
0368.4163 Randomness and Computation May 20, 2009

Lecture 9
Lecturer: Ronitt Rubinfeld Scribe: Mateus de Oliveira Oliveira and Daniel Shahaf

1 The Boolean Function

f : { 0, 1 }n → { 0, 1 }

f : {±1 }n → {±1 }

Can be viewed as: a truth table, a circuit, a 2-coloring of the n-dimensional discrete cube, an indicator
of a set (f(x) = 1 ⇐⇒ x ∈ S).

Some concepts that are studied: “simple” functions — k-juntas and dictatorships (only k inputs,
respectively one input, affect the function’s value); fairness (each input bit has the ‘same’ influence over
the output) and noise-sensitivity (behavior under flipping of some input bits); symmetry (behavior under
permutations of inputs).

1.1 Linear (homomorphic) functions

Our goal today: linearity testing (homomorphism testing): to decide whether a function f , given as a
blackbox (oracle), is linear (homomorphic).

Definition 1 A function f : { 0, 1 }n → { 0, 1 } is linear ( homomorphic) if

f(x) + f(y) = f(x+ y)

for every x, y ∈ { 0, 1 }n.

(The addition x + y is addition modulo 2 in the vector space (Z2)n; that is, x + y = (x1, . . . , xn) +
(y1, . . . , yn) = (x1 ⊕ y1, . . . , xn ⊕ yn).)

Examples

• The constant function f(x) ≡ 0 is homomorphic (f(x) + f(y) = 0 + 0 = 0 = f(x+ y)).

• The constant function f(x) ≡ 1 is not (1 + 1 6= 1).

• The projection function f(x) = xi (for some fixed i) is a homomorphism.

• As is the function f(x) =
⊕n

i=1 xi.

Claim 2 A function f : { 0, 1 }n → { 0, 1 } is homomorphic iff it is one of the functions fS(x) =
⊕

i∈S xi
(for S ⊂ [n]).

Sketch of Proof Every homomorphic function is uniquely determined by the values on the vectors
ei = (0, . . . , 0, 1, 0, . . . , 0) (with 1 at the ith coordinate, 1 ≤ i ≤ n). Since there are 2n possible settings
for the values f(ei) (1 ≤ i ≤ n), there are 2n linear functions. It is easy to see that all functions fS are
linear, and there are |{S : S ⊂ [n]}| = 2n of them.

Note If S = ∅ then fS(x) ≡ 1, i.e., f∅ is a constant function.
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1.2 Testing for linearity

Given a function f as a blackbox, in order to check whether or not it is linear, we have to query it on
every possible input. For example, the function given by f(x) = 1 if x = e17 and f(x) = 0 otherwise is
not homomorphic, but agrees with the zero homomorphism everywhere except at x = e17.

Definition 3 A function f is ε-close to linear if there exists a linear function g that agrees with f on
all but an ε-fraction of the domain; that is,

Pr
x

[f(x) = g(x)] =
|{x : f(x) = g(x)}|

2n
≥ 1− ε.

Otherwise, f is ε-far from linear.

1.2.1 Proposed tester

• Repeat r = O( 1
ε log 1

δ∗ ) times:

– Pick x, y ∈R { 0, 1 }n independently and uniformly.

– If f(x) + f(y) 6= f(x+ y):

∗ Output fail and halt.

• Output pass.

1.2.2 Analysis

Claim 4 f is linear if and only if Pr[pass] = 1.

Claim 5 If Prx,y[f(x) + f(y) 6= f(x+ y)] ≥ ε then Pr[fail] ≥ 1− δ∗.

Claim 6 If f is ε-close to linear, then the test fails with probability at most 3ε.

Proof Idea Let Ax denote the event f(x) 6= g(x). Then Prx[Ax] ≤ ε and thus Pr[fail] ≤ Prx,y[Ax ∨
Ay ∨Ax+y] ≤ 3ε by union bound.

Plan By claim 4, the test fails with probabiliy zero iff the distance of f from linear is zero. By claim 6,
a similar relation also holds — in one direction — if we say ‘small’ instead of ‘zero’. The remainder of
this lecture shows the converse of claim 6.

1.3 Notational switch

We now consider boolean functions as f : {±1 }n → {±1 } rather than f : { 0, 1 }n → { 0, 1 }: we
map 0 7→ +1 and 1 7→ −1, and write the operation as multiplication (x · y = (x1y1, . . . , xnyn) for
x, y ∈ {±1 }n) rather than addition (x+ y = (x1⊕ y1, . . . , xn⊕ yn) for x, y ∈ { 0, 1 }n). (In other words,
we switch our representation from the group Z2 of integers modulo 2 to the group µ2 of square roots of
unity.)

