1 The Boolean Function

$$
\begin{aligned}
& f:\{0,1\}^{n} \rightarrow\{0,1\} \\
& f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}
\end{aligned}
$$

Can be viewed as: a truth table, a circuit, a 2-coloring of the n-dimensional discrete cube, an indicator of a set $(f(x)=1 \Longleftrightarrow x \in S)$.

Some concepts that are studied: "simple" functions - k-juntas and dictatorships (only k inputs, respectively one input, affect the function's value); fairness (each input bit has the 'same' influence over the output) and noise-sensitivity (behavior under flipping of some input bits); symmetry (behavior under permutations of inputs).

1.1 Linear (homomorphic) functions

Our goal today: linearity testing (homomorphism testing): to decide whether a function f, given as a blackbox (oracle), is linear (homomorphic).

Definition 1 A function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is linear (homomorphic) if

$$
f(x)+f(y)=f(x+y)
$$

for every $x, y \in\{0,1\}^{n}$.
(The addition $x+y$ is addition modulo 2 in the vector space $\left(\mathbb{Z}_{2}\right)^{n}$; that is, $x+y=\left(x_{1}, \ldots, x_{n}\right)+$ $\left.\left(y_{1}, \ldots, y_{n}\right)=\left(x_{1} \oplus y_{1}, \ldots, x_{n} \oplus y_{n}\right).\right)$

Examples

- The constant function $f(x) \equiv 0$ is homomorphic $(f(x)+f(y)=0+0=0=f(x+y))$.
- The constant function $f(x) \equiv 1$ is not $(1+1 \neq 1)$.
- The projection function $f(x)=x_{i}$ (for some fixed i) is a homomorphism.
- As is the function $f(x)=\bigoplus_{i=1}^{n} x_{i}$.

Claim 2 A function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is homomorphic iff it is one of the functions $f_{S}(x)=\bigoplus_{i \in S} x_{i}$ $($ for $S \subset[n]$).

Sketch of Proof Every homomorphic function is uniquely determined by the values on the vectors $e_{i}=(0, \ldots, 0,1,0, \ldots, 0)$ (with 1 at the i th coordinate, $1 \leq i \leq n$). Since there are 2^{n} possible settings for the values $f\left(e_{i}\right)(1 \leq i \leq n)$, there are 2^{n} linear functions. It is easy to see that all functions f_{S} are linear, and there are $|\{S: S \subset[n]\}|=2^{n}$ of them.

Note If $S=\emptyset$ then $f_{S}(x) \equiv 1$, i.e., f_{\emptyset} is a constant function.

1.2 Testing for linearity

Given a function f as a blackbox, in order to check whether or not it is linear, we have to query it on every possible input. For example, the function given by $f(x)=1$ if $x=e_{17}$ and $f(x)=0$ otherwise is not homomorphic, but agrees with the zero homomorphism everywhere except at $x=e_{17}$.

Definition 3 A function f is ϵ-close to linear if there exists a linear function g that agrees with f on all but an ϵ-fraction of the domain; that is,

$$
\operatorname{Pr}_{x}[f(x)=g(x)]=\frac{|\{x: f(x)=g(x)\}|}{2^{n}} \geq 1-\epsilon .
$$

Otherwise, f is ϵ-far from linear.

1.2.1 Proposed tester

- Repeat $r=O\left(\frac{1}{\epsilon} \log \frac{1}{\delta^{*}}\right)$ times:
- Pick $x, y \in_{R}\{0,1\}^{n}$ independently and uniformly.
- If $f(x)+f(y) \neq f(x+y)$:
* Output fail and halt.
- Output pass.

