
0368.4163 Randomness and Computation March 18, 2009

Lecture 4

Lecturer: Ronitt Rubinfeld Scribe: Itay Kirshenbaum, Oren Zomer, Margarita Vald

1 Introduction

Today:

• Another application of hashing

� But �rst:

∗ Interactive proofs

∗ Graph nonisomorphism

∗ Public Vs. Private coins

� Interactive proofs to lower bound set sizes

• Uniform generation of combinatorial objects

2 Interactive Proofs

2.1 De�nitions

De�nition 1. NP = All decision problems for which proof of "yes" answers can be veri�ed by a
polynomial time deterministic Turing Machine

De�nition 2. Interactive Proofs System (IPS) [Goldwasser Micali Racko�]

Figure 1: Interactive Proof System Protocol

An Interactive Proofs System for language L ⊆ {0, 1}∗ is a protocol for V (V erifier), P (Prover)
such that:

1

• If V, P follow protocol and x ∈ L then Prv's coins[V accepts x] ≥ 2
3

• If V follows protocol and x /∈ L then Prv's coins[V accepts x] ≤ 1
3

De�nition 3. Interactive Proofs (IP) = {L|L has IPS}

De�nition 4. Isomorphism

Graphs G = (VG, EG), H = (VH , EH) are said to be isomorphic (G ∼= H) if VH = π(VG) such that
(u, v) ∈ EG ⇔ (π(u), π(v)) ∈ EH

De�nition 5. Graph Isomorphism: LGI = {(G,H)|G ∼= H}

De�nition 6. Graph Non-Isomorphism: LGNI = {(G,H)|G � H}

2.2 Graph Non-Isomorphism

Theorem 7. GNI ∈ IP [Goldreich Micali Wigderson]

Proof. Protocol:

• Input: Graphs G,H (P claims G � H)

• V computes:

� G′ a random permutation of G

� H ′ a random permutation of H

• Do twice:

� V �ips coin:

∗ If Heads: V sends (G,G′) to P
∗ If Tails: V sends (G,H ′) to P

� P sends V ∼= or �
� V 's response:

V 's �ip P 's response V 's output
Heads ∼= continue
Tails � continue
Heads � FAIL
Tails ∼= FAIL

• Output "accept"

Proof. Correctness of Protocol:

• If (G,H) ∈ LGNI , that is G � H, unlimited time P can �gure out the coin because G ∼= G′

and G � H ′, and always answers correctly so Pr[V accepts] = 1 ≥ 2
3

2

• If (G,H) /∈ LGNI , that is G ∼= H, P may not follow the protocol, but he can do no better than
random guessing (Since the distribution on V 's messages is identical when �ips Heads/Tails)
- Can get V to continue with probability 1

2 in each loop. More formally:

� WLOG P is deterministic, that is a �xed function of (G, H̃)

� Some q fraction of permutations π′s cause P (G, π(G)) to answer �, so (Heads, �) will
cause failure

� 1−q fraction of permutations π′s cause P (G, π(G)) to answer ∼=, so (Tails, ∼=) will cause
failure

� H ′ is a uniformly distributed random permutation of H and H ∼= G, therefore H ′ is
a uniformly distributed random permutation of G. G′, by de�nition, is a uniformly
distributed random permutation of G. Therefore H̃ will be a uniformly distributed
random permutation of G.

� Pr[V fails] = 1
2q + 1

2 (1− q) = 1
2

� Enough to run the loop twice to get Pr[V accepts] = 1
4 ≤

1
3

3 Public Coins vs. Private Coins

A generalization of the Interactive Proof model is in making the outcome of the coins that the
veri�er tosses public. This small change leads to a model of Proofs called Arthur-Merlin games or
�IP public�. It is known that the �public� proof model, i.e. Arthur-Merlin games, and the �private�
proof model are equivalent.(Sipser and Goldwasser) and anything you can do in IP without access
to random bits you can do with access to random bits.

In Arthur-Merlin games the idea is that Arthur (the veri�er) �ips random coins at each round,
but unlike the private coins model, the coins are visible to Merlin (the prover) as well. Merlin then
tries to persuade Arthur of the answer. Note that since Merlin is all-powerful, he does not need
to see anything but the coin-tosses of Arthur, because once Merlin knows the coin tosses, he can
compute what Arthur is going to ask.