Example The homomorphic functions are now written as fS(x) =
∏
i∈S xi. The rejection condition of

the proposed linearity tester is f(x) · f(y) 6= f(x · y), where x · y is as defined in the previous paragraph
(and not an inner product).
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1.4 Rejection probability

It will be more convenient to represent the rejection condition of the proposed tester in terms of equality
rather than inequality. We have the equivalence:

f(x)f(y) 6= f(xy) ⇐⇒
(
f(x)f(y)

)
f(xy) = −1

which suggests to consider the following indicator:

1− f(x)f(y)f(xy)
2

=

{
0, if the test accepts;
1, if the test rejects.

We also define

δ = Expx,y

[
1− f(x)f(y)f(xy)

2

]
as the rejection probability of one loop-iteration of the proposed tester. This gives the acceptance prob-
ability of one loop-iteration of that tester as:

1− δ = Expx,y

[
1 + f(x)f(y)f(xy)

2

]
.

2 Basics of Fourier analysis of parity functions

G = {g : {±1 }n → R} is a 2n-dimensional vector space (over the field R, i.e., linear combinations are to
be taken with real coefficients). This space is equipped with the inner product

〈f, g〉 =
1
2n

∑
x∈{±1 }n

f(x)g(x).

2.1 Looking for a basis

We look for a convenient basis of G.

• The first idea is the indicator functions: the functions ea (for a ∈ {±1 }n) given by ea(x) = 1 if
a = x and 0 otherwise.

It is easy to see that {ea : a ∈ {±1 }n} is a basis, and that g =
∑
a g(a) · ea (i.e., g(x) =

∑
a g(a) ·

ea(x)) for any function g.

• However, the basis of character functions χS(x) =
∏
i∈S xi will be more convenient. (These are

the functions we used to call fS .)
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Lemma 7 {χS : S ⊂ [n]} is an orthonormal basis.

Proof Let S 6= T be two distinct subsets of [n], and let j ∈ S4 T = {x : (x ∈ S) 6= (x ∈ T )}. Denote
“x with the jth bit flipped” by ‘x⊕j ’. Then

〈χS , χS〉 =
1
2n
∑
x

χS(x)2︸ ︷︷ ︸
=1

= 1

and

〈χS , χT 〉 =
1
2n
∑
x

χS(x)χT (x) =
1
2n
∑
x

(∏
i∈S

xj ·
∏
j∈T

xj

)
=

1
2n
∑
x

∏
i∈S4T

xi (because {xi : i ∈ S ∩ T} cancel out)

=
1
2n

∑
{x,x⊕j}

( ∏
i∈S4T

xi +
∏

i∈S4T

(x⊕j)i

)

=
1
2n

∑
{x,x⊕j}

(
xj ·

∏
j 6=i∈S4T

xi + xj ·
∏

j 6=i∈S4T

(x⊕j)i

)

=
1
2n

∑
{x,x⊕j}

(
xj ·

∏
j 6=i∈S4T

xi + xj ·
∏

j 6=i∈S4T

xi

)

=
1
2n

∑
{x,x⊕j}

(xj + xj)
( ∏
i∈S4T,i 6=j

xi

)
=

1
2n
∑

0 = 0.

Remark The technique of separating out xj and its complement is an example of a pairing argu-
ment. It considers together all pairs of words that differ only on a specific coordinate; for instance,
(+1,+1,−1,+1) with (+1,+1,+1,+1), (+1,+1,−1,−1) with (+1,+1,+1,−1), (−1,−1,−1,+1) with
(−1,−1,+1,+1), etc.

Corollary 8 We can write every function f as f =
∑
S⊂[n] f̂(S)χS, where f̂(S) = 〈f, χS〉.

For example, if f : x 7→ xi is the projection function, we have that f = χi, thus the Fourier coefficients
of f are f̂(S) = 〈χi, χS〉 which is equal to 1 if S = {i} and 0 otherwise. Similarly, if f : x 7→ 1 is the
constant function, then f = χ∅ and f̂(S) will be equal to 1 if S = ∅ and 0 otherwise.

2.2 Some useful facts about the Fourier Transform

Lemma 9 χS · χT = χS∆T

Lemma 10 Fourier Coefficient of any parity function

f(x) = χS(x)⇔ ∀Z ⊆ [n], f̂(Z) =
{

1 when S = Z
0 Otherwise

Lemma 11 Agreement with linear functions vs max Fourier coefficient

f̂(S) = 1− 2 Pr[f(x) 6= χS(x)]⇔ DIST(f, χS) =
1− f̂(S)

2
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or equivalently

f̂(S) = −1 + 2 Pr[f(x) 6= χS(x)]⇔ DIST(f, χS) =
1− f̂(S)

2

Proof
Its enough to prove that

DIST(f, χS) = Pr
x∈{±1}n

[f(x)− χS(x)].

