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1 Motivation

Randomness is used in many places in our daily lives. Some examples are gambling,
statistics, algorithms, cryptography etc. For such applications one typically assumes a
supply of completely unbiased and independent randim bits. This raises the problem of
where to get these assumed random bits from. We could try and use natural sources of
randomness such as sun spots, the stock market or the weather, which seem unpredictable
at least to some degree. The problem is that these natural sources are not completely
random, only somewhat random, in the sense that samples from them are often correlated
and biased. The goal of deterministic extractors is to extract completely random bits from
such “weak random sources”. One hopes to obtain extractors which would achieve this
task for as large and general families of weak sources. We will concentrate on the problem
of extracting only a single random bit, which turns out to demonstrate the variety of
problems, results and techniques in this area (in the general case we would like to get
many uncorrelated bits). We will not discuss here seeded extractors (e.g. see survey
[Sha02] and the recent [DW08]).

2 The formal model

Let D be a finite domain and let S be a family of distributions over D. An ε-extractor
for S is a function

f : D 7→ {1,−1}
such that for every X ∈ S we have

|E[f(X)]| ≤ ε.

In words, even if an adversary chooses a distribution X ∈ S, the output bit f(X) will be
nearly unbiased (up to ε ). Of course, for most applications we want f to be efficiently



computable. E.g. if the elements of D are representable by n-bit sequences, we’d like f
to be computable in time polynomial in n. We proceed to give some examples.

3 Von Neumann’s extractors

Let D = {0, 1}n and for δ < 1 denote by

Bδ = {X = (X1, . . . , Xn)|Xi are i.i.d and δ-biased}

the family of distributions sampled by n biased and independent coin tosses. Von Neu-
mann [vN51] observed that one can extract random bits from these distributions (without
knowing the value of δ) by the following simple procedure. Consider the first two coin
tosses (X1, X2) the probability of getting (0, 1) and (1, 0) are the same. Therefore, we
could output 1 if we saw the first and −1 if we got the second. If the output (X1, X2) was
either (1, 1) or (0, 0) we will try again (that is, look at the next pair (X3, X4)). The only
way this could fail is if all the pairs (X2i−1, X2i) are bad (in which case we might output
a default value, say 1). This procedure defines an efficiently computable function f which
is an ε = ε(δ)-extractor for every Bδ in which ε = exp(n), corresponding to failing on all
pairs.

The extractor above strongly uses the fact that the variables Xi are i.i.d., namely
have the same bias. Consider the family of random sources X = (X1, . . . , Xn) in which
we just guarantee independence of the coins Xi, but the biases can differ, as long as
they do not exceed δ. Even these sources can be handled very easily, simply by taking
f(X) = X1 ⊕X2 ⊕ · · · ⊕Xn. It is easy to see that f is an ε = ε(δ)-extractor for every B′

δ

with ε = exp(n).

In the two examples above it seems that the constant amount of entropy in each bit
was a key to the possibility of extraction, and its exponentially small bias. A more general
family of sources was studied by Santha and Vazirani [SV86]. Here, we remove indepen-
dence as well, and leave only the entropy guarantee for every bit. Let SVδ be the family
of distributions in which for every i random variable Xi is δ-biased conditioned on any
outcome values of the previous coin tosses (X1, . . . , Xi−1). Here, we get an impossibility
of extraction result even for every specific δ.

Theorem 3.1 ([SV86]). Fix any δ ∈ (0, 1). The no function f is not an ε-extractor SVδ

with ε < δ.

There are several proofs of this theorem, and the reader is encouraged to find one.

4 Affine sources – small fields

We will now impose algebraic structure on the domain D.
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Let D = Fn
2 and define the following family of distributions:

L2,k = {X uniform on a k-dimensional affine subspace of D}.
When k is large enough the following folklore theorem shows the existence of a simple
extractor for this family

Theorem 4.1. Suppose k > (1/2 + α)n and define

f(x1, . . . , xn) = x1x2 + x3x4 + . . . + xn−1xn.

Then f is an ε-extractor for L2,k with ε = exp(−αn).

