
0368.4163 Randomness and Computation June 3, 2009

Lecture 11
Lecturer: Ronitt Rubinfeld Scribe: Anat Ganor, Roy Kasher, O. Paneth

1 Introduction

In this lecture we show an algorithm for learning Parity with noise. If f is linear we can find it easily
by solving a linear system of equations. For an arbitrary f , our goal is to find all linear functions that
are close to f .

Under the general PAC model this problem is conjectured to be hard, refered to as hardness of parity
with noise, hardness of decoding linear codes, maximum likelihood decoding of linear codes or finding
largest fourier coefficient. For certain relaxtions of the problem we know subexponential algorithms
exist, however, the general case is believed to be NP-hard.

We can consider two noise models: Adverserial, where a linear function is changed adverserially in
up to 1

2 − ε fraction of its inputs, or noisy, where the corruption occurs randomly.
Since the problem is infeasible in the PAC model, we will allow queries to f instead of random

sampling. This makes it feasible even with adverserial noise. This problem was first studied by Goldreich
and Levin in the context of cryptographic pseudorandom generators, and has found applications in error
correcting coes (list decoding of Hadamard codes) and learning theory (by Kushilevitz and Mansour).

The goal We want to output all S ⊆ [n] s.t. f̂(S) ≥ θ (i.e. Prx [χS(x) = f(x)] ≥ 1+θ
2) and not output

any S for which ˆf(S) ≤ θ
2 , in runtime poly(n, 1

θ)

Notation

• ei = (1, ..., 1,−1, 1, ..., 1) where −1 is in the ith location.

• Bitwise product: xy = (x1y1, x2y2, ..., xnyn)

2 Learning Parity with Noise

2.1 Warmup 1

f is linear, i.e. ∃S s.t. f(x) = χS(x)

The algorithm
∀i ∈ [n] put i in S if 1 = f(−→1) 6= f(ei)

2.2 Warmup 2

Arbitrary f , using poly queries and unbounded time

The algorithm
Iterate all S and test if f and χS agree ”enough” (by sampling)

Note the samples must be ”recycled” for all S’s. The analysis is simple using the Chernoff and union
bounds as we’ve seen in the last lecture.

1

2.3 Warmup 3

Exists S s.t. f agrees with χS ”almost everywhere”, on ≥ 1 − 1
4n fraction of inputs (Note every two

linear functions disagree on half of the inputs, so f is determined uniquely by χS)

The algorithm

• Choose r ←R {±1}n

• ∀i ∈ [n] put i in S if f(r) 6= f(r · ei)

Why does it work?

Pr [i is decided incorrectly] ≤ Pr [f(r) 6= χS(r) or f(r · ei) 6= χS(r · ei)]
≤ Pr [f(r) 6= χS(r)] + Pr [f(r · ei) 6= χS(r · ei)] (union bound)

≤ 1
4n

+
1
4n

=
1
2n

(r and r · ei are uniformly distributed)

⇒ Pr [any i is decided incorrectly] ≤ n · 1
2n = 1

2 (union bound)

2.4 Warmup 4

Exists S s.t. f agrees with χS on ≥ 3
4 + ε fraction of the inputs, for a constant ε. Note the previous

algorithm doesn’t work. We will use standard amplification techniques.

The algorithm

• Choose r1, r2, ..., rt ←R {±1}n where t = Θ(log(n)
ε2)

• ∀i ∈ [n] put i in S if for the majority of rj ’s f(rj) 6= f(rj · ei)

Why does it work?
Pr [wrong answer for i on rj] ≤ 1

2 − 2ε
⇒ Pr [most rj ’s wrong for i] ≤ 1

2n (by Chernoff and the choice of t)
⇒ Pr [any i is decided incorrectly] ≤ 1

2 (union bound)

2.5 Warmup 5

Exists S s.t. f agrees with χS on ≥ 1
2 + ε fraction of the inputs, for a constant ε. Note we cannot

win with the union bound as before, and we must decide on i using only one query. To do this, we can
just assume we are given the correct values of σj = χS(rj). The problem now becomes that of testing
σj 6= f(rj · ei) using the previous techniques. Since we can eventually verify (by sampling) that our
output function is indeed close to f , we can simply enumerate all possible values of the σj ’s.

The algorithm

• Choose r1, r2, ..., rt ←R {±1}n where t = Θ(log(n)
ε2)

• Generating candidates
For all possible settings of σ1σ2, ...σt (guesses of χS(rj)’s)
∀i ∈ [n] put i in Sσ1σ2...σt if for the majority of rj ’s σj 6= f(rj · ei)

2

• Verify the candidates before outputting
Test χSσ1σ2...σt

agrees with f on ≥ 1
2 + 3

4ε fraction of inputs by sampling

Why does it work?
For each S that should be output there are σ1, σ2, ..., σt s.t. ∀j σj = χS(rj).
The test puts i in S if σj · f(rj · ei) = −1. The test succeeds when f(rj · ei) · σj = χS(ei). Note that if
f(rj · ei) = χS(rj · ei) then f(rj · ei) · χS(rj) = χS(rj · ei) · χS(rj) = χS(ei) and the test succeeds.

Pr [right answer for rj on i] = Pr [f(rj · ei) · σj = χS(ei)]
≥ Pr [f(rj · ei) = χS(rj · ei)]

≥ 1
2

+ ε

⇒ Pr [most rj ’s wrong for i] ≤ 1
2n (by Chernoff and the choice of t)

⇒ Pr [any i is decided incorrectly] ≤ 1
2 (union bound)

This analysis shows that if the σj ’s are consistent with χS and χS is close to f , then it will be output
w.p. at least half, which can easily be amplified. Since we enumerate all the possible σj ’s, it remains to
show that no far functions will be output. This is guaranteed from the verification stage that ensures
functions that are (1

2 + ε
2)-far are output with low probability.

