Lecture 1

The Erdos Probabilistic Method

In order to prove the existence of a mathematical objec with desirable properties, is enough to define appropriate probability space and to show that a random point in the space is a mathematical object with the desirable properties with positive probability thus one can conclude that such a mathematical object exists. The important point is that this method of proof is nonconstructive so it does not create an example of object. (http://en.wikipedia.org/wiki/Probabilistic_method)

Example 1:

Let S be a set of objects and $s_{1}, \ldots, s_{m} \subseteq S$ each s_{i} is of size $l \geq 2$. Can we 2-color S so that each s_{i} has one of each color?

Claim: In the global case the answer is No but for special case $m<2^{l-1}$ the answer is Yes.
Theorem 1: If $m<2^{l-1}$ exist proper 2-coloring such that each s_{i} has one of each color.
Remark. Recall the union bound: $\operatorname{Pr}[A \bigcup B] \leq \operatorname{Pr}[A]+\operatorname{Pr}[B]$

Proof of the Theorem 1:

- Randomly color elements of S to red/blue colors
- $\forall i \operatorname{Pr}\left[s_{i}\right.$ monochromatic $]=\frac{1}{2^{l}}+\frac{1}{2^{l}}=\frac{2}{2^{l}}=\frac{1}{2^{l-1}}$ (the probability to color all l elements to same color is $\frac{1}{2^{l}}$ and we have 2 colors)
- $\operatorname{Pr}\left[\exists i\right.$ s.t. s_{i} monochromatic $] \leq \sum_{i=1}^{m} \operatorname{Pr}\left[s_{i}\right.$ monochromatic $] \leq \frac{m}{2^{l-1}}<1$ (union bound)
- $\operatorname{Pr}\left[\right.$ all $s_{i}^{\prime} s$ properly colored $]=1-\operatorname{Pr}\left[\exists i\right.$ s.t. s_{i} monochromatic $]>0$
\Longrightarrow exists setting of colors which gives proper coloring

Definition: For A a subset of positive integers, A is sum-free if $\nexists a_{1}, a_{2}, a_{3} \in A$ s.t. $a_{1}+a_{2}=a_{3}$.
Example 2:
Let B be a set of positive integers. Is it always exists a subset A of B such taht A is sum-free and the size of A is $>\frac{|B|}{3}$?

For example for the set $B=\{1, \ldots, n\}$ two different subsets that satisfy the claim: $A=$ odd integers and $A^{\prime}=\left\{\frac{n}{2}+1, \ldots, n\right\}$, such that the size of each of them is $\approx \frac{n}{2}$.

Theorem: [Erdos] $\forall B=\left\{b_{1}, \ldots, b_{n}\right\}$ exists sum-free $A \subseteq B$ s.t. $|A|>\frac{n}{3}$.

Remark.

- $\mathbb{Z}_{p}=\#^{\prime} s \bmod p=\{0 . . p-1\}$
- $\mathbb{Z}_{p}^{*}=\#^{\prime}$ s mod p relative prime to $p=\{1 . . p-1\}$

Proof of the Erdos Theorem:

- w.l.o.g. b_{n} is the maximal value of B.
- Pick prime $p>2 \cdot b_{n}$ s.t. $p \equiv 2(\bmod 3)$ (such number always exists, see the Dirichlet's theorem on arithmetic progressions http://en.wikipedia.org/wiki/Dirichlet\'s_theorem_on_arithmetic_progressions)
- $p=2 k+3$ for some integer k.
- let $C=\{k+1, \ldots, 2 k+1\}, C$ is sum-free even $\bmod p$ because
$-(k+1)+(k+1)=2 k+2>2 k+1$
$-(2 k+1)+(2 k+1)=4 k+2=k(\bmod p)=k<k+1$.
- $\frac{|C|}{p-1}=\frac{k+1}{3 k+1}>\frac{1}{3}$
- Pick $x \in_{R}\{1 . . p-1\}=\mathbb{Z}_{p}^{*}$
- $\forall i \quad$ let $d_{i} \leftarrow x \cdot b_{i}(\bmod p)$
- $A_{x} \leftarrow\left\{b_{i}\right.$ s.t. $\left.d_{i} \in C\right\}$

Now for finish the proof we need to show:

- $\forall x A_{x}$ is sum-free
- $\exists x$ s.t. $\left|A_{x}\right|>\frac{n}{3}$

Claim 1: $\forall x A_{x}$ is sum-free
Proof of the Claim 1: In the way of contradiction, suppose that $\exists b_{i}, b_{j}, b_{k} \in A_{x}$ s.t. $b_{i}+b_{j}=b_{k}$ this implies that also $b_{i}+b_{j} \equiv b_{k}(\bmod p)$, multiply both sides by x and get $x \cdot b_{i}+x \cdot b_{j}=$ $x \cdot b_{k}(\bmod p)$ but $x \cdot b_{i}, x \cdot b_{j}, x \cdot b_{k} \in C$ contradiction to the fact that C is sum-free.

Fact: $\forall y \in \mathbb{Z}_{p}^{*}$ and $\forall i$ there exists exactly one $x \in \mathbb{Z}_{p}^{*}$ s.t. $y \equiv x \cdot b_{i}(\bmod p)$, i.e., $\forall y \operatorname{Pr}\left[b_{i}\right.$ maps to $\left.y\right]=$ $\frac{1}{p-1}$
Proof of the Fact: \mathbb{Z}_{p}^{*} is group $b_{i} \in \mathbb{Z}_{p}^{*}$ so exists $b_{i}^{-1} \in \mathbb{Z}_{p}^{*}$ so exists $x=y \cdot b_{i}^{-1} \in \mathbb{Z}_{p}^{*}$. If $x_{1} \cdot b_{i} \equiv$ $x_{2} \cdot b_{i}(\bmod p) \Rightarrow$ multiply both sides at from b_{i}^{-1} at the right and get $x_{1} \equiv x_{2}(\bmod p)$.

Claim 2: $\exists x$ s.t. $\left|A_{x}\right|>\frac{n}{3}$

Proof of the Claim 2:

- From the fact that we just proved, we get that $\forall i|C|$ choices of x make $x \cdot b_{i} \in C$
- let define the indicator function $\sigma_{i}= \begin{cases}1 & \text { if } x \cdot b_{i} \in C \\ 0 & \text { otherwise }\end{cases}$
- $E\left[\sigma_{i}\right]=\operatorname{Pr}\left[\sigma_{i}=1\right]=\frac{|C|}{p-1}>\frac{1}{3}$
- $E\left[\left|A_{x}\right|\right]=E\left[\Sigma \sigma_{i}\right]=\Sigma\left(E\left[\sigma_{i}\right]\right)>\frac{n}{3}$ (by the linearity of expectation)
$\Rightarrow \exists x$ s.t. $\left|A_{x}\right|>\frac{n}{3}$ because if for all the x's $\left|A_{x}\right| \leq \frac{n}{3}$ then $\max _{x}\left|A_{x}\right| \leq \frac{n}{3}$ and then expectation is less equal then $\frac{n}{3}$ in contradiction to $E\left[\left|A_{x}\right|\right]>\frac{n}{3}$.

