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1 Lecture Outline

• Testing linearity of boolean functions.

• Fourier analysis basics.

2 Definitions

A function f is a boolean function if

f : { 0, 1 }n → { 0, 1 }.

Boolean functions are “all things to all people”: They have numerous uses in all fields of
computer sciences.

Definition 1 A function f : { 0, 1 }n → { 0, 1 } is linear if

f(x) + f(y) = f(x+ y)

for every x, y ∈ { 0, 1 }n.

(The addition x + y is addition modulo 2 in the vector space (Z2)n; that is, x + y =
(x1, . . . , xn) + (y1, . . . , yn) = (x1 ⊕ y1, . . . , xn ⊕ yn).)

Important example. The constant function f(x) ≡ 0 is linear (f(x) + f(y) = 0 + 0 =
0 = f(x+ y)).

Another example. For every constant y, χy(x)
def
=
∑

i=1...n xiyi (mod 2) = x · y is a
linear function.

Claim 2 A function f : { 0, 1 }n → { 0, 1 } is linear ⇔ it is one of the functions χy(x).

Proof (⇐) We verify that χy(x) is linear:

χy(x1) + χy(x2) = x1y + x2y = (x1 + x2)y = χy(x1 + x2).

(⇒) As we just proved, all χy(x) functions are linear. There are exactly 2n such functions
(choices of y). Now, let f be a linear function: f is uniquely determined by the values
on the vectors ei = (0, . . . , 0, 1, 0, . . . , 0) (with 1 at the ith coordinate, 1 ≤ i ≤ n). Since
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there are 2n possible settings for the values f(ei) (1 ≤ i ≤ n), there are at most 2n linear
functions. It follows that the only possible linear functions are χy(x).

It will be useful to reason about sets S of indices instead of vectors y. We therefore
introduce another notation. Let S ⊆ {1, . . . , n} be a set of indices in y that are 1. Then,

let χS(x)
def
=
∑

i∈S xi (mod 2).

2.1 Notational shift

From now on we consider boolean functions as f : {±1 }n → {±1 } rather than f :
{ 0, 1 }n → { 0, 1 }: we map 0 7→ +1 and 1 7→ −1, and write the operation as mul-
tiplication (x · y = (x1y1, . . . , xnyn) for x, y ∈ {±1 }n) rather than addition (x + y =
(x1 ⊕ y1, . . . , xn ⊕ yn) for x, y ∈ { 0, 1 }n). This notational shift will turn out to be more
convenient for us.

Definition 3 A function f is a boolean function if

f : {±1 }n → {±1 }

Definition 4 A function f : {±1 }n → {±1 } is linear if

f(x) · f(y) = f(x · y)

for every x, y ∈ {±1 }n.

Let S ⊆ {1, . . . , n} be a set of indices. Then, let χS(x)
def
=
∏

i∈S xi.

3 Testing for linearity

Given a boolean function f , we wish to determine, in time sub-linear in n, whether f is
linear or whether f is “far” from linear. We now precisely define what “far” from linear
means.

Definition 5 A function f is ε-close to linear if there exists a linear function g that
agrees with f on all but an ε-fraction of the domain; that is,

Pr
x

[f(x) = g(x)] =
|{x : f(x) = g(x)}|

2n
≥ 1− ε.

Otherwise, f is ε-far from linear.
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Testing linearity by learning. How many queries should we issue to f in order to
check its linearity? Here’s a method based on learning theory. We make an initial guess
S ⊆ [n] by the following algorithm: First, pick a random x ∈ {±1 }n. Then, for every bit
i, 1 ≤ i ≤ n, we compare f(x) and f(x⊕i) (where x⊕i means x with the i’th bit inverted):
if the resulting values are different, we add i to S, otherwise we keep S unchanged. After
n bit-switching queries, our guess of S is complete, and we can start examining whether
f(x) = χS(x).

Such an algorithm makes O(n) queries, a quantity sublinear in the size of the input
function f ; we would like to improve upon this algorithm by presenting a method whose
runtime is independent of n. Our method’s query complexity will depend only on ε.

3.1 Proposed tester

• Repeat r = O(1
ε

log 1
β
) times:

– Pick x, y ∈R {±1 }n independently and uniformly.

– If f(x) · f(y) 6= f(x · y):

∗ Output ’test fails’ and halt.

• Output ’test passes’.

Claim 6 If f is linear, Pr[tester outputs ’test passes’] = 1.

Claim 7 If f is ε-close to linear, Pr[tester outputs ’test fails’] ≤ 3ε.

Proof Let f be ε-close to linear, and let g be the function as defined in 5. Let Ax
denote the event f(x) 6= g(x). Then Prx[Ax] ≤ ε and thus Pr[tester outputs ’test fails’] ≤
Prx,y[Ax ∨ Ay ∨ Ax+y] ≤ 3ε by union bound.