De�nition 8. A round is a communication round, where messages are sent from the prover to the
veri�er and vice versa in one direction only.

For example IP protocol for GNI is three rounds protocol.

The behavior of the Veri�er V (Arthur) can then be described as follows:

if all k rounds are done V decides whether to accept or reject

if less then k rounds are done, V outputs some random bits

This leads to complexity classes AM(k) andMA(k), where k is the number of rounds and the order
of letters A and M is determined by who (Arthur or Merlin) starts the conversation.

3

3.1 Graph Automorphisms

De�nition 9. An automorphism of a graph G = (V,E) is a permutation π of the vertex set V ,
such that for any edge e = (u, v), π(e) = (π(u), π(v)) is also an edge in E. (That is, it is a graph
isomorphism from G to itself). The identity mapping of a graph onto itself is called the trivial
automorphism of the graph (See for example �gures 2 and 3).

1

3

2

A

C

B

G = (V,E)

Figure 2: G has six automorphisms 1→ A, 2→ B, 3→ C; 1→ B, 2→ A, 3→ C etc...

2

6

3 4 51

B

F

C D EA

G = (V,E)

Figure 3: G has only the trivial automorphism 1→ A, 2→ B, 3→ C, 4→ D, 5→ E, 6→ F

We're about to prove that GNI ∈ IP −Public but we'll show it only for a special case of graph-
nonisomorphism. In this special case, we prove the non-isomorphism of two connected graphs, A
and B, each with only the trivial automorphism. Let n denote the number of nodes in both A and
B. If they were di�erent, the proof of non-isomorphism would be trivial.

If G is a graph, then let [G] denote the set of graphs isomorphic to G. All of the graphs in [G]
have the same set of vertices, and all are obtained by permuting the vertices of G. However, a pair
of vertices might be adjacent in one graph in [G], but not in another.

For a graph G, the size of [G] is n!/|Aut(G)| where n is the number of vertices in G and
|Aut(G)| is the number of automorphisms of G. Since the graphs A and B have only one, trivial
automorphism, |[A]| = |[B]| = n! (See �gure 4)

De�ne U to be the set of graphs obtained by uniting [A] and [B]. As consequences, we obtain
two fact that we will use extensively:

• If A and B are not isomorphic, then |U | = |[A] ∪ [B]| = 2n! and we refer it as �large� .

4

All n-node graphs

A
B

[A]=[B]

All n-node graphs

A

[A]

B

[B]

Figure 4: The set of all permutation on A and B. The graph on the right shows the case where
A and B are not isomorphic. On the other hand the graph on the left shows the case where A and
B are isomorphic.

• If A and B are isomorphic, then |U | = |[A] ∪ [B]| = n! and we refer it as �small� .

3.2 IP-Public Protocol

Theorem 10. GNI ∈ IP − Public

The overall idea is that the prover convinces the veri�er that |U | = |[A]∪ [B]| is big� more like
2n! than n!. By the preceding facts, this implies that A and B are not isomorphic.

The present problem is to determine whether a set is �a tiny fraction� or �half a tiny fraction�
of a universe. In this case, the universe Dn is de�ned to be the set of all n node graphs and let m
be the number of bits needed to describe a n-node graph (m = n2). It is easy to see that [A] ∪ [B]
is at most �a tiny fraction� of this universe Dn.

To see why this is a problem, consider the following procedure for proving graph non-isomorphism.

1. The veri�er V uses public coins to generate a random n node graph G ∈ Dn and send it to
V .

2. If G ∈ [A] ∪ [B] = U , then the prover P returns a proof of this fact in the form of a mapping
between the vertices of G and the vertices of A or B.

3. The veri�er looks at how often the prover returns a valid proof. If A and B are not isomorphic,
then [A]∪ [B] is twice as big as if they were isomorphic. This means that the prover can return
a valid proof twice as often. The veri�er detects this and concludes that A and B are not

isomorphic. Recall that #successes
#tries ≤ |U |

#graphs

Note that |U |
#graphs is exponentially small. Hence, the �aw in this procedure is that a random graph

G ∈ Dn is so rarely in U = [A] ∪ [B]� whether A and B are isomorphic or not� that the number
of rounds must be exponential for the veri�er to reach any conclusion and therefore, we won't be
able to estimate it in polytime. As an exercise, look at the Cherno� bounds and make sure you see

how the number of required samples depends on |U |
#graphs .

