Lecture 9

Lecturer: Ronitt Rubinfeld Scribe: Mateus de Oliveira Oliveira and Daniel Shahaf

1 The Boolean Function

$$f: \{0,1\}^n \to \{0,1\}$$
$$f: \{\pm 1\}^n \to \{\pm 1\}$$

Can be viewed as: a truth table, a circuit, a 2-coloring of the *n*-dimensional discrete cube, an indicator of a set $(f(x) = 1 \iff x \in S)$.

Some concepts that are studied: "simple" functions — k-juntas and dictatorships (only k inputs, respectively one input, affect the function's value); fairness (each input bit has the 'same' influence over the output) and noise-sensitivity (behavior under flipping of some input bits); symmetry (behavior under permutations of inputs).

1.1 Linear (homomorphic) functions

Our goal today: linearity testing (homomorphism testing): to decide whether a function f, given as a blackbox (oracle), is *linear* (homomorphic).

Definition 1 A function $f : \{0, 1\}^n \to \{0, 1\}$ is linear (homomorphic) if

$$f(x) + f(y) = f(x+y)$$

for every $x, y \in \{0, 1\}^n$.

(The addition x + y is addition modulo 2 in the vector space $(\mathbb{Z}_2)^n$; that is, $x + y = (x_1, \ldots, x_n) + (y_1, \ldots, y_n) = (x_1 \oplus y_1, \ldots, x_n \oplus y_n)$.)

Examples

- The constant function $f(x) \equiv 0$ is homomorphic (f(x) + f(y) = 0 + 0 = 0 = f(x + y)).
- The constant function $f(x) \equiv 1$ is not $(1 + 1 \neq 1)$.
- The projection function $f(x) = x_i$ (for some fixed *i*) is a homomorphism.
- As is the function $f(x) = \bigoplus_{i=1}^{n} x_i$.

Claim 2 A function $f : \{0,1\}^n \to \{0,1\}$ is homomorphic iff it is one of the functions $f_S(x) = \bigoplus_{i \in S} x_i$ (for $S \subset [n]$).

Sketch of Proof Every homomorphic function is uniquely determined by the values on the vectors $e_i = (0, \ldots, 0, 1, 0, \ldots, 0)$ (with 1 at the *i*th coordinate, $1 \le i \le n$). Since there are 2^n possible settings for the values $f(e_i)$ $(1 \le i \le n)$, there are 2^n linear functions. It is easy to see that all functions f_S are linear, and there are $|\{S : S \subset [n]\}| = 2^n$ of them.

Note If $S = \emptyset$ then $f_S(x) \equiv 1$, i.e., f_{\emptyset} is a constant function.

1.2 Testing for linearity

Given a function f as a blackbox, in order to check whether or not it is linear, we have to query it on *every* possible input. For example, the function given by f(x) = 1 if $x = e_{17}$ and f(x) = 0 otherwise is not homomorphic, but agrees with the zero homomorphism everywhere except at $x = e_{17}$.

Definition 3 A function f is ϵ -close to linear if there exists a linear function g that agrees with f on all but an ϵ -fraction of the domain; that is,

$$\Pr_{x}[f(x) = g(x)] = \frac{|\{x : f(x) = g(x)\}|}{2^{n}} \ge 1 - \epsilon.$$

Otherwise, f is ϵ -far from linear.

1.2.1 Proposed tester

- Repeat $r = O(\frac{1}{\epsilon} \log \frac{1}{\delta^*})$ times:
 - Pick $x, y \in_R \{0, 1\}^n$ independently and uniformly.
 - If $f(x) + f(y) \neq f(x+y)$:
 - * Output fail and halt.
- Output pass.

1.2.2 Analysis

Claim 4 f is linear if and only if Pr[pass] = 1.

Claim 5 If $\Pr_{x,y}[f(x) + f(y) \neq f(x+y)] \ge \epsilon$ then $\Pr[fail] \ge 1 - \delta^*$.

Claim 6 If f is ϵ -close to linear, then the test fails with probability at most 3ϵ .

Proof Idea Let A_x denote the event $f(x) \neq g(x)$. Then $\Pr_x[A_x] \leq \epsilon$ and thus $\Pr[\mathsf{fail}] \leq \Pr_{x,y}[A_x \lor A_y \lor A_{x+y}] \leq 3\epsilon$ by union bound.

Plan By claim 4, the test fails with probability zero iff the distance of f from linear is zero. By claim 6, a similar relation also holds — in one direction — if we say 'small' instead of 'zero'. The remainder of this lecture shows the converse of claim 6.

