
0368.4163 Randomness and Computation March 11, 2009

Lecture 7
Lecturer: Ronitt Rubinfeld Scribe: Dror Marcus, Yaron Ziner

1 Lecture Outline

1.1 List Of Subjects

• Linear Algebra Review

• Mixing Times

• Mixing & Saving Random Bits

• Mixing & Uniform Generation Of Matching

1.2 General Plan

In the last lecture, the notion of stationary distribution was defined. This lecture will focus on analyzing
the time it takes to reach (or at least come fairly close to) such stationary distribution. We will refer
to the time taking us to reach the stationary distribution as the Mixing Time. To do so we will be us-
ing linear algebra, therefore, first we will refresh on some basic definitions and theorems of linear algebra.

We will also classify Markov Chains by the time it takes to reach their respective stationary distri-
butions. Markov Chains with fast mixing times (such as CLIQUE) will be classified as good while
Markov Chains with slow mixing time (such as PATH or LOLLIPOP) we be classified as bad.

Next, a new way for reducing random bits used in a randomized algorithm using random walks will
be described.

Getting to the end of the lecture we will begin the subject of uniform generation of matching in a
given graph using Markov Chains. We will do so by showing an algorithm for the construction of a good
Markov Chain Graph (i.e. with fast mixing times).

2 Linear Algebra Review

2.1 Basic Definitions And Theorems

Definition 1 v is an eigenvector of a matrix A with corresponding eigenvalue λ if Av = λv.

Definition 2 The L2 norm of vector v, marked as ‖v‖2, is ‖v‖2 =
√∑n

i=1 v
2
i

Definition 3 A set of vectors, v(1), v(2), ..., v(n) are orthonormal if ∀i, j ∈ [1, n]:

v(i) · v(j) =

{
1 if i = j (i.e. ‘normal’)
0 if i 6= j (i.e. ‘orthogonal’)

Theorem 4 (Unproven in this scribe) Given an n×n transition matrix P s.t. P is real and symmetrical,
there exists eigenvectors v(1), v(2), .., v(n) for which the following holds:

1. v(1), v(2), .., v(n) form an orthonormal basis.

2. v(1), v(2), .., v(n) have corresponding eigenvalues s.t. λ1 = 1, λ2, .., λn, s.t. |λ1| ≤ |λ2| ≤ .. ≤ |λn|.

1



3. v(1) = 1√
n

(1, 1, ..., 1).

Observation 5 If v(1), v(2), .., v(n) form an orthonormal basis, then any vector w is expressible as

w =
∑

αiv
(i)

also w’s L2 norm can be expressed as

‖w‖2 =
√

(
∑
i

αiv(i)) · (
∑
j

αjv(j)) =
√∑

i,j

αiαjv(i)v(j) =
∑
i

α2
i

2.2 Important Facts About Eigenvectors And Eigenvalues

Given n× n matrix P with eigenvectors v(1), v(2), .., v(n) and corresponding eigenvalues λ1, λ2, .., λn:

• For every scalar α, matrix αP has eigenvectors v(1), v(2), .., v(n) with corresponding eigenvalues
αλ1, αλ2, .., αλn.

Proof : Given v(i), 1 ≤ i ≤ n, the following holds - (αP )v(i) = α(Pv(i)) = αλiv
(i).

• Matrix P+I eigenvectors are v(1), v(2), .., v(n) with corresponding eigenvalues λ1+1, λ2+1, .., λn+1.

Proof : Given v(i), 1 ≤ i ≤ n, the following holds - (I+P )v(i) = (Iv(i)+Pv(i)) = v(i)+λiv(i) =
(1 + λi)v(i).

• Matrix P k eigenvectors are v(1), v(2), .., v(n) with corresponding eigenvalues λk1 , λ
k
2 , .., λ

k
n.

Proof : Given v(i), 1 ≤ i ≤ n, the following holds - (P k)v(i) = (P k−1)Pv(i) = (P k−1)λiv(i) =
λi(P k−1)v(i) = ... = λk−1

i Pv(i) = λki v
(i).

• If P is a stochastic matrix then, ∀i ∈ [1, n], |λi| ≤ 1.

2.3 Example

Let P be the transition matrix for a d regular undirected graph (Notice that in this case the matrix is
double stochastic, i.e., every row and every column sum to one, and has d non zero entries), then:

1. The vector ( 1
n , ....,

1
n ) is the stochastic distribution and is an eigenvector of P with eigenvalue one

i.e., ( 1
n , ....,

1
n )P = 1( 1

n , ...,
1
n ). Also notice that |( 1

n , ...,
1
n )|1 = 1.