The proof of this fact proceeds as follows:

f̂(S) = 1
2n

∑
x f(x)χS(x)

= 1
2n

[∑
x,f(x)=χS(x) 1 +

∑
x,f(x)6=χS(x)−1

]
= (1−DIST(f, χS)) · 1 + DIST(f, χS) · (−1)

= 1− 2 DIST(f, χS)

(1)

Lemma 12 If S 6= T then DIST(χS , χT ) = 1
2 .

Proof Let f = χT . Then

f̂(S) = 0 ( by lemma 10)

= 1− 2 DIST(f, χS) (by lemma 11)

⇒ DIST(f, χS) = 1
2

⇒ DIST(χT , χS) = 1
2

(2)

A very important theorem in Fourier Analysis is the following:

Theorem 13 (Plancherel’s theorem) Let f, g : {±1} → R. Then

〈f, g〉 = Expx∈{±1}n [f(x)g(x)] =
∑
S⊆[n]

f̂(S)ĝ(S).

Proof
〈f, g〉 = 〈

∑
S f̂(S)χS ,

∑
T ĝ(T )χT 〉

=
∑
S

∑
T f̂(S)ĝ(T )〈χS , χT 〉 by bilinearity of 〈, 〉

=
∑
S f̂(S)ĝ(S) (because 〈χS , χT 〉 = 1 if S = T and 0 if S 6= T )

We call special attention to the following corollary of Plancherel’s theorem:
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Corollary 14 (Parseval’s Theorem) If f : {±1}n → R then 〈f, f〉 = Exp[f(x)2] =
∑
S f̂(S)2.

Which for boolean functions f : {0, 1}n → {±1} reduces to the next corollary, by observing that in
this case f(x)2 = 1 for every x.

Corollary 15 (Boolean Parseval’s Theorem) If f : {±1}n → {±1} then
∑
S f̂(S)2 = 1.

Lemma 16 Exp[f ] = Exp[f(x) · 1] = f̂(∅)χ∅(∅) = f̂(∅).

Lemma 17 Exp[χS(x)] =
{

1 if S = ∅
0 Otherwise

3 Linearity Testing

The goal of this section is to prove the converse of claim 6, i.e, to show that if f is ε-far from linear,
then the probability that the algorithm described in subsection 1.2.1 finds two x, y for which f(x+ y) 6=
f(x) + f(y) is high. More precisely,

Pr[f(x)f(y)f(x · y) = −1] ≥ ε

Lemma 18 (Main Lemma)

1− δ = Pr[f(x)f(y)f(xy) = 1] =
1
2

+
1
2

∑
S∈[n]

f̂(s)3

Proof

1− δ = Expxy

[
1 + f(x)f(y)f(xy)

2

]
=

1
2

+
1
2

Expxy[f(x)f(y)f(xy)]

and

Expxy[f(x)f(y)f(xy)] = Expxy[(
∑
S f̂(S)χS(x))(

∑
T f̂(T )χT (y))(

∑
U f̂(U)χT (xy))]

= Expxy[
∑
STU f̂(S)f̂(T )f̂(U)χS(x)χT (y)χU (xy)]

=
∑
STU f̂(S)f̂(T )f̂(U)Exp[χS(x)χT (y)χU (xy)]

=
∑
S=T=U f̂(S)3.

The last equality follows from the fact that

Expxy[χS(x)χT (y)χU (xy)] = Exp[χS(x)χU (x)] · Exp[χT (y)χU (y)] =
{

1 if S = U and T = U
0 otherwise

Now we are ready to prove the goal stated in the beginning of this section.
Proof Assume Pr[f(x)f(y)f(xy) = −1] < ε. Then we show that f is ε-close to linear.

1− ε = Pr[f(x)f(y)f(xy) = 1] =
1
2

+
1
2

∑
S⊆[n]

f̂(S)3

then
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1− 2ε ≤
∑
S⊆[n] f̂(S)3

≤ maxS f̂(S)
∑
S⊆[n] f̂(S)2

≤ maxS f̂(S)

Now let T be such that f̂(T ) = maxS f̂(S). Then 1− 2ε ≤ f̂(T ). By lemma 11 DIST(f, χT ) ≤ ε.
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