1.2.2 Analysis

Claim $4 f$ is linear if and only if $\operatorname{Pr}[p a s s]=1$.
Claim 5 If $\operatorname{Pr}_{x, y}[f(x)+f(y) \neq f(x+y)] \geq \epsilon$ then $\operatorname{Pr}[$ fai $] \geq 1-\delta^{*}$.
Claim 6 If f is ϵ-close to linear, then the test fails with probability at most 3ϵ.
Proof Idea Let A_{x} denote the event $f(x) \neq g(x)$. Then $\operatorname{Pr}_{x}\left[A_{x}\right] \leq \epsilon$ and thus $\operatorname{Pr}[$ fail $] \leq \operatorname{Pr}_{x, y}\left[A_{x} \vee\right.$ $\left.A_{y} \vee A_{x+y}\right] \leq 3 \epsilon$ by union bound.

Plan By claim 4, the test fails with probabiliy zero iff the distance of f from linear is zero. By claim 6, a similar relation also holds - in one direction - if we say 'small' instead of 'zero'. The remainder of this lecture shows the converse of claim 6 .

1.3 Notational switch

We now consider boolean functions as $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ rather than $f:\{0,1\}^{n} \rightarrow\{0,1\}$: we map $0 \mapsto+1$ and $1 \mapsto-1$, and write the operation as multiplication $\left(x \cdot y=\left(x_{1} y_{1}, \ldots, x_{n} y_{n}\right)\right.$ for $\left.x, y \in\{ \pm 1\}^{n}\right)$ rather than addition $\left(x+y=\left(x_{1} \oplus y_{1}, \ldots, x_{n} \oplus y_{n}\right)\right.$ for $\left.x, y \in\{0,1\}^{n}\right)$. (In other words, we switch our representation from the group \mathbb{Z}_{2} of integers modulo 2 to the group μ_{2} of square roots of unity.)

Example The homomorphic functions are now written as $f_{S}(x)=\prod_{i \in S} x_{i}$. The rejection condition of the proposed linearity tester is $f(x) \cdot f(y) \neq f(x \cdot y)$, where $x \cdot y$ is as defined in the previous paragraph (and not an inner product).

1.4 Rejection probability

It will be more convenient to represent the rejection condition of the proposed tester in terms of equality rather than inequality. We have the equivalence:

$$
f(x) f(y) \neq f(x y) \Longleftrightarrow(f(x) f(y)) f(x y)=-1
$$

which suggests to consider the following indicator:

$$
\frac{1-f(x) f(y) f(x y)}{2}= \begin{cases}0, & \text { if the test accepts } \\ 1, & \text { if the test rejects }\end{cases}
$$

We also define

$$
\delta=\operatorname{Exp}_{x, y}\left[\frac{1-f(x) f(y) f(x y)}{2}\right]
$$

as the rejection probability of one loop-iteration of the proposed tester. This gives the acceptance probability of one loop-iteration of that tester as:

$$
1-\delta=\operatorname{Exp}_{x, y}\left[\frac{1+f(x) f(y) f(x y)}{2}\right]
$$

2 Basics of Fourier analysis of parity functions

$\mathcal{G}=\left\{g:\{ \pm 1\}^{n} \rightarrow \mathbb{R}\right\}$ is a 2^{n}-dimensional vector space (over the field \mathbb{R}, i.e., linear combinations are to be taken with real coefficients). This space is equipped with the inner product

$$
\langle f, g\rangle=\frac{1}{2^{n}} \sum_{x \in\{ \pm 1\}^{n}} f(x) g(x)
$$

2.1 Looking for a basis

We look for a convenient basis of \mathcal{G}.

- The first idea is the indicator functions: the functions e_{a} (for $a \in\{ \pm 1\}^{n}$) given by $e_{a}(x)=1$ if $a=x$ and 0 otherwise.
It is easy to see that $\left\{e_{a}: a \in\{ \pm 1\}^{n}\right\}$ is a basis, and that $g=\sum_{a} g(a) \cdot e_{a}$ (i.e., $g(x)=\sum_{a} g(a)$. $\left.e_{a}(x)\right)$ for any function g.
- However, the basis of character functions $\chi_{S}(x)=\prod_{i \in S} x_{i}$ will be more convenient. (These are the functions we used to call f_{S}.)

