Homework 1

Lecturer: Ronitt Rubinfeld

Due Date: March 25,2009

Homework guidelines: You may work with other students, as long as (1) they have not yet solved the problem, (2) you write down the names of all other students with which you discussed the problem, and (3) you write up the solution on your own. No points will be deducted, no matter how many people you talk to, as long as you are honest. If you already knew the answer to one of the problems (call these "famous" problems), then let me know that in your solution writeup - it will not affect your score, but will help me in the future. It's ok to look up famous sums and inequalities that help you to solve the problem, but don't look up an entire solution.

The following problem is for fun. Do not turn it in, but make sure you can solve it.

1. A 3-SAT formula takes the "and" of a set of clauses, where each clause takes the "or" of a set of literals (each literal is a variable, or the negation of a variable). Show that for any 3-SAT formula in which every clause contains literals corresponding to 3 distinct variables, there is an assignment that satisfies at least $7 / 8$ of the clauses.

The following problems are to be turned in. TURN YOUR SOLUTION IN TO EACH PROBLEM ON A SEPARATE PIECE OF PAPER WITH YOUR NAME ON EACH ONE.

1. You are given $n \times n$ matrices A, B, C whose elements are from $\mathcal{Z}_{2}($ integers mod 2$)$. Show a (randomized) algorithm running in $O\left(n^{2}\right)$ time which verifies $A \cdot B=C$. The algorithm should always output "pass" if $A \cdot B=C$ and should output "fail" with probability at least $3 / 4$ if $A \cdot B \neq C$. Assume the field operations,$+ \times,-$ can be done in $O(1)$ steps.
2. You are given an approximation scheme \mathcal{A} for f such that $\operatorname{Pr}\left[\frac{f(x)}{1+\epsilon} \leq \mathcal{A}(x) \leq f(x)(1+\epsilon)\right] \geq$ $3 / 4$, and \mathcal{A} runs in time polynomial in $1 / \epsilon,|x|$. Construct an approximation scheme \mathcal{B} for f such that $\operatorname{Pr}\left[\frac{f(x)}{1+\epsilon} \leq \mathcal{B}(x) \leq f(x)(1+\epsilon)\right] \geq 1-\delta$, and \mathcal{B} runs in time polynomial in $\frac{1}{\epsilon},|x|, \log \frac{1}{\delta}$.
3. Denote the complete graph on n nodes by K_{n}. Let $R(t)$ be the minimal n such that for any two-coloring of the edges of K_{n}, there is a subset of the vertices of K_{n}, of size t, such that all edges between vertices in this subset are the same color.
Show that if $\binom{m}{t} 2^{1-\binom{t}{2}}<1$ then $R(t)>m$. (i.e., show that if $\binom{m}{t} 2^{1-\binom{t}{2}}<1$, then there is a coloring such that there is no subset of vertices of size t such that the edges joining these vertices are all one color).
4. Given a boolean function $f(\cdot)$ on boolean inputs, a sequence $C=C_{1}, C_{2}, \ldots$ of circuits is a circuit family for $f(\cdot)$ if C_{n} has n inputs and computes $f\left(x_{1}, \ldots, x_{n}\right)$ at its output for all n bit inputs $\left(x_{1}, \ldots, x_{n}\right)$. The family C is said to be polynomial-sized if the size of C_{n} is bounded above by $p(n)$ for every n, where $p(\cdot)$ is a polynomial. A randomized circuit family for $f(\cdot)$ is a circuit family for $f(\cdot)$ that, in addition to the n inputs x_{1}, \ldots, x_{n}, takes m inputs r_{1}, \ldots, r_{m}, each of which is equiprobably and independently 0 or 1 . In addition, for every n, circuit C_{n} must satisfy
(a) if $f\left(x_{1}, \ldots, x_{n}\right)=0$ then output 0 regardless of the values of the random inputs r_{1}, \ldots, r_{m}.
(b) if $f\left(x_{1}, \ldots, x_{n}\right)=1$ then output 1 with probability $\geq 1 / 2$.

Show: If a boolean function has a randomized polynomial sized circuit family, then it has a deterministic polynomial sized circuit family.
5. (a) Prove that for every δ and for every function Ext : $\{0,1\}^{n} \rightarrow\{0,1\}$, there is an SVsource X with parameter δ such that $\operatorname{Pr}[\operatorname{Ext}(X)=1] \leq \delta$ or $\operatorname{Pr}[\operatorname{Ext}(X)=1] \geq 1-\delta$.
(b) Prove that for any n and any $k<n$ and any flat k-source $X,{ }^{1}$ if an extractor Ext : $\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ with $m=k-2 \log \frac{1}{\epsilon}-O(1)$ is chosen at random from the functions mapping $\{0,1\}^{n}$ to $\{0,1\}^{m}$, then with probability at least $1-2^{-\Omega\left(2^{k} \epsilon^{2}\right)}$, $\operatorname{Ext}(X)$ is ϵ-close to U_{m} (the uniform distribution on m bits) with respect to $L_{1^{-}}$ distance. (Note that this does not contradict what we said in class - that there is no extractor that works for all flat k-sources.)
Hint: It may help to use the statistical difference (also known as the variation distance) between two random variables X, Y, which is $\Delta(X, Y)=\max _{T \subseteq U} \mid \operatorname{Pr}[X \in$ $T]-\operatorname{Pr}[Y \in T] \mid$. It turns out that $\Delta(X, Y)=\frac{1}{2} \cdot|X-Y|_{1}$.

[^0]
[^0]: ${ }^{1}$ Recall that a flat k-source outputs a distribution that is uniform on a subset of size exactly 2^{k}

