
0368.4163 Randomness and Computation March 11, 2009

Lecture 2
Lecturer: Ronitt Rubinfeld Scribe: Meir-Jonathan Dahan, Tomer Levinboim

Today

• Randomness Sources, Deterministic Randomness Extractors

• Seed-Extractors

• Derandomization

1 Preliminaries

Definition: Recall that a language L is any subset of {0, 1}∗.
Examples:

• L={ x | x is a set with a “good” 2-coloring } (see last proof in Lecture 1)

• L={ x | x is a description of a graph that contains a Hamilton cycle }

Definition: P (Polynomial Time) = the class of languages L for which there
exists a deterministic poly-time algorithm A s.t.:

x ∈ L ⇒ A(x) = 1

x /∈ L ⇒ A(x) = 0

Definition: RP (Randomized Polynomial Time) = the class of languages L for
which there exists a probabilistic poly-time algorithm A s.t.:

x ∈ L ⇒ Pr[A(x) = 1]≥ 1
2

x /∈ L ⇒ Pr[A(x) = 1] = 0

In other words, RP is the class of languages for which membership can be de-
cided by a probabilistic poly-time (bounded) one-sided-error TM, where the
completeness is at least 1

2 (we might reject x ∈ L), and we have full soundness
(always reject x /∈ L). It can easily be shown that if we perform k independent
repetitions of such an algorithm A, we reduce the error rate (of rejecting x ∈ L)
to 2−k. This is also known as amplification.

1

Definition: BPP (Bounded Probabilistic Polynomial Time) = the class of lan-
guages L for which there exists a probabilistic poly-time algorithm A s.t.:

x ∈ L ⇒ Pr[A(x) = 1]≥ 2
3

x /∈ L ⇒ Pr[A(x) = 1]≤ 1
3

In other words, BPP is the class of languages for which membership can be
decided by a probabilistic poly-time (bounded) two-sided-error TM.
BPP can also be amplified, but this time we need to take the majority vote of
the independent repetitions:

Theorem 1 [Amplification of BPP]: For any constant β > 0, at most
O(log 1

β) independent repetitions are needed to decreases the error rate to β.

Before we proceed with the proof, we recall Chernoff’s bound which roughly
says that, the probability of a sum of independent variables will deviate from
its expected value µ, decreases exponentially in the shift from µ.

Chernoff’s Bound: Let X1, X2...Xk ∈ {0, 1} i.i.d (independently, identically
distributed) random variables with Pr(Xi = 1) = p. Let X =

∑k
i=1 Xi and

µ = E[X]. Then ∀δ ∈ [0, 1] the following inequality holds:

Pr[X ≥ (1 + δ)µ] ≤ e−δ2µ/4

Chernoff’s bound has many variations, but this form will fit our needs.

Proof [Theorem 1]: Let A be a probabilistic polytime TM that decides
L ∈ BPP . We construct A′, which runs A exactly k times (where the runs
are independent) and takes the majority vote as its answer. We now analyze
the probability A′ errs.
Let Xi denote an indicator variable which is 1 if on the i’ th iteration of A′, A
accepted, and otherwise, 0 (There are k such indicators), and let X =

∑k
i=1 Xi.

Clearly (by linearity of expectation and the definition of BPP): (1) if x ∈ L
then E[X] ≥ 2k

3 and (2) if x /∈ L then E[X] ≤ k
3 .

Suppose x /∈ L, then A′ returns a wrong answer in the event that the majority
over the k answers of A is 1. This happens when X > k

2 .
Therefore, If X /∈ L then Pr[A’ fails] = Pr[X > k

2] = Pr[X > (1 + .5)k
3] ≤

Pr[X > (1 + .5)E[X]] ≤ e−
1/22E[X]

4

Where the last inequality is due to Chernoff. If we wish this term to be at most
β we obtain:

e−
1/22EX

4 ≤ β =⇒ E[X] ≥ 16ln
1
β

But, when x 6∈ L we have E[X] ≤ k
3 , therefore:

k

3
≥ 16ln

1
β

=⇒ k ≥ 48ln
1
β

Therefore, when x /∈ L, taking at least 48ln 1
β suffices to decrease the error rate

to at most β. We omit the analysis for the case where x ∈ L, as it is exactly

2

the same, with respect to the random variable (n−X). This concludes the proof.

Concluding this section, we state that it is easy to show (i.e., follows from
the definitions) that:

P ⊆ RP ⊆ BPP

A central question in complexity theory that remains unanswered is whether
P = BPP (although many believe this to be true).

