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Lecture 9
Lecturer: Ronitt Rubinfeld Scribe: Arie Zilberstein

1 Lecture Outline

e Testing linearity of boolean functions.

e Fourier analysis basics.

2 Definitions

A function f is a boolean function if

f:{0,1}"—={0,1}.

Boolean functions are “all things to all people”: They have numerous uses in all fields of
computer sciences.

Definition 1 A function f:{0,1}" — {0,1} is linear if
f@)+ fly) = flz+y)
for every x,y € {0,1}™.

(The addition = + y is addition modulo 2 in the vector space (Zy)"; that is, x +y =
(xla"'wxn) + (yla"'7yn> = (.771 EBylv"'axn@yn)-)

Important example. The constant function f(x) = 0 is linear (f(z)+ f(y) =040 =
0= f(z+y)).

Another example. For every constant vy, Xy(a:)déf Yoict nZiy; (mod 2) = -y is a

linear function.
Claim 2 A function f: {0,1}* — {0,1} is linear < it is one of the functions x,(z).
Proof (<) We verify that x,(z) is linear:

Xy(71) + Xy (T2) = 21y + 22y = (21 + T2)y = Xy(T1 + T2).

(=) As we just proved, all x,(z) functions are linear. There are exactly 2" such functions
(choices of y). Now, let f be a linear function: f is uniquely determined by the values
on the vectors e; = (0,...,0,1,0,...,0) (with 1 at the ith coordinate, 1 <7 < n). Since
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there are 2" possible settings for the values f(e;) (1 <1i < n), there are at most 2" linear
functions. It follows that the only possible linear functions are y,(z). B

It will be useful to reason about sets S of indices instead of vectors y. We therefore
introduce another notation. Let S C {1,...,n} be a set of indices in y that are 1. Then,

let Xs(sc)déf Y ics i (mod 2).

2.1 Notational shift

From now on we consider boolean functions as f : {+1}" — {£1} rather than f :
{0,1}* — {0,1}: we map 0 — +1 and 1 — —1, and write the operation as mul-
tiplication (x -y = (z1y1,...,Tuys) for z,y € {£1}") rather than addition (x +y =
(x1 D y1,..., T, Dyy) for z,y € {0,1}"). This notational shift will turn out to be more
convenient for us.

Definition 3 A function f is a boolean function if
Fi{Ey o {21}
Definition 4 A function f: {£1}" — {£1} is linear if
f@)-fly) = f(z-y)
for every z,y € {£1}™.

Let S C {1,...,n} be a set of indices. Then, let Xg(x)déf [Lics i

3 Testing for linearity

Given a boolean function f, we wish to determine, in time sub-linear in n, whether f is
linear or whether f is “far” from linear. We now precisely define what “far” from linear
means.

Definition 5 A function f is e-close to linear if there exists a linear function g that
agrees with f on all but an e-fraction of the domain; that is,

Pulf(e) = ooy = KT =0y

Otherwise, f is e-far from linear.



Testing linearity by learning. How many queries should we issue to f in order to
check its linearity? Here’s a method based on learning theory. We make an initial guess
S C [n] by the following algorithm: First, pick a random z € { £1 }". Then, for every bit
i,1 <1 < n, we compare f(x)and f(z®") (where 2®" means z with the i’th bit inverted):
if the resulting values are different, we add i to .S, otherwise we keep S unchanged. After
n bit-switching queries, our guess of S is complete, and we can start examining whether

f(z) = xs(x).
Such an algorithm makes O(n) queries, a quantity sublinear in the size of the input
function f; we would like to improve upon this algorithm by presenting a method whose

runtime is independent of n. Our method’s query complexity will depend only on e.

3.1 Proposed tester
e Repeat r = O(Llog %) times:

— Pick z,y €g { £1 }" independently and uniformly.
— It fz) - f(y) # f(z-y):

x Output 'test fails’ and halt.

e Output 'test passes'.
Claim 6 If f is linear, Pr[tester outputs 'test passes’| = 1. B
Claim 7 If f is e-close to linear, Pr|tester outputs 'test fails| < 3e.

