
0368.4163 Randomness and Computation June 10, 2009

Lecture 12
Lecturer: Ronitt Rubinfeld Scribe: efrat bank, Guy Harari, Yehudit Hasson

1 Introduction

In this lecture we prove that a ”weak” PAC learning algorithm implies a ”strong” PAC learning algorithm.
Recall the definition that was given in previous lectures for PAC:

Definition 1 An algorithm A (“strongly”) PAC learns a concept class C if ∀c ∈ C, ∀ distribution D, ∀ε >
0, with probability greater or equal 3

4 , given examples of c which are chosen according to the distribution
D, A outputs h such that

Pr
D

[h(x) 6= c(x)] ≤ ε. (1)

Remarks

• Note that in previous lecture the parameter δ was introduced, and the requirement was that with
probability greater or equal 1 − δ A output a ”good” hypothesis. In homework we have shown
that it is enough to consider the case of δ = 3/4, and results for general delta can be achieved via
amplification.

• In previous lectures the distribution D was chosen to be the uniform distribution. In fact, any
distribution may be used.

Definition 2 An algorithm A weakly PAC learns a concept class C if ∀c ∈ C, ∃γ > 0 such that ∀ distribution D,
with probability ≥ 3

4 , given examples of c which are chosen according to the distribution D, A outputs h
such that

Pr
D

[h(x) 6= c(x)] ≤ 1
2
− γ

2
. (2)

• The term γ
2 is called the advantage of A.

• We will consider functions c ∈ C such that c : {±1}n −→ {±1}

The main result prove in this lecture is:

Theorem 1 If a concept class C can be weakly learned, then C can be strongly learned.

2 The Algorithm

2.1 The Intuition

The main idea is to run the weak-learning algorithm first with the uniform distribution (though it does
not matter what is the initial distribution) in order to get an hypothesis h1. Then, we would like not to
choose the ”good” examples again, meaning to give them a small probability, and to run the algorithm
again with the new examples to get another hypothesis h2. Next, we would like to somehow combine
between the two output functions. A natural way would be to give the examples that were ”good” for
both h1 and h2 a low probability, and give the ”bad” examples a higher one. We will refer to this process
as ”filtering”. The following figure illustrates the main idea of the algorithm.

1

D _ 0

(x _ 1 , f (x _ 1))

(x _ 2 , f (x _ 2))

(x _ m , f (x _ m))

(x _ m + 1 , f (x _ m + 1))

.

.

.

.

.

.

W L

F i l te r

c _ 1

D _ 1

W L c _ 2

(x_ i , f (x_ i))

(x _ i + 2 , f (x _ i + 2))

(x_ j , f (x_ j))

.

.

Figure 1: Flow of the algorithm

2.2 The Algorithm

Given a weak learner WL, a distribution D, a concept f : {±1}n −→ {±1} and parameters ε and γ, the
algorithm goes as follows: (We illustrate the case for the uniform distribution. Note that the algorithm
can be easily modified to any initial distribution although we are not showing it here.)

Stage 0 - Initialization:
Set distribution D0 ←− D(= U)
Use WL to generate (with high probability) an hypothesis c1 such that PrD0 [f(x) = c1(x)] ≥ 1

2 + γ
2

Stage i:
(1) Construct Di via the filtering mechanism
(2) Run WL with examples from Di to get hypothesis ci+1 such that PrDi [f(x) = ci+1(x)] ≥ 1

2 + γ
2

(3) If PrDi [f(x) = Maj(c1, ..., ci+1)] ≥ 1− ε output Maj(c1, ..., ci+1)

After T = O(1
γ2ε2) steps:

output c=Maj(c1, ..., cT)

Filtering procedure:
Given (x, f(x)) chosen according to the distribution D0:

If Maj(c1, . . . , ci) is wrong on x, keep x
If # of ci’s right - # of ci’s wrong ≥ 1

εγ , throw x away
Else # of ci’s right - # of ci’s wrong = α

εγ , for some 0 < α < 1, keep x with probability 1− α

Remarks

• We need to add the condition that if the filtering process takes too long, i.e. O(1
ε), stop early and

output Maj(c1, ..., cj). This is correct since if one cannot find examples, i.e. all (or most) examples
should be tossed, this means that the error must be small and the algorithm may stop.

• Until i is about γε none of the examples is being tossed.

• If x is tossed at some stage, it can still appear with some probability in one of the following stages.

2

3 Preliminaries

Here are some notations and their properties:

1. Rc(x) =
{

+1 if f(x) = c(x)
−1 o.w. gives +1 if (weak) hypothesis c is right on example x

2. Ni(x) =
∑

1≤j≤i Rcj (x) is the number of right c’s exceeding the wrong ones (i.e. #right-#wrong)

3. Mi(x) =

1 if Ni(x) ≤ 0
0 if Ni(x) ≥ 1

εγ

1− εγNi(x) o.w.
is a “Probabilty filter keeps sample x”- a “measure” which upper bounds the error of hypothesis
c = Maj(c1, . . . , ci) on example x.

4. |Mi| =
∑

x Mi(x) is the total “mass” of all examples according to “measure” Mi.

5. DMi
(x) = Mi(x)

|Mi| is a distribution over x given Mi.

6. Observe that error(ci+1) ≡ Prx∈uniform [c(x) 6= f(x)] ≤ |Mi|
2n

the error of concept class c is the number of inputs for which the majority gaves us a wrong answer
and it’s smaller than |Mi|. (we noramlized it by the total number of inputs).

7. Advc(M) =
∑

x Rc(x)M(x) is the advantage of c on M which gives an indication on the
number of inputs for which c is correct. (Random guessing gives 0.)

