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The Erdos Probabilistic Method

In order to prove the existence of a mathematical objec with desirable properties, is enough to define
appropriate probability space and to show that a random point in the space is a mathematical object
with the desirable properties with positive probability thus one can conclude that such a mathematical
object exists. The important point is that this method of proof is nonconstructive so it does not create
an example of object. (http://en.wikipedia.org/wiki/Probabilistic_method)

Example 1:
Let S be a set of objects and s1, ..., sm ⊆ S each si is of size l ≥ 2. Can we 2-color S so that
each si has one of each color?

Claim: In the global case the answer is No but for special case m < 2l−1 the answer is Yes.

Theorem 1: If m < 2l−1 exist proper 2-coloring such that each si has one of each color.

Remark. Recall the union bound: Pr[A
⋃
B] ≤ Pr[A] + Pr[B]

Proof of the Theorem 1:

• Randomly color elements of S to red/blue colors

• ∀i Pr[si monochromatic] =
1
2l

+
1
2l

=
2
2l

=
1

2l−1
(the probability to color all l

elements to same color is
1
2l

and we have 2 colors)

• Pr[∃i s.t. si monochromatic] ≤
m∑

i=1

Pr[si monochromatic] ≤
m

2l−1
< 1 (union

bound)

• Pr[all s′is properly colored] = 1− Pr[∃i s.t. si monochromatic] > 0

=⇒exists setting of colors which gives proper coloring

�

Definition: For A a subset of positive integers, A is sum-free if @a1, a2, a3 ∈ A s.t. a1 + a2 = a3.

Example 2:
Let B be a set of positive integers. Is it always exists a subset A of B such taht A is sum-free
and the size of A is > |B|

3 ?

For example for the setB = {1, ..., n} two different subsets that satisfy the claim: A = odd integers
and A′ = {n

2 + 1, ..., n}, such that the size of each of them is ≈ n
2 .
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Theorem: [Erdos] ∀B = {b1, ..., bn} exists sum-free A ⊆ B s.t. |A| > n
3 .

Remark.

• Zp = #′s mod p = {0..p− 1}
• Z∗p = #′s mod p relative prime to p = {1..p− 1}

Proof of the Erdos Theorem:

• w.l.o.g. bn is the maximal value of B.
• Pick prime p > 2 · bn s.t. p ≡ 2 (mod 3) (such number always exists, see the Dirichlet’s

theorem on arithmetic progressions
http://en.wikipedia.org/wiki/Dirichlet%27s_theorem_on_arithmetic_progressions)

• p = 2k + 3 for some integer k.
• let C = {k + 1, ..., 2k + 1}, C is sum-free even mod p because

– (k + 1) + (k + 1) = 2k + 2 > 2k + 1
– (2k + 1) + (2k + 1) = 4k + 2 = k (mod p) = k < k + 1.

• |C|
p−1 = k+1

3k+1 >
1
3

• Pick x ∈R {1..p− 1} = Z∗p
– ∀i let di ← x · bi (mod p)
– Ax ← {bi s.t. di ∈ C}

Now for finish the proof we need to show:

• ∀x Ax is sum-free
• ∃x s.t. |Ax| > n

3

Claim 1: ∀x Ax is sum-free

Proof of the Claim 1: In the way of contradiction, suppose that ∃bi, bj , bk ∈ Ax s.t. bi + bj = bk
this implies that also bi + bj ≡ bk(modp), multiply both sides by x and get x · bi + x · bj =
x · bk (mod p) but x · bi, x · bj , x · bk ∈ C contradiction to the fact that C is sum-free.
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Fact: ∀y ∈ Z∗p and ∀i there exists exactly one x ∈ Z∗p s.t. y ≡ x·bi (mod p), i.e., ∀y Pr[bi maps to y] =
1

p−1

Proof of the Fact: Z∗p is group bi ∈ Z∗p so exists b−1
i ∈ Z∗pso exists x = y · b−1

i ∈ Z∗p. If x1 · bi ≡
x2 · bi (mod p)⇒multiply both sides at from b−1

i at the right and get x1 ≡ x2 (mod p).
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Claim 2:∃x s.t. |Ax| > n
3

Proof of the Claim 2:

• From the fact that we just proved, we get that ∀i |C| choices of x make x · bi ∈ C

• let define the indicator function σi =

{
1 if x · bi ∈ C
0 otherwise

• E[σi] = Pr[σi = 1] = |C|
p−1 >

1
3

• E[|Ax|] = E[Σσi] = Σ(E[σi]) > n
3 (by the linearity of expectation)

⇒∃x s.t. |Ax| > n
3 because if for all the x’s |Ax| ≤ n

3 then max
x
|Ax| ≤ n

3 and then expecta-

tion is less equal then n
3 in contradiction to E[|Ax|] > n

3 .
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