Proof Let f be e-close to linear, and let g be the function as defined in 5. Let A,
denote the event f(x) # g(x). Then Pr,[A,] < € and thus Pr[tester outputs 'test fails'| <
Pr, ,[A; VA,V A+, < 3e by union bound. B

Indeed, if f is e-close to linear, most tests will pass, because x and y are chosen
uniformly at random. We would like to show the opposite direction: that an f which
passes most tests is e-close to linear.

Claim 8 If f is e-far from linear, Pr[f(x) - f(y) # f(x -y)] > €.

Our main focus from here forward will be to prove Claim 8, but first we note that if f is
a function such that

Pr(f(z) - fy) # [z -y)] =€

then
Prltester outputs 'test fails'] > 1 — 3;

so we can fail the test with an arbitrarily high probability by choice of r.



4 Basics of Fourier analysis of boolean functions

G ={g:{£1}" — R} is a 2"-dimensional vector space over the field R; all functions
in G are linear combinations of 2" basis functions with real coefficients. This space is
equipped with the inner product

o) =5 O @)
ze{£1}n

We describe two bases of G.

of |1 ifx=
A natural basis. Fora e {£1}", let ea(z) n C.L ;theset £E={e,:a e {£l}"}
0 otherwise

is a basis of G.
Proof There are 2" methods in F, and every method g € G can be written as g =

D aci+1yn 9(a) €o. M

Note that FE is an orthogonal basis but not orthonormal; this is because our definition
of the inner product involves a factor of 2%

def

Fourier basis. Recall that xg(z)=[] def

ies Ti- Let I'={xg: S C [n]}.
Lemma 9 I is an orthonormal basis.

Proof Let S # T be two distinct subsets of [n]; then

1 2
(xsixs) = o, D xs(@)? =1
* =1



Let S A Td‘*’f(S UT)\ (SNT). Pick j € SAT, and denote “x with the jth bit inverted”
by ‘@®?’. Then

(Xss XT) 2nZXS )xr (@ HZ<H%H%)

x 1€S JET

= o Z H T (because {z; : i € SN T} cancel out)
rz 1€SAT

- QL"{M%}( IT =+ I1 (ﬁj»)

1€ESAT 1E€ESAT

{z,27}

JAESAT JAIESAT

2" o

JAIESAT JAIESAT

22% Z(ib’jﬂ_j)( 11 xi)=2in20:0-

{z,x®5} 1€ESAT i)

Remark The technique of separating out x; and its complement is an example of a
pairing argument. It considers together all pairs of words that differ only on a specific
coordinate; for instance, (+1,+1,—1,+1) with (+1,+1,+1,+1), (+1,+1,—1,—1) with
(+1,+1,+1,-1), (=1,—1,—1,41) with (=1, —1,4+1,+1), etc.

Corollary 10 Knowing that I' = {xs : S C [n]} is an orthonormal basis for G, we can
write every function f € G as f(x) = Y g, F(S)xs(z), where f(S) = (f, xs). ™

Definition 11 Given f € G, the Fourier coefficient f s given by f (f Xs) for every
S C [n].

4.1 Useful lemmas about the Fourier Transform

Let f be a linear function. By claim 2, f = yr for some T'. The Fourier coefficients of f

R 1 ifT=2
are f(Z) = (x1,Xxz) = 0 i)therwise (by orthonornality). We see that linear functions

exhibit a single large coefficient 1, and all the rest of the coefficients are 0.

Lemma 12

~

f(8) =1 =2Pr[f(x) # xs(z)]



Intuitively, this means that the Fourier coefficients of f give an indication of how close
f is to a linear function.

