Sublinear time algorithms	October 19, 2009
Homework 0	
Lecturer: Ronitt Rubinfeld	Due Date: October 26,2009

Homework guidelines: The following problems are for your understanding. Do not turn it in, but make sure you can solve it.

- 1. Show that given any algorithm A that runs in time T(n) on inputs of size n with probability of error 1/4, one can convert it into a new algorithm B that runs in time $O(T(n)\log 1/\beta)$ with probability of error at most β . (Hint: run $A O(\log 1/\beta)$ times and take the majority answer. Use Chernoff bounds.)
- 2. You are given an approximation scheme \mathcal{A} for f such that $Pr[\frac{f(x)}{1+\epsilon} \leq \mathcal{A}(x) \leq f(x)(1+\epsilon)] \geq 3/4$, and \mathcal{A} runs in time polynomial in $1/\epsilon, |x|$. Construct an approximation scheme \mathcal{B} for f such that $Pr[\frac{f(x)}{1+\epsilon} \leq \mathcal{B}(x) \leq f(x)(1+\epsilon)] \geq 1-\delta$, and \mathcal{B} runs in time polynomial in $\frac{1}{\epsilon}, |x|, \log \frac{1}{\delta}$.
- 3. Show that if a graph G is ϵ -far from the class of n-vertex, degree bound $d \ge 2$, connected graphs, then G has at least $\epsilon dn/8$ connected components, each containing less than $8/(\epsilon d)$ vertices.