1 Lecture Outline

- Testing linearity of boolean functions.
- Fourier analysis basics.

2 Definitions

A function f is a boolean function if

$$
f:\{0,1\}^{n} \rightarrow\{0,1\} .
$$

Boolean functions are "all things to all people": They have numerous uses in all fields of computer sciences.

Definition 1 A function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is linear if

$$
f(x)+f(y)=f(x+y)
$$

for every $x, y \in\{0,1\}^{n}$.
(The addition $x+y$ is addition modulo 2 in the vector space $\left(\mathbb{Z}_{2}\right)^{n}$; that is, $x+y=$ $\left.\left(x_{1}, \ldots, x_{n}\right)+\left(y_{1}, \ldots, y_{n}\right)=\left(x_{1} \oplus y_{1}, \ldots, x_{n} \oplus y_{n}\right).\right)$

Important example. The constant function $f(x) \equiv 0$ is linear $(f(x)+f(y)=0+0=$ $0=f(x+y))$.

Another example. For every constant $y, \chi_{y}(x) \stackrel{\text { def }}{=} \sum_{i=1 \ldots n} x_{i} y_{i}(\bmod 2)=x \cdot y$ is a linear function.

Claim $2 A$ function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is linear \Leftrightarrow it is one of the functions $\chi_{y}(x)$.
Proof $\quad(\Leftarrow)$ We verify that $\chi_{y}(x)$ is linear:

$$
\chi_{y}\left(x_{1}\right)+\chi_{y}\left(x_{2}\right)=x_{1} y+x_{2} y=\left(x_{1}+x_{2}\right) y=\chi_{y}\left(x_{1}+x_{2}\right) .
$$

(\Rightarrow) As we just proved, all $\chi_{y}(x)$ functions are linear. There are exactly 2^{n} such functions (choices of y). Now, let f be a linear function: f is uniquely determined by the values on the vectors $e_{i}=(0, \ldots, 0,1,0, \ldots, 0)$ (with 1 at the i th coordinate, $\left.1 \leq i \leq n\right)$. Since
there are 2^{n} possible settings for the values $f\left(e_{i}\right)(1 \leq i \leq n)$, there are at most 2^{n} linear functions. It follows that the only possible linear functions are $\chi_{y}(x)$.

It will be useful to reason about sets S of indices instead of vectors y. We therefore introduce another notation. Let $S \subseteq\{1, \ldots, n\}$ be a set of indices in y that are 1 . Then, let $\chi_{S}(x) \stackrel{\text { def }}{=} \sum_{i \in S} x_{i}(\bmod 2)$.

2.1 Notational shift

From now on we consider boolean functions as $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ rather than $f:$ $\{0,1\}^{n} \rightarrow\{0,1\}$: we map $0 \mapsto+1$ and $1 \mapsto-1$, and write the operation as multiplication $\left(x \cdot y=\left(x_{1} y_{1}, \ldots, x_{n} y_{n}\right)\right.$ for $\left.x, y \in\{ \pm 1\}^{n}\right)$ rather than addition $(x+y=$ $\left(x_{1} \oplus y_{1}, \ldots, x_{n} \oplus y_{n}\right)$ for $\left.x, y \in\{0,1\}^{n}\right)$. This notational shift will turn out to be more convenient for us.

Definition $3 A$ function f is a boolean function if

$$
f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}
$$

Definition 4 A function $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ is linear if

$$
f(x) \cdot f(y)=f(x \cdot y)
$$

for every $x, y \in\{ \pm 1\}^{n}$.
Let $S \subseteq\{1, \ldots, n\}$ be a set of indices. Then, let $\chi_{S}(x) \stackrel{\text { def }}{=} \prod_{i \in S} x_{i}$.

3 Testing for linearity

Given a boolean function f, we wish to determine, in time sub-linear in n, whether f is linear or whether f is "far" from linear. We now precisely define what "far" from linear means.