1.3 Notational switch

We now consider boolean functions as $f : \{\pm 1\}^n \to \{\pm 1\}$ rather than $f : \{0,1\}^n \to \{0,1\}$: we map $0 \mapsto +1$ and $1 \mapsto -1$, and write the operation as multiplication $(x \cdot y = (x_1y_1, \ldots, x_ny_n)$ for $x, y \in \{\pm 1\}^n$) rather than addition $(x + y = (x_1 \oplus y_1, \ldots, x_n \oplus y_n)$ for $x, y \in \{0, 1\}^n$). (In other words, we switch our representation from the group \mathbb{Z}_2 of integers modulo 2 to the group μ_2 of square roots of unity.)

Example The homomorphic functions are now written as $f_S(x) = \prod_{i \in S} x_i$. The rejection condition of the proposed linearity tester is $f(x) \cdot f(y) \neq f(x \cdot y)$, where $x \cdot y$ is as defined in the previous paragraph (and *not* an inner product).

1.4 Rejection probability

It will be more convenient to represent the rejection condition of the proposed tester in terms of equality rather than inequality. We have the equivalence:

$$f(x)f(y) \neq f(xy) \iff (f(x)f(y))f(xy) = -1$$

which suggests to consider the following indicator:

$$\frac{1 - f(x)f(y)f(xy)}{2} = \begin{cases} 0, & \text{if the test accepts;} \\ 1, & \text{if the test rejects.} \end{cases}$$

We also define

$$\delta = \operatorname{Exp}_{x,y}\left[\frac{1 - f(x)f(y)f(xy)}{2}\right]$$

as the *rejection probability* of one loop-iteration of the proposed tester. This gives the *acceptance probability* of one loop-iteration of that tester as:

$$1 - \delta = \operatorname{Exp}_{x,y}\left[\frac{1 + f(x)f(y)f(xy)}{2}\right].$$

2 Basics of Fourier analysis of parity functions

 $\mathcal{G} = \{g : \{\pm 1\}^n \to \mathbb{R}\}$ is a 2ⁿ-dimensional vector space (over the field \mathbb{R} , i.e., linear combinations are to be taken with real coefficients). This space is equipped with the inner product

$$\langle f,g\rangle = \frac{1}{2^n} \sum_{x \in \{\pm 1\}^n} f(x)g(x).$$

2.1 Looking for a basis

We look for a convenient basis of \mathcal{G} .

• The first idea is the *indicator functions*: the functions e_a (for $a \in \{\pm 1\}^n$) given by $e_a(x) = 1$ if a = x and 0 otherwise.

It is easy to see that $\{e_a : a \in \{\pm 1\}^n\}$ is a basis, and that $g = \sum_a g(a) \cdot e_a$ (i.e., $g(x) = \sum_a g(a) \cdot e_a(x)$) for any function g.

• However, the basis of *character functions* $\chi_S(x) = \prod_{i \in S} x_i$ will be more convenient. (These are the functions we used to call f_S .)

Lemma 7 $\{\chi_S : S \subset [n]\}$ is an orthonormal basis.

Proof Let $S \neq T$ be two distinct subsets of [n], and let $j \in S \triangle T = \{x : (x \in S) \neq (x \in T)\}$. Denote "x with the *j*th bit flipped" by ' $x^{\oplus j}$ '. Then

$$\langle \chi_S, \chi_S \rangle = \frac{1}{2^n} \sum_x \underbrace{\chi_S(x)^2}_{=1} = 1$$

and

$$\begin{split} \langle \chi_S, \chi_T \rangle &= \frac{1}{2^n} \sum_x \chi_S(x) \chi_T(x) = \frac{1}{2^n} \sum_x \left(\prod_{i \in S} x_j \cdot \prod_{j \in T} x_j \right) \\ &= \frac{1}{2^n} \sum_x \prod_{i \in S \triangle T} x_i \quad \text{(because } \{x_i : i \in S \cap T\} \text{ cancel out)} \\ &= \frac{1}{2^n} \sum_{\{x, x^{\oplus j}\}} \left(\prod_{i \in S \triangle T} x_i + \prod_{i \in S \triangle T} (x^{\oplus j})_i \right) \\ &= \frac{1}{2^n} \sum_{\{x, x^{\oplus j}\}} \left(x_j \cdot \prod_{j \neq i \in S \triangle T} x_i + \overline{x_j} \cdot \prod_{j \neq i \in S \triangle T} (x^{\oplus j})_i \right) \\ &= \frac{1}{2^n} \sum_{\{x, x^{\oplus j}\}} \left(x_j \cdot \prod_{j \neq i \in S \triangle T} x_i + \overline{x_j} \cdot \prod_{j \neq i \in S \triangle T} x_i \right) \\ &= \frac{1}{2^n} \sum_{\{x, x^{\oplus j}\}} \left(x_j \cdot \prod_{j \neq i \in S \triangle T} x_i + \overline{x_j} \cdot \prod_{j \neq i \in S \triangle T} x_i \right) \\ &= \frac{1}{2^n} \sum_{\{x, x^{\oplus j}\}} \left(x_j + \overline{x_j} \right) \left(\prod_{i \in S \triangle T, i \neq j} x_i \right) = \frac{1}{2^n} \sum_{0 \in S \triangle T} 0 = 0. \end{split}$$