Lemma $7\left\{\chi_{S}: S \subset[n]\right\}$ is an orthonormal basis.
Proof Let $S \neq T$ be two distinct subsets of [n], and let $j \in S \triangle T=\{x:(x \in S) \neq(x \in T)\}$. Denote " x with the j th bit flipped" by ' $x^{\oplus j}$ '. Then

$$
\left\langle\chi_{S}, \chi_{S}\right\rangle=\frac{1}{2^{n}} \sum_{x} \underbrace{\chi_{S}(x)^{2}}_{=1}=1
$$

and

$$
\begin{aligned}
\left\langle\chi_{S}, \chi_{T}\right\rangle & =\frac{1}{2^{n}} \sum_{x} \chi_{S}(x) \chi_{T}(x)=\frac{1}{2^{n}} \sum_{x}\left(\prod_{i \in S} x_{j} \cdot \prod_{j \in T} x_{j}\right) \\
& =\frac{1}{2^{n}} \sum_{x} \prod_{i \in S \triangle T} x_{i} \quad \text { (because }\left\{x_{i}: i \in S \cap T\right\} \text { cancel out) } \\
& =\frac{1}{2^{n}} \sum_{\left\{x, x^{\oplus j}\right\}}\left(\prod_{i \in S \triangle T} x_{i}+\prod_{i \in S \triangle T}\left(x^{\oplus j}\right)_{i}\right) \\
& =\frac{1}{2^{n}} \sum_{\left\{x, x^{\oplus j}\right\}}\left(x_{j} \cdot \prod_{j \neq i \in S \triangle T} x_{i}+\overline{x_{j}} \cdot \prod_{j \neq i \in S \triangle T}\left(x^{\oplus j}\right)_{i}\right) \\
& =\frac{1}{2^{n}} \sum_{\left\{x, x^{\oplus j}\right\}}\left(x_{j} \cdot \prod_{j \neq i \in S \triangle T} x_{i}+\overline{x_{j}} \cdot \prod_{j \neq i \in S \triangle T} x_{i}\right) \\
& =\frac{1}{2^{n}} \sum_{\left\{x, x^{\oplus j}\right\}}\left(x_{j}+\overline{x_{j}}\right)\left(\prod_{i \in S \triangle T, i \neq j} x_{i}\right)=\frac{1}{2^{n}} \sum 0=0 .
\end{aligned}
$$

Remark The technique of separating out x_{j} and its complement is an example of a pairing argument. It considers together all pairs of words that differ only on a specific coordinate; for instance, $(+1,+1,-1,+1)$ with $(+1,+1,+1,+1),(+1,+1,-1,-1)$ with $(+1,+1,+1,-1),(-1,-1,-1,+1)$ with $(-1,-1,+1,+1)$, etc.

Corollary 8 We can write every function f as $f=\sum_{S \subset[n]} \hat{f}(S) \chi_{S}$, where $\hat{f}(S)=\left\langle f, \chi_{S}\right\rangle$.
For example, if $f: x \mapsto x_{i}$ is the projection function, we have that $f=\chi_{i}$, thus the Fourier coefficients of f are $\hat{f}(S)=\left\langle\chi_{i}, \chi_{S}\right\rangle$ which is equal to 1 if $S=\{i\}$ and 0 otherwise. Similarly, if $f: x \mapsto 1$ is the constant function, then $f=\chi_{\emptyset}$ and $\hat{f}(S)$ will be equal to 1 if $S=\emptyset$ and 0 otherwise.