2 Randomness Sources and Deterministic Ran-
domness Extractors

Real-life computers have a built-in “random number generators”, which usually
work by some combination of sampling the internal clock, user input (e.g., in-
terval between keystrokes), network traffic etc. These sources of randomness
cannot be considered truly random and are usually called pseudo-random. A
well known approach to get a somewhat random source is to digitize the noise
produced by a Zener diode, another might be to sample cloud formations (not
so good on a sunny day), or even a lava-lamp (see www.lavarnd.org), however,
these sources are considered as weak random sources - that is, not truly random.
In spite of that, weak random sources may not be completely useless - given a
weak random source of bits, it might be possible to extract truly random bits
out of it. This is exactly the idea behind an Extractor - it is a function that
purifies a weak source of randomness into a (nearly) perfect one.

Figure 1: Deterministic Extractor

Once we have such an extractor, our requirements from the source of ran-
domness are relaxed - it allows as to construct a probabilistic algorithm that
relies on weakly random bits, instead of truly random bits. This is depicted in
the following diagram:

Figure 2: Extractor in use

3

Given input x, A′ uses the extractor on the n weakly random bits, and sup-
plies A with x and the the m (almost) truly random bits.

We shall now proceed to discuss several types of randomness sources, where
our assumptions on these sources will be weakened further and further.

2.1 Von-Neumann’s “Trick”

We begin with a simple example, where the source is only slightly weakened, in
that, it is not unbiased.
Claim: ∀ρ ∈ (0, 1) a ρ-biased coin (i.e., Pr[”Heads”] = ρ, Pr[”Tails”] = 1−ρ)
can be used to simulated a truly random coin, in expected time O(1

ρ(1−ρ)).
Proof: Consider the following algorithm A:

• Get input X = (X1, Y1, X2, Y2...). (where all Xi, Yi are independent and
ρ − biased)

• At the i’th iteration, if Xi 6= Yi

– stop and output Xi

– else proceed to next iteration

Notice that at each iteration Pr[H,H] = ρ2, Pr[T, T] = (1 − ρ)2, and more
importantly, Pr[H,T] = Pr[T,H] = ρ(1 − ρ), therefore, given that A stops, it
outputs “Heads” or “Tails” with equal probability. The probability to stop at
each iteration is exactly α = 2ρ(1 − ρ), so the probability not to stop after n
iterations is (1 − α)n which rapidly decays to 0. Moreover, we expect to stop
after 1

α = 1
2ρ(1−ρ) iterations.

For example, for ρ = 1
3 , we have have 2ρ(1 − ρ) = 4

9 , and we therefore expect
to stop after 9

4 iterations on average.

2.2 δ-source

A source of bits X = (X1X2, X3...Xn) where each Xi is an independent random
variable over {0, 1} is called a δ-source when

∀i : Pr[Xi = 1] = δi

Where for each δi, 0 < δ ≤ δi ≤ 1 − δ < 1 for some constant δ.
Compared to the Von-Neumann model, the bits are still chosen independently,
however might not be identically distributed.
Due to the independence, we can still extract an (almost) truly random bit using
the parity function. That is, we can show:∣∣∣∣∣Pr

[
n⊕

i=1

Xi = 1

]
− 1

2

∣∣∣∣∣ = 2−Ω(n)

Which is exactly what we desire.

4

2.3 SV-source (Santha-Vazirani)

A sequence X = (X1, X2...Xn) is called an an SV-source if:
∀i ∈ {1..n}, ∀α1, α2...αn−1 ∈ {0, 1} and constant δ it holds that:

δ ≤ Pr[Xi = 1|X1 = α1, X2 = α2, ...Xi−1 = αi−1] ≤ 1 − δ

Under these settings, the random variables can be dependent, so the parity
function we previously employed will not work. In fact, the situation is much
worse as it is known that for any deterministic randomness extractor there is
an SV-source that foils its operation (makes it output a biased bit with high
probability).
Remark: one way to overcome the difficulty of deterministically extracting
randomness from SV-sources is to modify the model. It turns out that if we use
a set of sources S (where |S| > 1) there are ε−extractors for this set.

2.4 k-source

A source of n bits is called a k − source if the probability of any output is at
most 2−k. Formally:

∀x ∈ {0, 1}n : Pr[X = x] ≤ 2−k

Usually we consider k ¿ n.
Examples:

• Bit Fixing sources - e.g., the first k bits of X are i.i.d with Pr[xi = 1] =
1/2, ∀i ∈ {1..n}, and the next (n− k) bits are (say) all zeros. This can be
generalized to any k bit-positions, and letting the remaining (n − k) bits
be any fixed function of the random k bits.

• An SV-source with k = log 1
(1−δ)n

• A “flat” source - a uniform distribution over any S ⊆ {0, 1}n such that
|S| = 2k

3 Seeded Randomness Extractors

3.1 Notation

• Denote Un as the uniform distribution over {0, 1}n (that is - ∀x ∈ {0, 1}n

we have PrX∼Un [X = x] = 2−n).