Indeed, if f is ε-close to linear, most tests will pass, because x and y are chosen
uniformly at random. We would like to show the opposite direction: that an f which
passes most tests is ε-close to linear.

Claim 8 If f is ε-far from linear, Pr[f(x) · f(y) 6= f(x · y)] ≥ ε.

Our main focus from here forward will be to prove Claim 8, but first we note that if f is
a function such that

Pr[f(x) · f(y) 6= f(x · y)] ≥ ε,

then
Pr[tester outputs ’test fails’] ≥ 1− β;

so we can fail the test with an arbitrarily high probability by choice of r.
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4 Basics of Fourier analysis of boolean functions

G = {g : {±1 }n → R} is a 2n-dimensional vector space over the field R; all functions
in G are linear combinations of 2n basis functions with real coefficients. This space is
equipped with the inner product

〈f, g〉 =
1

2n

∑
x∈{±1 }n

f(x)g(x).

We describe two bases of G.

A natural basis. For a ∈ {±1 }n, let ea(x)
def
=

{
1 if x = a

0 otherwise
; the set E ≡ {ea : a ∈ {±1 }n}

is a basis of G.
Proof There are 2n methods in E, and every method g ∈ G can be written as g =∑

a∈{±1 }n g(a) · ea.

Note that E is an orthogonal basis but not orthonormal; this is because our definition
of the inner product involves a factor of 1

2n
.

Fourier basis. Recall that χS(x)
def
=
∏

i∈S xi. Let Γ
def
={χS : S ⊆ [n]}.

Lemma 9 Γ is an orthonormal basis.

Proof Let S 6= T be two distinct subsets of [n]; then

〈χS, χS〉 =
1

2n

∑
x

χS(x)2︸ ︷︷ ︸
=1

= 1.
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Let S4 T
def
=(S ∪ T ) \ (S ∩ T ). Pick j ∈ S4 T , and denote “x with the jth bit inverted”

by ‘x⊕j’. Then

〈χS, χT 〉 =
1

2n

∑
x

χS(x)χT (x) =
1

2n

∑
x

(∏
i∈S

xj ·
∏
j∈T

xj

)
=

1

2n

∑
x

∏
i∈S4T

xi (because {xi : i ∈ S ∩ T} cancel out)

=
1

2n

∑
{x,x⊕j}

( ∏
i∈S4T

xi +
∏

i∈S4T

(x⊕j)i

)

=
1

2n

∑
{x,x⊕j}

(
xj ·

∏
j 6=i∈S4T

xi + xj ·
∏

j 6=i∈S4T

(x⊕j)i

)

=
1

2n

∑
{x,x⊕j}

(
xj ·

∏
j 6=i∈S4T

xi + xj ·
∏

j 6=i∈S4T

xi

)

=
1

2n

∑
{x,x⊕j}

(xj + xj)

( ∏
i∈S4T,i6=j

xi

)
=

1

2n

∑
0 = 0.

Remark The technique of separating out xj and its complement is an example of a
pairing argument. It considers together all pairs of words that differ only on a specific
coordinate; for instance, (+1,+1,−1,+1) with (+1,+1,+1,+1), (+1,+1,−1,−1) with
(+1,+1,+1,−1), (−1,−1,−1,+1) with (−1,−1,+1,+1), etc.

Corollary 10 Knowing that Γ = {χS : S ⊆ [n]} is an orthonormal basis for G, we can
write every function f ∈ G as f(x) =

∑
S⊂[n] f̂(S)χS(x), where f̂(S) = 〈f, χS〉.

Definition 11 Given f ∈ G, the Fourier coefficient f̂ is given by f̂
def
=〈f, χS〉 for every

S ⊆ [n].

4.1 Useful lemmas about the Fourier Transform

Let f be a linear function. By claim 2, f ≡ χT for some T . The Fourier coefficients of f

are f̂(Z) = 〈χT , χZ〉 =

{
1 if T = Z

0 otherwise
(by orthonornality). We see that linear functions

exhibit a single large coefficient 1, and all the rest of the coefficients are 0.

Lemma 12
f̂(S) = 1− 2 Pr[f(x) 6= χS(x)]
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Intuitively, this means that the Fourier coefficients of f give an indication of how close
f is to a linear function.
Proof

f̂ = 〈f, χS〉

=
1

2n

∑
x

f(x)χS(x)

=
1

2n

∑
x:f(x)=χS(x)

f(x)χS(x)︸ ︷︷ ︸
=+1

+
1

2n

∑
x:f(x)6=χS(x)

f(x)χS(x)︸ ︷︷ ︸
=−1

=
1

2n
(1− Pr[f(x) 6= χS(x)]) · 1 +

1

2n
(Pr[f(x) 6= χS(x)]) · (−1)

= 1− 2 Pr[f(x) 6= χS(x)]

Lemma 13
S 6= T ⇒ Pr[χS(x) = χT (x)] = 1/2

Proof Assume f = χT , and let S 6= T . By Lemma 12,

f̂(S) = 1− 2 Pr[f(x) 6= χS(x)]

and from orthonormality, we have
f̂(S) = 0

By equating and rearranging the two equations, we get

Pr[f(x) 6= χS(x)] = Pr[χT (x) 6= χS(x)] = 1/2

which proves the lemma.