On the other hand, it is not hard to show that almost every f will be an extractor for
L2,k with k being roughly logarithmic in n. This follows from a probabilistic argument,
estimating the probability that a random f is not exp(−k)-extractor for a fixed such X,
and then taking a union bound over all subspaces. But finding an explicit f which is
an extractor for such small dimensional subspaces is considered a very hard task. The
current state of the art is the following result of Bourgain [Bou07].

Theorem 4.2 ([Bou07]). There exists an efficient f which is an ε-extractor for L2,k for
every k = Ω(n) and ε = exp(−Ω(n)). In fact, this f is a polynomial of constant degree (a
function of n/k) in the variables Xi.

The proof is quite intricate, and uses among other things tools from arithmetic com-
binatorics. A particularly useful one, which is key to many other developments, is the
following result of Bourgain.

Theorem 4.3 ([Bou08]). Let χ : Fq 7→ C be a non trivial additive character. Let
A1, . . . , As ⊂ Fp with |Ai| > pδ. Suppose s > C/δ for sufficiently large constant C, then

∣∣∣∣∣
∑

ai∈Ai

χ(a1 · . . . · as)

∣∣∣∣∣ ≤ p−δ′ ,

with δ′ > C−s.

5 Affine sources – large fields

Here we’ll see that the extraction problem from subspaces becomes significantly easier, and
the results are much stronger, when the field size grows with n. Moreover, the techniques
use exponential sums estimates, and we’ll see how such classical results themselves may
be viewed as extractors.

Let D = Fn
p with p a prime larger than n4. We define the family of distribution Lp,k in

the same way as before, only that now the subspaces are over Fp. The following theorem
of Gabizon and Raz [GR05] gives an extractor for this family, even for lines (k = 1).
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Theorem 5.1 ([GR05]). There exists an efficient f which is an ε-extractor for Lp,k for
every k ≥ 1 and with ε = 1/n.

Note that the higher the dimension k, the larger the entropy in these random variables,
so we should expect ε to decrease with k. It is an interesting open problem to improve
the bias to ε to pΩ(k), which is achievable by a random function.

The theorem above uses the following deep result from Algebraic Geometry due to
Weil.

Theorem 5.2 ([Wei48]). Let χ be the quadratic character of Fp. Let g ∈ Fp[z] be a
polynomial which is not a square and has degree d. Then, for Z uniform in Fp

|EZ [χ(g(Z)]| ≤ d/
√

p.

We can define the following family of sources in Fp

Pd = {X = g(Z) : Z uniform in Fp}
and interpret Weil’s theorem as saying that χ is an ε extractor for Pd with ε = d/

√
p.

Note that χ is efficiently computable.

To prove the theorem of Gabizon and Raz (even for the case k = 1, which implies the
general case viewing a subspace as a union of lines) we define the following polynomial

g(x1, . . . , xn) =
n∑

i=1

x2i+1
i

and observe that for every 1-dimensional subspace V , the restriction of g to V is a nonzero
polynomial in one variable z, of degree at most 2n + 1 and is not a square (since every
monomial has odd degree). The extractor of [GR05] is therefore given by f(x) = χ(g(x)).

6 Polynomial sources

Extensions of affine sources to sources defined using higher degree polynomial equations
were studied in [DGW07, Dvi08]. In [DGW07] the model of affine source was extended
to polynomial sources which are sources sampled by low degree polynomials. That is,
sources which are sampled by choosing an element of Fk uniformly and then applying a
polynomial mapping from Fk to Fn on it. The results of [DGW07] give an extractor for
sources sampled by a polynomial mapping of degree d when the field size is at least dO(n).
This result uses among other things the exponential sum estimate of Bombieri which
extends Weil’s exponential sum (Theorem 5.2) to sums over a curve. More formally, the
variable Z in Theorem 5.2 now ranges over a curve in Fn and not over F.

In [Dvi08] a different model for low degree sources was studied. This time the source
is uniform over the set of zeros of a system of polynomial equations (a variety) of bounded
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degree d. One result in [Dvi08] gives an extractor for arbitrary sources of this kind when
the field size is at least dΩ(n2). This result relies among other things on the exponential
sum estimate of Bombieri mentioned above. The other result in [Dvi08] gives an extractor
when the field size is at least dO(1) and under the additional constraint that the variety
contains at least |F|n/2 points. This last result uses the following theorem of Deligne,
which is a strengthening of Weil theorem to higher dimensions.