5

U

D
n

h(U)h R H

2m

2�

D
n

=

S

S =

Figure 5: Hashing m bit strings into ` bit strings using randomly chosen pairwise independent
function h.

The solution is to use hashing. The set U = [A] ∪ [B] is a tiny fraction of Dn. But now we
cleverly hash Dn down to a small set S. It will turn out that if A and B are not isomorphic, then
the image of [A]∪ [B] under the hash function will be a big fraction of S. If A and B are isomorphic,
then the image of [A] ∪ [B] will be only a small fraction of S. In this way, hashing from Dn to S
converts an �tiny fraction� vs. �half a tiny fraction� problem in Dn into a �big fraction� vs. �small
fraction� problem in S (See �gure 5).

To obtain the objective we need h to have the following properties:

1. |h (U)| ≈ |U | i.e h (U) is big i� U is big

2. |h(U)|
2l is ≥ 1

poly(n)

3. h computable in polytime (Since the veri�er is going to have to compute it).

3.3 Universal Hashing

De�nition 11. A family of functions H =
{
h : {0, 1}m → {0, 1}`

}
is called pairwise independent

if for any α 6= β ∈ {0, 1}m and for any γ, δ ∈ {0, 1}`:

Prh [h (α) = γ ∧ h (β) = δ] = 2−2`

Note that immediately from the de�nition it also follows that for any α, γ (and some β 6= α):

Prh [h (α) = γ] =
∑
δ

Prh [h (α) = γ ∧ h (β) = δ] = 2` · 2−2` = 2−`

Remark 12. We'll be using the terms �universal hash functions� and �pairwise independent hash
functions� interchangeably.

The family of all functions from {0, 1}m to {0, 1}` is universal, but is so large that even specifying
a particular element requires excessive space. Fortunately, more manageable universal hash families
exist. For example, the family {hM,b (x) = Mx+ b}M∈M`×m, b∈{0,1}` where M`×m is the set of `

6

by m binary matrices, and the arithmetic is done in GF (2), is pairwise independent and form
a universal hash family. In addition, in a previous lecture we saw a construction of pairwise
independent bits that would work here as well.

Now we are ready to present an interactive proof protocol with public coins for graph-nonisomorphism.
Call the veri�er V and the proverP .

Let H =
{
h : {0, 1}m → {0, 1}`

}
be a family of pairwise independent functions. Let Dn be the

set of all n node graphs, encoded using m bits. Let U be the subset of Dn corresponding to graphs
in [A] ∪ [B]. Let S be the set of 0-1 column vectors of size ` where ` will be set later.

1. V picks h ∈R H and send h to the P

2. P sends to V an element x ∈ U s.t h (x) = 0` and a proof that x ∈ U , where the proof is an
automorphism from A or B to x.

3. V checks that h(x) = 0` and checks P proofs that x ∈ U . If x passes both checks, then V
accepts.

Note that if U is �big� then P would be able to supply an appropriate x frequently and convince
V. But, if U is �small� P would be able to convince V less often.

The following lemma is the tool we use to convert a �tiny fraction� vs. �half a tiny fraction�
problem in Dn into a �big fraction� vs. �small fraction� problem in S.

Lemma 13. Let H be a Pairwise independent family of hash functions from {0, 1}m to {0, 1}`. Let
U be a subset of {0, 1}m and de�ne α = |U |/2`. Then

α− α2

2
≤ Prh

[
0` ∈ h (U)

]
≤ α

Proof. The right hand side is easy.

Prh
[
0` ∈ h (U)

]
≤
∑
x∈U

Prh
[
0` = h (x)

]
= |U |/2` = α

The left hand side is more tricky.

Prh
[
0` ∈ h (U)

]
≥

∑
x∈U

Prh
[
0` = h (x)

]
−
∑
x,y∈U

x6=y

Prh
[
0` = h (x) = h (y)

]

= α−

(
|U |
2

)
(2`)2

≥ α− |U |
2

2
· 1

2`

= α− α2

2

The �rst line uses an inclusion-exclusion principle truncated after two terms. The second line follows
from the de�nition of universal hashing. The �nal line follows from the de�nition of α.