Remark The technique of separating out x_j and its complement is an example of a *pairing argument*. It considers together all pairs of words that differ only on a specific coordinate; for instance, (+1, +1, -1, +1) with (+1, +1, +1, +1), (+1, +1, -1, -1) with (+1, +1, +1, -1), (-1, -1, -1, +1) with (-1, -1, +1, +1), etc.

Corollary 8 We can write every function f as $f = \sum_{S \subset [n]} \hat{f}(S)\chi_S$, where $\hat{f}(S) = \langle f, \chi_S \rangle$.

For example, if $f: x \mapsto x_i$ is the projection function, we have that $f = \chi_i$, thus the Fourier coefficients of f are $\hat{f}(S) = \langle \chi_i, \chi_S \rangle$ which is equal to 1 if $S = \{i\}$ and 0 otherwise. Similarly, if $f: x \mapsto 1$ is the constant function, then $f = \chi_{\emptyset}$ and $\hat{f}(S)$ will be equal to 1 if $S = \emptyset$ and 0 otherwise.

2.2 Some useful facts about the Fourier Transform

Lemma 9 $\chi_S \cdot \chi_T = \chi_{S\Delta T}$

Lemma 10 Fourier Coefficient of any parity function

$$f(x) = \chi_S(x) \Leftrightarrow \forall Z \subseteq [n], \ \hat{f}(Z) = \begin{cases} 1 & when \ S = Z \\ 0 & Otherwise \end{cases}$$

Lemma 11 Agreement with linear functions vs max Fourier coefficient

$$\hat{f}(S) = 1 - 2\Pr[f(x) \neq \chi_S(x)] \Leftrightarrow \text{DIST}(f, \chi_S) = \frac{1 - \hat{f}(S)}{2}$$

or equivalently

$$\hat{f}(S) = -1 + 2\Pr[f(x) \neq \chi_S(x)] \Leftrightarrow \text{DIST}(f, \chi_S) = \frac{1 - \hat{f}(S)}{2}$$

Proof

Its enough to prove that

$$\mathrm{DIST}(f,\chi_S) = \Pr_{x \in \{\pm 1\}^n} [f(x) - \chi_S(x)].$$

The proof of this fact proceeds as follows:

$$\hat{f}(S) = \frac{1}{2^n} \sum_x f(x) \chi_S(x)$$

$$= \frac{1}{2^n} \left[\sum_{x, f(x) = \chi_S(x)} 1 + \sum_{x, f(x) \neq \chi_S(x)} -1 \right]$$

$$= (1 - \text{DIST}(f, \chi_S)) \cdot 1 + \text{DIST}(f, \chi_S) \cdot (-1)$$

$$= 1 - 2 \text{DIST}(f, \chi_S)$$
(1)

Lemma 12 If $S \neq T$ then $\text{DIST}(\chi_S, \chi_T) = \frac{1}{2}$.

Proof Let $f = \chi_T$. Then

$$\hat{f}(S) = 0 \quad (\text{ by lemma 10})$$

$$= 1 - 2 \operatorname{DIST}(f, \chi_S) \quad (\text{by lemma 11})$$

$$\Rightarrow \quad \operatorname{DIST}(f, \chi_S) = \frac{1}{2}$$

$$\Rightarrow \quad \operatorname{DIST}(\chi_T, \chi_S) = \frac{1}{2}$$
(2)

A very important theorem in Fourier Analysis is the following:

Theorem 13 (Plancherel's theorem) Let $f, g : \{\pm 1\} \rightarrow \mathbb{R}$. Then

$$\langle f,g \rangle = \operatorname{Exp}_{x \in \{\pm 1\}^n}[f(x)g(x)] = \sum_{S \subseteq [n]} \widehat{f}(S)\widehat{g}(S).$$

