Homework 3

Lecturer: Ronitt Rubinfeld
Due Date: May 20, 2009

1. You are given a 2-SAT formula $\phi\left(x_{1}, \ldots, x_{n}\right)$. Consider the following algorithm for finding a satisfying assignment:

- Start with an arbitrary assignment. If it's satisfying, output it and halt.
- Do s times:
- Pick an arbitrary unsatisfied clause
- Pick one of the two literals in it uniformly at random
- Complement the setting of the chosen literal
- If the new assignment satisfies ϕ, output the assignment and halt.

Show that if you pick s to be $O\left(n^{2}\right)$, and ϕ is satisfiable, you will output a satisfying assignment with probability at least $3 / 4$.
Hint: Show that the cover time of the random walk on the n-node line is $O\left(n^{2}\right)$.
2. A d-regular graph has (K, A)-vertex expansion if $\forall S \subset V,|S| \leq K,|\lambda(S)| \geq A|S|$ where $\lambda(S)=\mid\{u \mid \exists v \in S$ s.t. $(u, v) \in E\} \mid$. For a probability distribution π over [n], the collision probability is

$$
\|\pi\|^{2}=\sum_{x} \pi_{x}^{2}
$$

Show that the following is true:

- $\|\pi\|^{2} \geq \frac{1}{|S(\pi)|}$ where $S(\pi)=\left\{x \mid \pi_{x}>0\right\}$.
- $\|\pi\|^{2}=\|\pi-u\|^{2}+\frac{1}{n}$ where u is the uniform distribution.
- If there is a constant $\lambda<1$ such that the transition matrix of G is such that $\left|\lambda_{2}\right| \leq \lambda$ then for any $\alpha<1, G$ has vertex expansion $\left(\alpha n, \frac{1}{(1-\alpha) \lambda^{2}+\alpha}\right)$.

Remark: We use the convention that $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \ldots \geq\left|\lambda_{n}\right|$, where $\lambda_{1}, \ldots, \lambda_{n}$ are eigenvalues of the random walk matrix.
3. We say that an undirected graph on n nodes is labeled if the edges adjacent to each vertex are labeled with numbers from 1 to n, and no two edges are labeled with the same number. An edge may be labeled differently on each of its endpoints.
Given is a labeled graph G on n nodes, a node v in G, and a string $s=\left(s_{1}, \ldots, s_{k}\right) \in$ $\{1, \ldots, n\}^{\star}$. Consider the following procedure. Our initial position is v. In the i-th step, if there is an edge adjacent to the current node, labeled with s_{i}, we follow that edge. Otherwise, we stay at the current node. We call s a (G, v)-cover if it can be used to visit all vertices of G by following to the above procedure.
A string $s \in\{1, \ldots, n\}^{\star}$ is a universal traversal sequence for size n if for every labeled connected graph G on n nodes and every node v in G, s is a (G, v)-cover.
Show that there exists a universal traversal sequence for size n of length $n^{O(1)}$.
4. Given graph G (regular, undirected and not bipartite). Let A be a random walker that is starting at the uniform (stationary) distribution on nodes. Let B be a random walker that starts at an arbitrary node u. Let M_{G}^{u} be the expected time for A to meet up with B. Give the best general upper and lower bounds that you can on M_{G}^{u}.