7

2�2�

n! 2n!

-1

Figure 6: The setting of the parameter `

3.3.1 Choice of `

Now all we need to do is to choose `. We pick ` s.t 2`−1 ≤ 2n! ≤ 2` (See �gure 6).
First, suppose that A and B are not isomorphic. Then |U | = |[A] ∪ [B]| = 2n!, and 1 ≥ α ≥ 1

2 .
Lemma 13 says that

Prh
[
0` ∈ h (U)

]
≥ α− α2

2
≥ 3

8
= c1

Now, suppose that A and B are isomorphic. Then |U | = |[A] ∪ [B]| = n!, and α = |U |/2` ≤ 1
2 .

Therefor,

Prh[V accepts] ≤ α ≤ 1
2

= c2

The proof is not completely correct since we need c1 > c2. The solution to this problem is to
run the protocol above three times and accept i� V accepted in all the three iterations.

3.4 General Case Idea

Theorem 14 (Goldwasser-Sipser). IP with k rounds ⊆ IP-public with k + 3 rounds.

We will restrict ourselves to k = 2. Here is our 2-round interactive proof. Let ` be our poly, and
let w be the word we are reasoning about. As usual, we denote the veri�er by V and the prover by
P . Let r be V ′s random bits.

1. V gets a random string r ∈ {0, 1}`(|w|). V uses r to produce a message q (�q� for �query�) and
sent q to P .

2. P answers with a response a; P should answer with a that causes acceptance on most random
strings that produce q.

3. V checks P 's answer and accepts or rejects it.

Assume |q| = |a| = |r| = `.
V may be pictured as a map from random strings r to questions q. Any interesting IP protocol

has V not injective, because otherwise P knows what r V started with from q. We can divide the
r into two types: those which, with a, cause acceptance, and those which don't.

• Let R(q) = {r ∈ {0, 1}`(|w|) s.t. V (w, r) = q}

• Let aq be chosen to maximize Prr[V (w, r, q, aq) accepts] s.t. V (w, r) = q

• LetA(q) =
{
r ∈ {0, 1}`(|w|)|V (w, r) = q ∧ V (w, r, q, aq) accepts

}
. A(q) are the random strings

where P has a good probability to convince V (See �gure 7).X

8

• Let A = ∪
q
A(q)

and therefore Pr [V accepts] = |A|
2`(|w|) .

q
1

q
2

q
3

Random bits

R(q)
1

A(q)
2

Figure 7: The partition of random bits into sets which ask the same question. The shaded sets
are where P can make V to accept with good probability.

Note that where x is in the language |A| is big and where x is not in the language |A| is small.

3.5 MA(5) Simulation

In the MA(5) protocol which solves whatever language the previous IP(2) protocol did, P will
attempt to show that |A| is big. To do this, P will demonstrate that for some c and d, there are
at least 2c q's s.t., |A(q)| ≥ 2d, which will imply |A| ≥ 2c+d . If |A| > 2l−1, then ∃c, d s.t. this

holds, where 2c+d ≥ 2l−1

2l (this can easily be veri�ed - simply show the converse is not true by
considering the l possibilities for c.) This requires performing the lower bound protocol on the
number of random strings causing V to accept.

The rest of the proof is beyond the scope of the course.

4 Disjunctive Normal Form

A logical formula is considered to be in DNF if and only if it is a disjunction of one or more
conjunctions of one or more literals (variables and their negation), such as:

F = x1x̄2x3 ∨ x̄1x2x4x5 ∨ . . .

In a later lecture we will look for algorithms that can output α such that

#satisfying assignments

(1 + ε)
≤ α ≤ (1 + ε)·#satisfying assignments

Every conjunction of k di�erent literals (that do not contain a variable and its negation) is satis�ed
by 2n−k assignments, where n is the total number of variables. The size of the union, however,

9

Figure 8: Satisfying Assignments of 2 Terms

could be less than the sum of sizes. For example, in the case of 2 clauses: F = xi1 . . . x̄ik ∨xj1 . . . x̄jk
we can get:

The size of the union is the sum of sizes each term's satisfying assignments minus the size of
the intersection.

10