Proof

$$\begin{split} \langle f,g\rangle &= \langle \sum_{S} \hat{f}(S)\chi_{S}, \sum_{T} \hat{g}(T)\chi_{T}\rangle \\ &= \sum_{S} \sum_{T} \hat{f}(S)\hat{g}(T)\langle\chi_{S},\chi_{T}\rangle \quad \text{by bilinearity of } \langle,\rangle \\ &= \sum_{S} \hat{f}(S)\hat{g}(S) \quad (\text{because } \langle\chi_{S},\chi_{T}\rangle = 1 \text{ if } S = T \text{ and } 0 \text{ if } S \neq T) \end{split}$$

We call special attention to the following corollary of Plancherel's theorem:

Corollary 14 (Parseval's Theorem) If $f: \{\pm 1\}^n \to \mathbb{R}$ then $\langle f, f \rangle = \operatorname{Exp}[f(x)^2] = \sum_S \hat{f}(S)^2$.

Which for boolean functions $f : \{0, 1\}^n \to \{\pm 1\}$ reduces to the next corollary, by observing that in this case $f(x)^2 = 1$ for every x.

Corollary 15 (Boolean Parseval's Theorem) If $f : \{\pm 1\}^n \to \{\pm 1\}$ then $\sum_S \hat{f}(S)^2 = 1$.

Lemma 16 $\operatorname{Exp}[f] = \operatorname{Exp}[f(x) \cdot 1] = \hat{f}(\emptyset)\chi_{\emptyset}(\emptyset) = \hat{f}(\emptyset).$

Lemma 17 $\operatorname{Exp}[\chi_S(x)] = \begin{cases} 1 & \text{if } S = \emptyset \\ 0 & Otherwise \end{cases}$

3 Linearity Testing

The goal of this section is to prove the converse of claim 6, i.e. to show that if f is ϵ -far from linear, then the probability that the algorithm described in subsection 1.2.1 finds two x, y for which $f(x+y) \neq f(x) + f(y)$ is high. More precisely,

$$\Pr[f(x)f(y)f(x \cdot y) = -1] \ge \epsilon$$

Lemma 18 (Main Lemma)

$$1 - \delta = \Pr[f(x)f(y)f(xy) = 1] = \frac{1}{2} + \frac{1}{2}\sum_{S \in [n]} \hat{f}(s)^3$$

Proof

$$1 - \delta = \operatorname{Exp}_{xy}\left[\frac{1 + f(x)f(y)f(xy)}{2}\right] = \frac{1}{2} + \frac{1}{2}\operatorname{Exp}_{xy}[f(x)f(y)f(xy)]$$

and

$$\begin{aligned} \operatorname{Exp}_{xy}[f(x)f(y)f(xy)] &= \operatorname{Exp}_{xy}[(\sum_{S}\hat{f}(S)\chi_{S}(x))(\sum_{T}\hat{f}(T)\chi_{T}(y))(\sum_{U}\hat{f}(U)\chi_{T}(xy))] \\ &= \operatorname{Exp}_{xy}[\sum_{STU}\hat{f}(S)\hat{f}(T)\hat{f}(U)\chi_{S}(x)\chi_{T}(y)\chi_{U}(xy)] \\ &= \sum_{STU}\hat{f}(S)\hat{f}(T)\hat{f}(U)\operatorname{Exp}[\chi_{S}(x)\chi_{T}(y)\chi_{U}(xy)] \\ &= \sum_{S=T=U}\hat{f}(S)^{3}. \end{aligned}$$

The last equality follows from the fact that

 $\operatorname{Exp}_{xy}[\chi_S(x)\chi_T(y)\chi_U(xy)] = \operatorname{Exp}[\chi_S(x)\chi_U(x)] \cdot \operatorname{Exp}[\chi_T(y)\chi_U(y)] = \begin{cases} 1 & \text{if } S = U \text{ and } T = U \\ 0 & \text{otherwise} \end{cases}$

Now we are ready to prove the goal stated in the beginning of this section. **Proof** Assume $\Pr[f(x)f(y)f(xy) = -1] < \epsilon$. Then we show that f is ϵ -close to linear.

$$1 - \epsilon = \Pr[f(x)f(y)f(xy) = 1] = \frac{1}{2} + \frac{1}{2}\sum_{S \subseteq [n]} \hat{f}(S)^3$$

then

$$1 - 2\epsilon \leq \sum_{S \subseteq [n]} \hat{f}(S)^3$$
$$\leq \max_S \hat{f}(S) \sum_{S \subseteq [n]} \hat{f}(S)^2$$
$$\leq \max_S \hat{f}(S)$$

Now let T be such that $\hat{f}(T) = \max_S \hat{f}(S)$. Then $1 - 2\epsilon \leq \hat{f}(T)$. By lemma 11 $\text{DIST}(f, \chi_T) \leq \epsilon$.