• The total variation distance between two probability distributions P and
Q on finite domain D is

δ(P,Q) =
1
2

∑
x∈D

|P (x) − Q(x)|

• P and Q are said to be ε-close if δ(P,Q) < ε.

5

3.2 Seed-Extractors

Seed-extractors are a relaxation of deterministic extractors. While the extrac-
tors discussed in the previous section were all deterministic, seeded extractors
use some (hopefully small) source of randomness (a seed):

Definition: f : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-seed-extractor if for
any k-source X on {0, 1}n, f(X,Ud) is ε-close to Um.
(note the slight abuse of notation, f ’s domain is binary strings, while X and Un

are distributions)

Figure 3: A seed extractor

Our goal when extracting such seeded extractors, is to maximize m (the
number of truly random bits the extractor outputs) while minimizing d (length
of the seed). Consider the following options:

1. m < d - Useless, as we ended up with less bits than we started with.

2. m > d+n - Impossible, this means we somehow conjured random bits out
of thin air.

3. m = d + k - The following theorem states a close result.

Theorem 2: ∀n, k such that k ≤ n and ∀ε > 0, there exists a (k, ε)-seed-
extractor f : {0, 1}n × {0, 1}d → {0, 1}m such that:

1. m = k + d − 2log(ε−1) − O(1),

2. d = log(n − k) + 2log(ε−1) + O(1)

A few remarks are in order:

• A constant gap (2log(ε)+O(1)) remains between the output length m and
the desired output d + k.

• The seed’s length d < log(n).

• The theorem does not provide an explicit construction of such an effective
extractor (Although, current constructions come close to these parame-
ters).

• Using such a (k, ε)-extractor, we can reduce our dependency on truly ran-
dom bits. We can transform any probabilistic TM that depends on m
truly random bits and has error rate β (say, 1

3 as in BPP) to one that has
error rate at mostβ + ε, but depends only on d = log(n) truly random bits
(and the weak source).

6

4 Derandomization

Consider a probabilistic polynomial algorithm A for some language L ∈ BPP ,
can we derandomize it? That is, can we somehow produce a deterministic al-
gorithm A′ that always outputs the correct answer without the requirement for
a random source? One naive way to achieve this is derandomization via enu-
meration, in which we simply iterate over all possible random strings A could
consider, and output the majority answer. A formal presentation follows:

Let A a probabilistic polynomial time TM, and let p(n) a polynomial bounding
the running time of A on input x of length |x| = n.
It follows that A uses at most p(n) random bits (otherwise its running time
would not have been p(n)). Consider a TM A′ that on input x runs as follows:

1. For each ri ∈ {0, 1}p(n), compute si = A(x, ri) - (The Enumeration)

2. Output the majority of all si MAJ(s1, ...s2p(n))

Now, if x ∈ L ⇒ Pr[si = 1] ≥ 2/3 , therefore MAJ(s1, ...s2p(n)) = 1,
Otherwise, if x /∈ L ⇒ Pr[si = 1] ≤ 1/3 , therefore MAJ(s1, ...s2p(n)) = 0.
Therefore, A′ always outputs the correct answer.

Notice that the running time of A′ is bounded from above by 2p(n)p(n) which
is exponential. This also implies that BPP ⊆ EXP (recall that EXP =
DTIME(

⋃
c2

nc

)).

Generally, if A uses r random bits, we can construct an A′ by derandomization
via enumeration and “pay” up to 2rp(n) in running time. Now, if r = O(log(n))
then the running time of A′ is 2O(log(n))p(n) = ncp(n) for some constant c > 0.
In this special case, derandomization via enumeration yields a deterministic
polynomial time algorithm.

This last note motivates us to be as parsimonious as we can with our source
of randomness. Suppose we can show our algorithm A does not need its m-
random bits to be completely independent, but only pairwise independent (p.i.
henceforth). In the lecture to follow we will show how to generate m p.i. bits
given O(log(m)) truly random ones. Let G be a process that does exactly that
(produces m p.i bits out of m truly random ones), then, derandomizing such an
A can be done as follows:

Figure 4: Derandomization using pairwise independence

7

1. For each di ∈ {0, 1}d=O(log(m)) (The Enumeration)

(a) Compute d̂i = Generator(di) (d̂ is a sequence of m p.i bits)

(b) Compute si = A(x, d̂i)

2. Return MAJ(s1, ...s2d)

This yields a deterministic polytime algorithm, which always computes the cor-
rect answer (because A expects only m p.i. bits).
For further details, see lecture 3.

8

