x}\left[f(x) \neq f\left(x^{\oplus i}\right)\right]
$$

The total influence of f is

$$
\operatorname{Inf}(f)=\sum_{i=1}^{n} \operatorname{Inf}_{i}(f)
$$

2. A function $f:\{+1,-1\}^{n} \rightarrow\{+1,-1\}$ is monotone if for all $x, y \in\{+1,-1\}^{n}$ such that $x_{i} \leq y_{i}$ for each $i, f(x) \leq f(y)$. Assume that $-1<+1$.