A very important theorem in Fourier Analysis is the following:

Theorem 14 (Plancherel’s theorem) Let f, g : {±1} → R. Then

〈f, g〉 = Expx∈{±1}n [f(x)g(x)] =
∑
S⊆[n]

f̂(S)ĝ(S).

Proof The first (left) equality is by definition of Exp and 〈, 〉. To prove the rest of the
theorem, we employ the Fourier representation of f :

〈f, g〉 = 〈
∑

S f̂(S)χS,
∑

T ĝ(T )χT 〉 by definition of 〈, 〉

=
∑

S

∑
T f̂(S)ĝ(T )〈χS, χT 〉 by bilinearity of 〈, 〉

=
∑

S f̂(S)ĝ(S) (because 〈χS, χT 〉 = 1 if S = T and 0 if S 6= T )
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We call special attention to the following corollary of Plancherel’s theorem:

Corollary 15 (Parseval’s Theorem) If f : {±1}n → R then 〈f, f〉 = Exp[f(x)2] =∑
S f̂(S)2.

Specifically, for boolean f : {±1 }n → {±1 } we have:

Corollary 16 (Boolean Parseval’s Theorem) If f : {±1 }n → {±1 } then 〈f, f〉 =
Exp[f(x)2] =

∑
S f̂(S)2.

We conclude this section with two lemmas.
We define χ∅ = 1. This is essentially the multiplication of zero elements.

Lemma 17 Exp[f ] = Exp[f(x) · 1] = f̂(∅)χ∅(∅) = f̂(∅).

Lemma 18 Exp[χS(x)] =

{
1 if S = ∅
0 otherwise

.

5 Applying Fourier analysis for linearity testing

Consider a single tester step, which samples a random x, y and tests whether f(x)f(y) =
f(xy). Since the range of f is {±1 }, we turn to look at the quantity f(x)f(y)f(xy),
which is 1 if the test accepts, and −1 if the test rejects. We can convert this quantity
into an indicator variable:

1− f(x)f(y)f(xy)

2
=

{
0 if test accepts

1 if test rejects

Definition 19 Let the rejection probability be

δ
def
=Expx,y[

1− f(x)f(y)f(xy)

2
]

Let the acceptable probability be

1− δdef
=Expx,y[

1 + f(x)f(y)f(xy)

2
]

We now turn to stating and proving the main lemma which will assist us in proving
Claim 8.

Lemma 20 (Main Lemma)

1− δ = Pr[f(x)f(y)f(xy) = 1] =
1

2
+

1

2

∑
S∈[n]

f̂(s)3
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Proof

1− δ = Expxy

[
1 + f(x)f(y)f(xy)

2

]
=

1

2
+

1

2
Expxy[f(x)f(y)f(xy)]

and

Expxy[f(x)f(y)f(xy)] = Expxy[(
∑

S f̂(S)χS(x))(
∑

T f̂(T )χT (y))(
∑

U f̂(U)χT (xy))]

= Expxy[
∑

STU f̂(S)f̂(T )f̂(U)χS(x)χT (y)χU(xy)]

=
∑

STU f̂(S)f̂(T )f̂(U)Exp[χS(x)χT (y)χU(xy)]

=
∑

S=T=U f̂(S)3.

The last equality follows from the fact that

Expxy[χS(x)χT (y)χU(xy)]

= Exp[
∏
i∈S

xi
∏
j∈T

yj
∏
k∈U

xkyk]

= Exp[
∏

i∈S∆U

xi
∏

j∈T∆U

yj]

= Exp[
∏

i∈S∆U

xi]Exp[
∏

j∈T∆U

yj]

= Exp[χS(x)χU(x)] · Exp[χT (y)χU(y)] =

{
1 if S = U and T = U
0 otherwise

Proof (of Claim 8) Assume f is ε-far from linear, but Pr[f(x) · f(y) 6= f(x · y)] < ε.
Rearranging and substituting the expression for test acceptable, we get

1− ε < Pr[f(x)f(y)f(xy) = 1].

By Main Lemma, we have

1− ε < 1

2
+

1

2

∑
S∈[n]

f̂(S)3

Rearranging, we have

1− 2ε <
∑
S

f̂(S)3 =
∑
S

f̂(S)2f̂(S).
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Let T be such that f̂(T ) maximizes f̂(S) over all S ∈ [n].

1− 2ε < f̂(T )
∑
S

f̂(S)2 = f̂(T ) (by Corollary 16).

Using Lemma 12, we have:

1− 2ε < 1− 2 Pr[f(x) 6= χT (x)]⇒ ε > Pr[f(x) 6= χT (x)]

Therefore f cannot be ε-far from linear; a contradiction.
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