Definition 5 A function f is ϵ-close to linear if there exists a linear function g that agrees with f on all but an ϵ-fraction of the domain; that is,

$$
\operatorname{Pr}_{x}[f(x)=g(x)]=\frac{|\{x: f(x)=g(x)\}|}{2^{n}} \geq 1-\epsilon .
$$

Otherwise, f is ϵ-far from linear.

Testing linearity by learning. How many queries should we issue to f in order to check its linearity? Here's a method based on learning theory. We make an initial guess $S \subseteq[n]$ by the following algorithm: First, pick a random $x \in\{ \pm 1\}^{n}$. Then, for every bit $i, 1 \leq i \leq n$, we compare $f(x)$ and $f\left(x^{\oplus i}\right)$ (where $x^{\oplus i}$ means x with the i 'th bit inverted): if the resulting values are different, we add i to S, otherwise we keep S unchanged. After n bit-switching queries, our guess of S is complete, and we can start examining whether $f(x)=\chi_{S}(x)$.

Such an algorithm makes $O(n)$ queries, a quantity sublinear in the size of the input function f; we would like to improve upon this algorithm by presenting a method whose runtime is independent of n. Our method's query complexity will depend only on ϵ.

3.1 Proposed tester

- Repeat $r=O\left(\frac{1}{\epsilon} \log \frac{1}{\beta}\right)$ times:
- Pick $x, y \in_{R}\{ \pm 1\}^{n}$ independently and uniformly.
- If $f(x) \cdot f(y) \neq f(x \cdot y)$:
* Output 'test fails' and halt.
- Output 'test passes'.

Claim 6 If f is linear, $\operatorname{Pr}[$ tester outputs 'test passes' $]=1$.
Claim 7 If f is ϵ-close to linear, $\operatorname{Pr}[$ tester outputs 'test fails' $] \leq 3 \epsilon$.
Proof Let f be ϵ-close to linear, and let g be the function as defined in 5. Let A_{x} denote the event $f(x) \neq g(x)$. Then $\operatorname{Pr}_{x}\left[A_{x}\right] \leq \epsilon$ and thus $\operatorname{Pr}[$ tester outputs 'test fails' $] \leq$ $\operatorname{Pr}_{x, y}\left[A_{x} \vee A_{y} \vee A_{x+y}\right] \leq 3 \epsilon$ by union bound.

Indeed, if f is ϵ-close to linear, most tests will pass, because x and y are chosen uniformly at random. We would like to show the opposite direction: that an f which passes most tests is ϵ-close to linear.

Claim 8 If f is ϵ-far from linear, $\operatorname{Pr}[f(x) \cdot f(y) \neq f(x \cdot y)] \geq \epsilon$.
Our main focus from here forward will be to prove Claim 8, but first we note that if f is a function such that

$$
\operatorname{Pr}[f(x) \cdot f(y) \neq f(x \cdot y)] \geq \epsilon
$$

then

$$
\operatorname{Pr}[\text { tester outputs 'test fails' }] \geq 1-\beta ;
$$

so we can fail the test with an arbitrarily high probability by choice of r.

4 Basics of Fourier analysis of boolean functions

$\mathcal{G}=\left\{g:\{ \pm 1\}^{n} \rightarrow \mathbb{R}\right\}$ is a 2^{n}-dimensional vector space over the field \mathbb{R}; all functions in \mathcal{G} are linear combinations of 2^{n} basis functions with real coefficients. This space is equipped with the inner product

$$
\langle f, g\rangle=\frac{1}{2^{n}} \sum_{x \in\{ \pm 1\}^{n}} f(x) g(x) .
$$

We describe two bases of \mathcal{G}.
A natural basis. For $a \in\{ \pm 1\}^{n}$, let $e_{a}(x) \stackrel{\text { def }}{=}\left\{\begin{array}{ll}1 & \text { if } x=a \\ 0 & \text { otherwise }\end{array}\right.$; the set $E \equiv\left\{e_{a}: a \in\{ \pm 1\}^{n}\right\}$ is a basis of \mathcal{G}.
Proof There are 2^{n} methods in E, and every method $g \in \mathcal{G}$ can be written as $g=$ $\sum_{a \in\{ \pm 1\}^{n}} g(a) \cdot e_{a}$.