2.2 Some useful facts about the Fourier Transform

Lemma $9 \chi_{S} \cdot \chi_{T}=\chi_{S \Delta T}$

Lemma 10 Fourier Coefficient of any parity function

$$
f(x)=\chi_{S}(x) \Leftrightarrow \forall Z \subseteq[n], \quad \hat{f}(Z)= \begin{cases}1 & \text { when } S=Z \\ 0 & \text { Otherwise }\end{cases}
$$

Lemma 11 Agreement with linear functions vs max Fourier coefficient

$$
\hat{f}(S)=1-2 \operatorname{Pr}\left[f(x) \neq \chi_{S}(x)\right] \Leftrightarrow \operatorname{DIST}\left(f, \chi_{S}\right)=\frac{1-\hat{f}(S)}{2}
$$

or equivalently

$$
\hat{f}(S)=-1+2 \operatorname{Pr}\left[f(x) \neq \chi_{S}(x)\right] \Leftrightarrow \operatorname{DIST}\left(f, \chi_{S}\right)=\frac{1-\hat{f}(S)}{2}
$$

Proof

Its enough to prove that

$$
\operatorname{DIST}\left(f, \chi_{S}\right)=\operatorname{Pr}_{x \in\{ \pm 1\}^{n}}\left[f(x)-\chi_{S}(x)\right]
$$

The proof of this fact proceeds as follows:

$$
\begin{align*}
\hat{f}(S) & =\frac{1}{2^{n}} \sum_{x} f(x) \chi_{S}(x) \\
& =\frac{1}{2^{n}}\left[\sum_{x, f(x)=\chi_{S}(x)} 1+\sum_{x, f(x) \neq \chi_{S}(x)}-1\right] \tag{1}\\
& =\left(1-\operatorname{DIST}\left(f, \chi_{S}\right)\right) \cdot 1+\operatorname{DIST}\left(f, \chi_{S}\right) \cdot(-1) \\
& =1-2 \operatorname{DIST}\left(f, \chi_{S}\right)
\end{align*}
$$

Lemma 12 If $S \neq T$ then $\operatorname{DIST}\left(\chi_{S}, \chi_{T}\right)=\frac{1}{2}$.
Proof Let $f=\chi_{T}$. Then

$$
\begin{align*}
\hat{f}(S) & =0 \quad(\text { by lemma } 10) \\
& =1-2 \operatorname{DIST}\left(f, \chi_{S}\right) \quad(\text { by lemma 11) } \tag{2}\\
& \Rightarrow \operatorname{DIST}\left(f, \chi_{S}\right)=\frac{1}{2} \\
& \Rightarrow \operatorname{DIST}\left(\chi_{T}, \chi_{S}\right)=\frac{1}{2}
\end{align*}
$$

A very important theorem in Fourier Analysis is the following:
Theorem 13 (Plancherel's theorem) Let $f, g:\{ \pm 1\} \rightarrow \mathbb{R}$. Then

$$
\langle f, g\rangle=\operatorname{Exp}_{x \in\{ \pm 1\}^{n}}[f(x) g(x)]=\sum_{S \subseteq[n]} \hat{f}(S) \hat{g}(S)
$$

Proof

$$
\begin{aligned}
\langle f, g\rangle & =\left\langle\sum_{S} \hat{f}(S) \chi_{S}, \sum_{T} \hat{g}(T) \chi_{T}\right\rangle \\
& =\sum_{S} \sum_{T} \hat{f}(S) \hat{g}(T)\left\langle\chi_{S}, \chi_{T}\right\rangle \quad \text { by bilinearity of }\langle,\rangle \\
& \left.=\sum_{S} \hat{f}(S) \hat{g}(S) \quad \text { (because }\left\langle\chi_{S}, \chi_{T}\right\rangle=1 \text { if } S=T \text { and } 0 \text { if } S \neq T\right)
\end{aligned}
$$

We call special attention to the following corollary of Plancherel's theorem:

Corollary 14 (Parseval's Theorem) If $f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$ then $\langle f, f\rangle=\operatorname{Exp}\left[f(x)^{2}\right]=\sum_{S} \hat{f}(S)^{2}$.
Which for boolean functions $f:\{0,1\}^{n} \rightarrow\{ \pm 1\}$ reduces to the next corollary, by observing that in this case $f(x)^{2}=1$ for every x.