2. The vector ( 1√
n
, ...., 1√

n
) is also an eigenvector of P with eigenvalue one. Also notice that |( 1

n , ....,
1
n )|2 =

1.

3 Mixing Times

Definition 6 Given ε > 0 the mixing time T (ε) of a Markov Chain A with a unique stationary distri-
bution Π is the minimum t s.t. ∀Π(0), |Π−Π(0)At|1 < ε

Definition 7 Markov Chain A is ”rapidly mixing” if T (ε) = poly(log|V |, log 1
ε ), where V stands for the

number of states in A.

Next we will show the connection between properties of eigenvectors described in the previous section
and mixing times.

2



Theorem 8 Given transition matrix P of an undirected (= symmetric), non bipartite, d regular, con-
nected graph, with Π0 as the start distribution and Π its stationary distribution then:

‖Π0P
t −Π‖2 ≤ |λ2|t

Proof P is real and symmetric hence, its eigenvectors v(1), v(2), .., v(n) form an orthonormal basis with
eigenvalues λ1 = 1, |λ1| ≤ |λ2| ≤ .. ≤ |λn|, so for any vector, in particular the vectors Π0:

Π0 =
n∑
i=1

αiv(i),

|Π0P
t =

n∑
i=1

αiv
(i)P t =

n∑
i=1

αiλ
t
iv

(i)

We know that λ1 = 1 so

Π0 = α1v
(1) +

n∑
i=2

αiλ
t
iv

(i)

Therefore

‖Π0P
t − α1v

(1)‖2 = ‖
n∑
i=2

αiλ
t
iv

(i)‖2 =

√√√√ n∑
i=2

α2
iλ

2t
i

Where the last transition was possible due to the orthonormality of the eigenvectors v(i). Also notice
that ∀i > 2, |λ2|2 ≥ |λi|2. Using this in the previous eq. we get

‖Π0P
t − α1v

(1)‖2 ≤ |λti|

√√√√ n∑
i=2

α2
i ≤ |λ

t
i|

The last transition is due to the fact that

1 = |Π0|1 ≥ ‖Π0‖2 =

√√√√ n∑
i=1

α2
i ⇒

√√√√ n∑
i=2

α2
i ≤ 1

Now notice that as t increases (indicating more steps taken at the random walk) |λ2|t is getting smaller,
so |Π0P

t − Π‖2 is getting closer to zero. Therefore the stationary distribution must be Π = α1v
(1) and

we get from the last equation
‖Π0P

t −Π‖2 ≤ |λ2|t

4 Reducing Random Bits Using Random Walks

In this part of the lecture we will use our previous result on the eigenvalues of the matrix P and apply it
to a new way of reducing the number of random bits needed with amplification of randomized algorithms.

Let’s consider a decision problem L, for which we have a randomized algorithm A with one sided-error
as follows:

• A’s behavior is:

3



– If x ∈ L then Pr[A(x) outputs ”x ∈ L”] < 1
100

– If x /∈ L then A(x) alway outputs ”x /∈ L”

• A uses at most r(n) random bits on problems of size n.

An example of such a decision problem is the STCON for which we saw a randomized algorithm who
uses random walks that is never mistaken when vertices s, t are not connected, and errs with small
probability when s, t are connected.

We saw in previous lectures a few ways to amplify a randomized algorithm’s performance. In sum-
mation, using these previously discussed methods, in order to achieve an error probability of 2−k we
could:

• By running algorithm A for k times. we were able to get an error probability of 2−k by using
O(k · r) random bits.

• Using pair-wise independent hash functions we were able to improve the previous result and get
an error probability of 2−k using only O(k + r) random bits.

• In this lecture we will use random walks on graph to achieve an amplification scheme which only
uses r +O(k) random bits and achieving the optimal constant in front of the r.

The main idea behind the amplification scheme is the use a d-regular graph G (for some const d) with
2r nodes, each one corresponds the a random assignment w of random bits in algorithm A. There are a
few important notes we should mention about the graph G:

• Graph G is a huge graph that could not be constructed in polynomial time. The algorithm will
use the graph by computing the adjacency matrix locally only when needed. We thus have a
requirement that for a given node G’s adjacent edges can be computed efficiently.

• Graph G has no connection to algorithm A nor to its input. The graph is a generic graph suited
to amplify any algorithm that confirms to the terms stated above.

• G should have extractor property:

– For G’s transition matrix P the following holds: |λ2| ≤ 1
10

In this lecture we will not show how to construct these graphs.

The Scheme:

1. Pick uniformly at random w ∈R {0, 1}r, a start node in G

2. Repeat the following k times:

(a) w ← random neighbor of w

(b) Run A(x) with w as the random bits.