Proof
f: (f.xs)
= 0o Faxs()
1 1
3 x:f(g:;cs(x) @?TLZH_" z f(x%;s(x) w
= (1= Prlf(a) # xs(2)]) - 14 o (Prl7 () # xs() - (1)
=1-2Pr[f(z) # xs(z)]
|

Lemma 13
S#T = Prlxs(z) = xr(z)] =1/2

Proof Assume f = x7, and let S # T. By Lemma 12,
F(8) = 1= 2Pr[f(x) # xs(x)]
and from orthonormality, we have )
f(8)=0
By equating and rearranging the two equations, we get

Pr(f(z) # xs(x)] = Pr[xr(z) # xs(x)] = 1/2

which proves the lemma. B

A very important theorem in Fourier Analysis is the following:

Theorem 14 (Plancherel’s theorem) Let f,g: {+1} — R. Then
(£.9) = Bxpyc(ayn £ =D f(s
SCln]

Proof The first (left) equality is by definition of Exp and (,). To prove the rest of the
theorem, we employ the Fourier representation of f:

(f,9) = (Zsf(S)xs; Tra(T)xr) by definition of (,)

~

= 2s27 f(8)4(T){xs,xr) by bilinearity of (,)

= Y f(9)3(S) (because (xs,xr) =1if S=T and 0if S #T)
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We call special attention to the following corollary of Plancherel’s theorem:

Corollary 15 (Parseval’s Theorem) If f : {£1}" — R then (f, f) = Exp|[f(z)*] =
Y f(8). m

Specifically, for boolean f: { £1 }" — {£1} we have:

Corollary 16 (Boolean Parseval’s Theorem) If f: { £1}" — {1} then (f, f) =
Exp[f(2)] = 325 f(5)*. m

We conclude this section with two lemmas.
We define yy = 1. This is essentially the multiplication of zero elements.

Lemma 17 Exp[f] = Exp[f(2) - 1] = f(0)xo(0) = /(0). m

Lemma 18 Exp[xs(z)] = LS :Q .
0 otherwise

5 Applying Fourier analysis for linearity testing

Consider a single tester step, which samples a random z, y and tests whether f(z)f(y) =
f(zy). Since the range of f is {+1}, we turn to look at the quantity f(z)f(y)f(zy),
which is 1 if the test accepts, and —1 if the test rejects. We can convert this quantity
into an indicator variable:

1— f(x)f(y)f(zy) )0 if test accepts
2 |1 if test rejects

Definition 19 Let the rejection probability be

L — f(x)f(y)f(zy)

def
5 - EXp$,y [ 2 ]

Let the acceptable probability be

1 %, (1 (fﬂ)é (y)f(xy)

]

We now turn to stating and proving the main lemma which will assist us in proving
Claim 8.

Lemma 20 (Main Lemma)

+

N —
N | —

1—6="Pr[f(x)f(y)flzy) =1] =

> sy
S€(n]



Proof

l_5— Expy, 1+ f(2)f(y)f(zy) _ 1 + lExpw[f(x)f(y)f(xy)]

and

Exp,,[f(2)f () f(zy)] = Exp,,[(Csf(S)xs@) (s F(Txr)(Cy FU)xr(zy))]
= Exp,,[Ysre () F(T)f(U)xs(@)xr(y)xu(zy)]
= Yo f(S) () f(U)Exp[xs(z)xr(y)xv(zy)]

= ZS:T:U f(S)S-

The last equality follows from the fact that

Exp,, [xs(®)xr(y)xv(ry)]

= EXP[H T H Yj H 9€kyk]

i€S  jeT  keU

= Exp| H T H Y]

iESAU  JETAU

= Exp| H z; | Exp| H Y]

i€ESAU JETAU
1 fS=Uand T =U

= Exp[xs(2)xv(@)] - Explxr(y)xv(y)] = { 0 otherwise

Proof (of Claim 8) Assume f is e-far from linear, but Pr[f(z) - f(y) # f(z - y)] < e
Rearranging and substituting the expression for test acceptable, we get

1 —e < Pr[f(z)f(y)f(zy) =1].
By Main Lemma, we have

1 1 A
1— - - 3
€<y + 5 E f(S)
S€[n]

Rearranging, we have

1—2e< Y (9= F(9)2f(9).
S S



Let T be such that f(7) maximizes f(S) over all S € [n].
1—2¢ < f(T)) f(S)” = f(T) (by Corollary 16).
S

Using Lemma 12, we have:

1 —2e<1—-2Pr[f(z) # xr(z)] = € > Pr[f(z) # xr(z)]

Therefore f cannot be e-far from linear; a contradiction. W