Note that E is an orthogonal basis but not orthonormal; this is because our definition of the inner product involves a factor of $\frac{1}{2^{n}}$.

Fourier basis. Recall that $\chi_{S}(x) \stackrel{\text { def }}{=} \prod_{i \in S} x_{i}$. Let $\Gamma \stackrel{\text { def }}{=}\left\{\chi_{S}: S \subseteq[n]\right\}$.
Lemma 9Γ is an orthonormal basis.
Proof Let $S \neq T$ be two distinct subsets of $[n]$; then

$$
\left\langle\chi_{S}, \chi_{S}\right\rangle=\frac{1}{2^{n}} \sum_{x} \underbrace{\chi_{S}(x)^{2}}_{=1}=1 .
$$

Let $S \triangle T \xlongequal{\text { def }}(S \cup T) \backslash(S \cap T)$. Pick $j \in S \triangle T$, and denote " x with the j th bit inverted" by ' $x^{\oplus j}$ '. Then

$$
\begin{aligned}
\left\langle\chi_{S}, \chi_{T}\right\rangle & =\frac{1}{2^{n}} \sum_{x} \chi_{S}(x) \chi_{T}(x)=\frac{1}{2^{n}} \sum_{x}\left(\prod_{i \in S} x_{j} \cdot \prod_{j \in T} x_{j}\right) \\
& =\frac{1}{2^{n}} \sum_{x} \prod_{i \in S \Delta T} x_{i} \quad \text { (because }\left\{x_{i}: i \in S \cap T\right\} \text { cancel out) } \\
& =\frac{1}{2^{n}} \sum_{\left\{x, x^{\oplus j}\right\}}\left(\prod_{i \in S \Delta T} x_{i}+\prod_{i \in S \Delta T}\left(x^{\oplus j}\right)_{i}\right) \\
& =\frac{1}{2^{n}} \sum_{\left\{x, x^{\oplus j}\right\}}\left(x_{j} \cdot \prod_{j \neq i \in S \Delta T} x_{i}+\overline{x_{j}} \cdot \prod_{j \neq i \in S \Delta T}\left(x^{\oplus j}\right)_{i}\right) \\
& =\frac{1}{2^{n}} \sum_{\left\{x, x^{\oplus j}\right\}}\left(x_{j} \cdot \prod_{j \neq i \in S \Delta T} x_{i}+\overline{x_{j}} \cdot \prod_{j \neq i \in S \Delta T} x_{i}\right) \\
& =\frac{1}{2^{n}} \sum_{\left\{x, x^{\oplus j}\right\}}\left(x_{j}+\overline{x_{j}}\right)\left(\prod_{i \in S \Delta T, i \neq j} x_{i}\right)=\frac{1}{2^{n}} \sum 0=0 .
\end{aligned}
$$

Remark The technique of separating out x_{j} and its complement is an example of a pairing argument. It considers together all pairs of words that differ only on a specific coordinate; for instance, $(+1,+1,-1,+1)$ with $(+1,+1,+1,+1),(+1,+1,-1,-1)$ with $(+1,+1,+1,-1),(-1,-1,-1,+1)$ with $(-1,-1,+1,+1)$, etc.

Corollary 10 Knowing that $\Gamma=\left\{\chi_{S}: S \subseteq[n]\right\}$ is an orthonormal basis for \mathcal{G}, we can write every function $f \in \mathcal{G}$ as $f(x)=\sum_{S \subset[n]} \hat{f}(S) \chi_{S}(x)$, where $\hat{f}(S)=\left\langle f, \chi_{S}\right\rangle$.

Definition 11 Given $f \in \mathcal{G}$, the Fourier coefficient \hat{f} is given by $\hat{f} \stackrel{\text { def }}{=}\left\langle f, \chi_{S}\right\rangle$ for every $S \subseteq[n]$.