Corollary 15 (Boolean Parseval's Theorem) If $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ then $\sum_{S} \hat{f}(S)^{2}=1$.
Lemma $16 \operatorname{Exp}[f]=\operatorname{Exp}[f(x) \cdot 1]=\hat{f}(\emptyset) \chi_{\emptyset}(\emptyset)=\hat{f}(\emptyset)$.
Lemma $17 \operatorname{Exp}\left[\chi_{S}(x)\right]= \begin{cases}1 & \text { if } S=\emptyset \\ 0 & \text { Otherwise }\end{cases}$

3 Linearity Testing

The goal of this section is to prove the converse of claim 6 , i.e, to show that if f is ϵ-far from linear, then the probability that the algorithm described in subsection 1.2 .1 finds two x, y for which $f(x+y) \neq$ $f(x)+f(y)$ is high. More precisely,

$$
\operatorname{Pr}[f(x) f(y) f(x \cdot y)=-1] \geq \epsilon
$$

Lemma 18 (Main Lemma)

$$
1-\delta=\operatorname{Pr}[f(x) f(y) f(x y)=1]=\frac{1}{2}+\frac{1}{2} \sum_{S \in[n]} \hat{f}(s)^{3}
$$

Proof

$$
1-\delta=\operatorname{Exp}_{x y}\left[\frac{1+f(x) f(y) f(x y)}{2}\right]=\frac{1}{2}+\frac{1}{2} \operatorname{Exp}_{x y}[f(x) f(y) f(x y)]
$$

and

$$
\begin{aligned}
\operatorname{Exp}_{x y}[f(x) f(y) f(x y)] & =\operatorname{Exp}_{x y}\left[\left(\sum_{S} \hat{f}(S) \chi_{S}(x)\right)\left(\sum_{T} \hat{f}(T) \chi_{T}(y)\right)\left(\sum_{U} \hat{f}(U) \chi_{T}(x y)\right)\right] \\
& =\operatorname{Exp}_{x y}\left[\sum_{S T U} \hat{f}(S) \hat{f}(T) \hat{f}(U) \chi_{S}(x) \chi_{T}(y) \chi_{U}(x y)\right] \\
& =\sum_{S T U} \hat{f}(S) \hat{f}(T) \hat{f}(U) \operatorname{Exp}\left[\chi_{S}(x) \chi_{T}(y) \chi_{U}(x y)\right] \\
& =\sum_{S=T=U} \hat{f}(S)^{3} .
\end{aligned}
$$

The last equality follows from the fact that
$\operatorname{Exp}_{x y}\left[\chi_{S}(x) \chi_{T}(y) \chi_{U}(x y)\right]=\operatorname{Exp}\left[\chi_{S}(x) \chi_{U}(x)\right] \cdot \operatorname{Exp}\left[\chi_{T}(y) \chi_{U}(y)\right]= \begin{cases}1 & \text { if } S=U \text { and } T=U \\ 0 & \text { otherwise }\end{cases}$

Now we are ready to prove the goal stated in the beginning of this section.
Proof Assume $\operatorname{Pr}[f(x) f(y) f(x y)=-1]<\epsilon$. Then we show that f is ϵ-close to linear.

$$
1-\epsilon=\operatorname{Pr}[f(x) f(y) f(x y)=1]=\frac{1}{2}+\frac{1}{2} \sum_{S \subseteq[n]} \hat{f}(S)^{3}
$$

then

$$
\begin{aligned}
1-2 \epsilon & \leq \sum_{S \subseteq[n]} \hat{f}(S)^{3} \\
& \leq \max _{S} \hat{f}(S) \sum_{S \subseteq[n]} \hat{f}(S)^{2} \\
& \leq \max _{S} \hat{f}(S)
\end{aligned}
$$

Now let T be such that $\hat{f}(T)=\max _{S} \hat{f}(S)$. Then $1-2 \epsilon \leq \hat{f}(T)$. By lemma $11 \operatorname{DIST}\left(f, \chi_{T}\right) \leq \epsilon$.

