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The Erdos Probabilistic Method

In order to prove the existence of a mathematical objec with desirable properties, is enough to define
appropriate probability space and to show that a random point in the space is a mathematical object
with the desirable properties with positive probability thus one can conclude that such a mathematical
object exists. The important point is that this method of proof is nonconstructive so it does not create
an example of object. (http://en.wikipedia.org/wiki/Probabilistic_method)

Example 1:

Let .S be a set of objects and s1, ..., s,,, € S each s; is of size [ > 2. Can we 2-color S so that
each s; has one of each color?

Claim: In the global case the answer is No but for special case m < 2!~ the answer is Yes.
Theorem 1: If m < 2!~ exist proper 2-coloring such that each s; has one of each color.
Remark. Recall the union bound: Pr[A|J B] < Pr[A] + Pr[B]

Proof of the Theorem 1:

e Randomly color elements of .S to red/blue colors
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elements to same color is o0 and we have 2 colors)

e Vi Pr[s; monochromatic] = (the probability to color all [

m
e Pr[3i s.t. s; monochromatic] < Y Prls; monochromatic] < 2;”%1 < 1 (union
i=1
bound)
e Prlall sis properly colored] =1 — Pr{3i s.t. s; monochromatic] > 0
—-exists setting of colors which gives proper coloring
O

Definition: For A a subset of positive integers, A is sum-free if a1, as, a3 € As.t. ay + az = as.

Example 2:

Let B be a set of positive integers. Is it always exists a subset A of B such taht A is sum-free
and the size of A is > % ?

For example for the set B = {1, ..., n} two different subsets that satisfy the claim: A = odd integers
and A" = {4 +1,...,n}, such that the size of each of them is ~ 7.



Theorem: [Erdos] VB = {by, ..., b, } exists sum-free A C Bs.t. [A| > 7.
Remark.

o Z,=#'smodp={0.p—1}

e Z; = #'s mod p relative prime top = {1..p — 1}
Proof of the Erdos Theorem:

e w.l.o.g. b, is the maximal value of B.

e Pick prime p > 2 - b, s.t. p = 2 (mod 3) (such number always exists, see the Dirichlet’s
theorem on arithmetic progressions
http://en.wikipedia.org/wiki/Dirichlet%27s_theorem_on_arithmetic_progressions)

p = 2k + 3 for some integer k.
let C ={k+1,...,2k + 1}, C is sum-free even mod p because
E+1)+(k+1)=2k+2>2k+1

2%+ 1)+ 2k +1) =4k +2 =k (modp) =k < k + 1.
k+1
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Pickz € {l.p— 1} = Z;
- Vi letd; — x-b; (modp)

- A, — {bZ s.t.d; € C}

—~~

Now for finish the proof we need to show:

e YV A, is sum-free
o duv st |[A] > %

Claim 1: Vz A, is sum-free

Proof of the Claim 1: In the way of contradiction, suppose that 3b;, b;, b, € A, s.t. b; +b; = by,
this implies that also b; + b; = by (modp), multiply both sides by « and get x - b; + x - b; =
x - by, (modp) but x - b;, x - bj, x - by, € C contradiction to the fact that C' is sum-free.

O

Fact: Vy € Z; and Vi there exists exactly one x € Z5 s.t. y = x-b; (modp), i.e., Vy Pr[b; maps to y] =
=
Proof of the Fact: Z7 is group b; € Z;, so exists bi_1 € Zyso exists v =y - b;l € Ly Ifxy-b; =
g - b; (mod p) =multiply both sides at from b; ' at the right and get x1 = x5 (mod p).
O
Claim 2:3z s.t. |[A,| > %
Proof of the Claim 2:

e From the fact that we just proved, we get that Vi |C| choices of z make z - b; € C
1 ifx-beC

e let define the indicator function o; = )
0 otherwise

c
o Elo;) = Prio; =1 =15 > 1
o E[|A;]] = E[X0;] = X(E[0;]) > % (by the linearity of expectation)
=3z s.t. |A;| > % because if for all the x’s |A,| < % then maz|A,| < % and then expecta-
tion is less equal then % in contradiction to E[|A,[] >

3
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