2.6 Finally – The Real Problem

Exists S s.t. f agrees with χS on ≥ 1
2 + ε fraction of the inputs, for any ε. The last algorithm we’ve seen

requires ε to be constant for Chernoff to work for small t’s. Larger t’s are not advised as we enumerate
2t possible σ’s. Since we are dealing with linear functions, we can guess a much smaller set and compute
the function values in all possible linear combinations.

The algorithm

• Choose u1, u2, ..., uk ←R {±1}n where k = log(t + 1), t = Θ(n
ε2 (number of rj ’s)

• Generating lots of examples (Θ(n
ε2))

For all possible settings of σ1, σ2, ..., σk (guesses of χS(uj)’s)
For every w ⊆ {1, ..., k}, w 6= ∅
Set rw ← ⊕j∈wuj and pw ←

∏
j∈w σj

• Generating candidates
For all possible settings of σ1, σ2, ..., σk (guesses of χS(uj)’s)
∀i ∈ [n] put i in Sσ1σ2...σk

if for the majority of rj ’s pw 6= f(rw · ei)

• Verify the candidates before outputting
Test χSσ1σ2...σk

agrees with f on ≥ 1
2 + 3

4ε fraction of inputs by sampling

Why does it work?
As before, for a ”given” S the test succeeds for rw when f(rw · ei) · pw = χS(ei), and this happens
w.p. ≥ 1

2 + ε. Let Xw be an indicator for this event. Unfortunately, unlike in the last warmup, we
can no longer claim independence of the indicators and apply the Chernoff bound. However, as in the
constructions in lecture 3, the rw’s are pairwise independent.
We have: E[Xw] ≥ 1

2 + ε, VAR[Xw] = E[X2
w]− E[Xw] ≤ 1

4 − ε2. By Chebychev,

3

Pr [most rj ’s wrong for i] = Pr[
∑

Xw <
t

2
]

≤ Pr[
∣∣∣∣
1
n

∑
Xw − E[Xw]

∣∣∣∣ > ε]

≤ VAR[Xw]
ε2t

≤ 1
2n

⇒ Pr [any i is decided incorrectly] ≤ 1
2 (union bound)

Theorem 1 There is an algorithm which outputs all S s.t. |f̂(S)| ≥ θ and doesn’t output any S s.t.
|f̂(S)| ≤ θ

2 w.p. ≥ 1− δ with query and time complexity poly(n, 1
θ , log(1

δ))

Corollary 2 The number of sets S s.t. |f̂(S)| ≥ θ is at most O(n
θ2)

Theorem 3 Given S ⊆ 2[n] (a collection of subsets) s.t.
∑

S∈S f̂(S)2 ≥ 1− ε and poly(n, |S|, 1
τ , log(1

δ)
uniformly chosen examples of f , there is an algorithm which outputs g(x) : {±1}n → R s.t. g(x) =∑

S∈S CSχS(x) and Pr [sign(g(x)) 6= f(x)] ≤ ε + τ w.p. ≥ 1− δ

Proof Idea Use previous theorem and the ideas from the low degree algorithm of last lecture.

3 Learning Functions with Small L1 Norm

Definition 1 The L1 norm of f is L1(f) =
∑

S |f̂(S)|
Examples:

• L1(χS) = 1

• L1((x1 ∧ x2)⊕ (x3 ∧ x4)⊕ ...) = 2
n
2

Claim 4 Given ε, Sε =
{

S ⊆ [n] : |f̂(S)| ≥ ε
L1(f)

}
then:

1. |Sε| ≤ L1(f)2

ε

2.
∑

S∈Sε
f̂(S)2 ≥ 1− ε

Proof

1. L1(f) ≥ ∑
S∈Sε

|f̂(S)| ≥ ε
L1(f) |Sε|

2.
∑

S /∈Sε
f̂(S)2 ≤ maxS /∈Sε

|f̂(S)|·∑S /∈Sε
|f̂(S)| ≤ ε

L1(f)L1(f) = ε. By Boolean Parseval,
∑

S f̂(S)2 =

1 and so
∑

S∈Sε
f̂(S)2 ≥ 1− ε

Theorem 5 We can learn any Boolean function to ε-accuracy with membership queries
in time poly(n,L1(f), 1

ε)

Proof Use theorems 1 and 3 with θ = εL1(f). If L1(f) is unknown, try values 2, 4, 8, . . . for L1(f)
until you find a good hypothesis (Can always test it by random sampling).

4

3.1 Learning Decision Trees

Theorem 6 If f has decision tree with ≤ t leaves then L1(f) ≤ t

Proof Fix leaf l. Define gl = I[x reaches l], let xi1 , . . . , xik
be the path to l, and m the number

of left turns taken. Recall gl(x) =
(

1±xi1
2

)
·
(

1±xi2
2

)
· . . . ·

(
1±xik

2

)
= 1

2k

∑
S∈[k](−1)mχS(x) and so

L1(gl) =
∑

S∈[k] |̂(g)l(S)| = 2k · 1
2k = 1

Since f(x) =
∑

l gl(x)(output of leaf l) we have f̂(x) =
∑

l ĝl(x)(output of leaf l)

⇒ L1(f) =
∑

S |f̂(S)| = ∑
S

∑
l |ĝl(x) · (±1)| = ∑

l

∑
S |ĝl(x)| = ∑

l L1(gl) =
∑

l 1 = t

5

