Homework 0

Lecturer: Ronitt Rubinfeld
Due Date: October 26,2009

Homework guidelines: The following problems are for your understanding. Do not turn it in, but make sure you can solve it.

1. Show that given any algorithm A that runs in time $T(n)$ on inputs of size n with probability of error $1 / 4$, one can convert it into a new algorithm B that runs in time $O(T(n) \log 1 / \beta)$ with probability of error at most β. (Hint: run $A O(\log 1 / \beta)$ times and take the majority answer. Use Chernoff bounds.)
2. You are given an approximation scheme \mathcal{A} for f such that $\operatorname{Pr}\left[\frac{f(x)}{1+\epsilon} \leq \mathcal{A}(x) \leq f(x)(1+\epsilon)\right] \geq$ $3 / 4$, and \mathcal{A} runs in time polynomial in $1 / \epsilon,|x|$. Construct an approximation scheme \mathcal{B} for f such that $\operatorname{Pr}\left[\frac{f(x)}{1+\epsilon} \leq \mathcal{B}(x) \leq f(x)(1+\epsilon)\right] \geq 1-\delta$, and \mathcal{B} runs in time polynomial in $\frac{1}{\epsilon},|x|, \log \frac{1}{\delta}$.
3. Show that if a graph G is ϵ-far from the class of n-vertex, degree bound $d \geq 2$, connected graphs, then G has at least $\epsilon d n / 8$ connected components, each containing less than $8 /(\epsilon d)$ vertices.