8. Advc(M) ≥ γ|M | iff Prx∈DM
[c(x) = f(x)] ≥ 1

2 + γ
2

9. Note that if Prx∈DM
[c(x) = f(x)] ≥ 1

2 + γ
2 and |M | ≥ ε2n, then Advc(M) ≥ εγ2n

4 Proof of correctness

Let’s define Ai(x) =
∑

0≤j≤i−1 Rcj+1(x)Mj(x)

Claim 2 Ai(x) ≤ 1
εγ + εγ

2 · i

Before proving this claim, we first use it to bound the maximum number of iterations required by the
boosting algorithm. Hence, if a concept can be weakly PAC learned, then it can be (“strongly”) PAC
learned.

Claim 3 The maximum number of iterations required by the boosting algorithm is i0 ≤ 2
γ2ε2 .

Proof We prove the claim by showing that assuming the algorithm does not stop after i0 + 1 stages,
then error(ci0) ≥ ε i.e. ∀j|Mi| ≥ ε2n and this leads to a contradiction.

Suppose the claim is not true and i0 > 2
γ2ε2 then we will consider the 2n by (i0 + 1) dimensional

matrix, where the rows are labelled by inputs and the columns by iteration number, and in which the
entry corresponding to x,i contains Ai(x). We first bound the total sum of the entries of this matrix
from below by showing that the total sum of each column is large. The latter follows from Observation
8 above, which follows from the correctness of the weak learning algorithm and from the fact that the
measure on which the algorithm errs is still large. On the other hand, using the claim we can bound from
above the total sum of the matrix by upper bounding the total sum of any row. The claim, which we
prove later, shows that after a number of iterations, there is a nontrivial upper bound on the number of
hypotheses (weighted by the corresponding measures) which err on this input. Note that if the majority

3

of the hypotheses do well on an input, then its measure will go to zero, but later on, if too many of the
newer hypotheses start to do badly on the same input, then its measure will become nonzero again.

∑
x

Ai0+1(x) =
∑

x

∑

0≤j≤i0

Rcj+1(x)Mj(x) (3)

=
∑

0≤j≤i0

∑
x

Rcj+1(x)Mj(x)

︸ ︷︷ ︸
Advcj+1 (Mj(x))

(4)

≥ (i0 + 1)εγ2n (5)

Using Claim 2 leads to an upper bound:

∑
x

Ai0+1(x) ≤
∑

x

(
1
εγ

+
εγ

2
(i0 + 1)) (6)

= 2n(
1
εγ

+
εγ

2
(i0 + 1)) (7)

Using both bounds, (i0 + 1)γ2nε ≤ ∑
x Ai0+1(x) < 2n(1

εγ + εγ
2 (i0 + 1)) ⇒ i0 ≤ 2

γ2ε2 − 1, we arrive at
a contradiction. So, the algorithm must run for 2

γ2ε2 iterations or less.

Fact 4 (The Elevator Principle) If one rides an elevator from the ground floor, then one ascends
from the k-th to the (k + 1)-th floor at most 1 more time than one descends from the (k + 1)-th to the
k-th floor. (Analogous argument holds when traveling from the ground floor to basements.)

Proof of Claim 2: The process of adding each term of Ni(x) corresponds to an elevator ride with
Rcj (x) dictating the direction and partial sum Nj(x) denoting the current level. The plan is to first
match pairs of Rcj+1(x)Mj(x) terms and obtain an upper bound of their sum using properties of function
Mj(x). As for the unmatched pairs, we can bound the number of them (using the Elevator Argument)
and also their sums. And so, an upper bound for Ai(x) can be obtained.

Matched Pairs

For each k ≥ 0,
match j such that Nj(x) = k and Nj+1(x) = k + 1
with j′ such that Nj′(x) = k + 1 and Nj′+1(x) = k

(analogously match -k to -(k+1) with -(k+1) to -k)

For each matched pair of terms corresponding to indices a = j, b = j′, the sum is
Rca+1(x)︸ ︷︷ ︸

+1

Ma(x)︸ ︷︷ ︸
Na(x)=k

+Rcb+1(x)︸ ︷︷ ︸
−1

Mb(x)︸ ︷︷ ︸
Nb(x)=k+1

= Ma(x) − Mb(x).

If 0 ≤ k ≤ 1
εγ or 0 ≤ k + 1 ≤ 1

εγ , then
Ma(x)−Mb(x) ≤ εγ (because Mb(x)−Ma(x)

k+1−k is the slope of Mi(x) which is ≥ −εγ),
else
(k < −1 and Ma(x) = Mb(x) = 0) or (k > 1

εγ and Ma(x) = Mb(x) = 1) ⇒ Ma(x)−Mb(x) = 0

Therefore, the total contribution of matched pairs is ≤ 0.5εγi (because Ai(x) has i pairs).

4

Unmatched Terms Notice that unmatched pairs are in the “same direction”, i.e. all Rcj
(x)’s are

either negative or positive.

Suppose all Rcj
(x)’s are negative (i.e. −1), then their contribution to the sum is negative (because

each term becomes −Mj(x) ≤ 0). So they do not loosen the upper bound we already derived from
matched pairs.

Suppose all Rcj
(x)’s are positive (i.e. +1). Then Nj(x) ≥ 0, and so each term is Mj(x) = 1−εγNj(x)

if Nj(x) ∈ [0, 1
εγ] and 0 otherwise. The Elevator Lemma tells us that there is at most one unmatched

Nj(x) for each integer value in the interval [0, 1
εγ], and so the total contribution of them (sum of a

arithmetic series from 0 to 1 with 1
εγ terms) is ≤ 1

2εγ < 1
εγ

Summing up the total contribution from both matched and unmatched terms gives

Ai(x) <
1
εγ︸︷︷︸

unmatched

+
εγi

2︸︷︷︸
matched

.

5