3. If ever see ” ∈ L” output ”x ∈ L” otherwise output ”x /∈ L”

Since step (1) takes r random bits and step (2.a) takes k · log d bits, the scheme uses r + O(k) random
bits as claimed.

Claim 9 The scheme presented above will err with probability at most ( 1
5 )k

4



Proof We divide the analysis into two classes:

If x /∈ L, than obviously the scheme will never err since A(x) never errors in this case.

If x ∈ L, Let’s denote B = {w|A(x) with random bits w is incorrect}. From the definition of A, it
is clear that |B| ≤ 2r

100

Let’s define a diagonal matrix N with

Nww =

{
0 if w∈ B
1 otherwise

Notice that if q is a distribution on the nodes of G then:

|qN |1 = Prw∈q[w is bad random string for A(x)]

or in general:

|q(NP )kN | = Prw∈q[w and the next k steps are bad strings for A(x)]

we can see that in order to prove a bound on this probability we should bound |q(NP )kN |. To do this,
we prove the following lemma:

Lemma 10 For all distributions Π we have ‖πPN‖2 ≤ 1
5‖π‖

Observation 11 For every vector s we have ‖sN‖2 =
√∑2r

i=1(siNii)2 ≤
√∑2r

i=1 s
2
i = ‖s‖2

Proof Express π as π =
∑2r

i=1 αivi (where vi are eigenvectors of P). Note that v1 = ( 1√
2r
, ..., 1√

2r
).

Let’s analyze:

‖πPN‖ = ‖
2r∑
i=1

αiviPN‖2 = ‖
2r∑
i=1

αiλiviN‖2 ≤ ‖α1λ1v1N‖2 + ‖
2r∑
i=2

αiλiviN‖2

The first step is because vi are eigenvectors of P, and the second step is due to Cauchy-Schwartz.

If we analyze each term separately we get:

1. ‖α1λ1v1N‖2 = ‖α1v1N‖2 = |α1|‖v1N‖2 = |α1| ·
√∑

i∈B( 1√
2r

)2 = |α1|
√
|B|
2r ≤ |α1|

10 ≤
‖π‖2
10

the first step is due to λ1 = 1 and the last step is due to |α1| ≤
√∑

α2
i = ‖π‖2

2. ‖
∑2r

i=2 αiλiviN‖2 ≤ ‖
∑2r

i=2 αiλivi =
√∑2r

i=2 α
2
iλ

2
i ≤ 1

10

√∑2r

i=2 α
2
i ≤

‖π‖2
10

Here we used the fact that ∀i > 2.|λ2| ≥ |λi|.

Overall, we got ‖πPN‖2 ≤ ‖π‖210 + ‖π‖2
10 = ‖π‖2

5

5



How do we use this lemma?

Pr[A(x) is incorrect for all w] ≤
∣∣U2r (NP )k

∣∣
1
≤
√

2r · ‖U2r (PN)k‖2 ≤
√

2r‖U2r‖ · 1
5k = 1

5k

At the second step we used the inequality |v|1 ≤
√
d‖v‖2 (where d stands for v’s dimensionality.)

5 Mixing & Uniform Generation Of Matching

We will now show a general construction of a rapidly mixing Markov Chain, and implement this con-
struction on an algorithm for the uniform generation of matching un a given graph. Note that the proof
of correctness will follow on the next lecture.

5.1 General Plan

Given graph G = (V,E), Construct (a ”huge”) markov chain s.t.

1. The states of the Markov Chain, V’, corresponds to objects we are trying to uniformly generate
(exponential number of states i.e. |V ′| = O(2|V |))

E.g. For matching the states will be {M|M is a matching in G}.

2. The Transition correspond to local changes s.t. the degree is polynomial in original G, and we will
only need polytime to choose a transition.

E.g. For matching remove, add edges, or unchanged (self loop).

3. Start at an arbitrary node (we cannot pick a random node).

4. Analyze the stationary distribution (ideally uniform).

5. Find the mixing time. Remember that by definition, in order for the Markov Chain to be rapidly
mixing, we need it to be poly(log|V ′|) or poly(V )), so we are want to show that rapid mixing times
⇒ polytime algorithm.

5.2 Algorithm For Matching

1. Pick Edge e ∈R E

2. if e ∈M
set M ←M − {e}

3. else if M ∪ {e} is matching
set M ←M ∪ {e}

4. else
stay in current state

Notice that the graph constructed is:

• Undirected (the graph is reversible - every edge deleted can be added later).

• Connected.

• Not bipartite (can stay at the same state, i.e. containing self loops).

• With degree |E|, therefore, the stationary distribution is uniform.

6