Theorem 6.1 ([Del74]). Let f ∈ F[x1, . . . , xn] be a polynomial of degree d and let fd

denote its homogenous part of degree d. Suppose fd is smooth. Then, for every non trivial
additive character χ : F 7→ C∗ we have

∣∣∣∣∣
∑

x∈Fn

χ(f(x))

∣∣∣∣∣ ≤ (d− 1)n · pn/2.

7 Independent blocks

Now we leave the algebraic setting and move to a more combinatorial one, where the weak
sources have several independent parts, each with sufficient entropy.

Let D = {0, 1}n × {0, 1}n. Define the family

I2,k = {X uniform on A1 × A2, |Ai| ≥ 2k}
of all distributions composed of two independent blocks, each distributed uniformly on a
set of size at least 2k. As before, for k > (1/2+α)n we have a very simple extractor given
by the inner product function f(x, y) = (−1)<x,y>. Again, there are several proofs and
the reader is encouraged to find one.

Again, a simple probabilistic argument that most functions f will be exp(−k)-extractor
for every k >> log n. The current state of the art for explicit construction is also due to
Bourgain.

Theorem 7.1 ([Bou05]). There exists an efficient f which is an extractor for I2,k with
k = 0.4999 · n.

This theorem again uses arithmetic combinatorics, in particular the famous sum-
product growth in finite fields of Bourgain, Katz and Tao [BKT04], which has been
useful for other extractors for independent blocks mentioned below. Before turning to
them, we note that while no extractors for two independent blocks with lower entropy
(e.g. k = n/3) exists, much better results can be proved for a related notion called a
disperser.

A disperser relaxes the demand that the output of f will be close to uniform, and
only demands that it will be non constant. In other words, f(X) = {−1, 1} for every X
in the given family. Note that in this case only the supports of the given distributions
matter. We note that dispersers are a very natural objects in Ramsey theory, in which
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f may be viewed as a 2-coloring of D with the property that no subset X in our family
is monochromatic. In particular, the family I2,k corresponds to the edges of complete
bipartite graphs (equivalently, the entries of a matrix), which should be 2-colored so as to
avoid every large monochromatic complete subgraph (equivalently, submatrix). Explicit
such colorings f correspond to explicit bipartite Ramsey graphs, and symmetric colorings
f (in which f(x, y) = f(y, x)) correspond to explicit Ramsey graphs. We note that the
bipartite case is significantly harder.

Explicit dispersers for I2,k were constructed in [BKS+05] for k = Ω(n) and the further
improved in [BRSW06] for k = exp (log n).9 which is smaller than any polynomial in n.
The proofs are very long and complex, and use quite a bit of extractor machinary for
more than two blocks (mentioned below), as well as the result of Bourgain for 2 blocks
above (we note that it is critical that his result works for entropy below n/2).

The family of r-block soruces Ir,k is defined analogously for every r ≥ 2. The domain
D = ({0, 1}n)r and every X ∈ Ir,k is of the form X1×X2×· · ·×Xr with each Xi uniform
on some subset Ai of size at least 2k. Naturally, the extraction problem becomes easier the
larger r is, and the problem of extracting from any constant number r of blocks was open
for almost 20 years, since the aforementioned paper of Santha and Vazirani [SV86]. And
indeed progress for larger r preceded the case r = 2 above. First, [BIW04] used the sum-
product theorem [BKT04] to show that to efficiently extract from linearly small entropy
k = αn it suffices to have r = poly(1/α) independent blocks. This was dramatically
improved by Rao [Rao06] who showed (without arithmetic combinatroics) how to extract
from polynomially small entropy k = nβ using r = poly(1/β) independent blocks. In both
results ε = exp(−k). It remains an open problem to reduce this entropy further, or obtain
such extraction with r fixed independent of k, say r = 3 or even r = 100.
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