4.1 Useful lemmas about the Fourier Transform

Let f be a linear function. By claim $2, f \equiv \chi_{T}$ for some T. The Fourier coefficients of f are $\hat{f}(Z)=\left\langle\chi_{T}, \chi_{Z}\right\rangle=\left\{\begin{array}{ll}1 & \text { if } T=Z \\ 0 & \text { otherwise }\end{array}\right.$ (by orthonornality). We see that linear functions exhibit a single large coefficient 1 , and all the rest of the coefficients are 0 .

Lemma 12

$$
\hat{f}(S)=1-2 \operatorname{Pr}\left[f(x) \neq \chi_{S}(x)\right]
$$

Intuitively, this means that the Fourier coefficients of f give an indication of how close f is to a linear function.
Proof

$$
\begin{aligned}
\hat{f}=\left\langle f, \chi_{S}\right\rangle & \\
& =\frac{1}{2^{n}} \sum_{x} f(x) \chi_{S}(x) \\
& =\frac{1}{2^{n}} \sum_{x: f(x)=\chi_{S}(x)} \underbrace{f(x) \chi_{S}(x)}_{=+1}+\frac{1}{2^{n}} \sum_{x: f(x) \neq \chi_{S}(x)} \underbrace{f(x) \chi_{S}(x)}_{=-1} \\
& =\frac{1}{2^{n}}\left(1-\operatorname{Pr}\left[f(x) \neq \chi_{S}(x)\right]\right) \cdot 1+\frac{1}{2^{n}}\left(\operatorname{Pr}\left[f(x) \neq \chi_{S}(x)\right]\right) \cdot(-1) \\
& =1-2 \operatorname{Pr}\left[f(x) \neq \chi_{S}(x)\right]
\end{aligned}
$$

Lemma 13

$$
S \neq T \Rightarrow \operatorname{Pr}\left[\chi_{S}(x)=\chi_{T}(x)\right]=1 / 2
$$

Proof Assume $f=\chi_{T}$, and let $S \neq T$. By Lemma 12,

$$
\hat{f}(S)=1-2 \operatorname{Pr}\left[f(x) \neq \chi_{S}(x)\right]
$$

and from orthonormality, we have

$$
\hat{f}(S)=0
$$

By equating and rearranging the two equations, we get

$$
\operatorname{Pr}\left[f(x) \neq \chi_{S}(x)\right]=\operatorname{Pr}\left[\chi_{T}(x) \neq \chi_{S}(x)\right]=1 / 2
$$

which proves the lemma.
A very important theorem in Fourier Analysis is the following:
Theorem 14 (Plancherel's theorem) Let $f, g:\{ \pm 1\} \rightarrow \mathbb{R}$. Then

$$
\langle f, g\rangle=\operatorname{Exp}_{x \in\{ \pm 1\}^{n}}[f(x) g(x)]=\sum_{S \subseteq[n]} \hat{f}(S) \hat{g}(S) .
$$

Proof The first (left) equality is by definition of Exp and \langle,$\rangle . To prove the rest of the$ theorem, we employ the Fourier representation of f :

$$
\begin{aligned}
\langle f, g\rangle & =\left\langle\sum_{S} \hat{f}(S) \chi_{S}, \sum_{T} \hat{g}(T) \chi_{T}\right\rangle \quad \text { by definition of }\langle,\rangle \\
& =\sum_{S} \sum_{T} \hat{f}(S) \hat{g}(T)\left\langle\chi_{S}, \chi_{T}\right\rangle \quad \text { by bilinearity of }\langle,\rangle \\
& \left.=\sum_{S} \hat{f}(S) \hat{g}(S) \quad \text { (because }\left\langle\chi_{S}, \chi_{T}\right\rangle=1 \text { if } S=T \text { and } 0 \text { if } S \neq T\right)
\end{aligned}
$$

We call special attention to the following corollary of Plancherel's theorem:
Corollary 15 (Parseval's Theorem) If $f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$ then $\langle f, f\rangle=\operatorname{Exp}\left[f(x)^{2}\right]=$ $\sum_{S} \hat{f}(S)^{2}$.

Specifically, for boolean $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ we have:
Corollary 16 (Boolean Parseval's Theorem) If $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ then $\langle f, f\rangle=$ $\operatorname{Exp}\left[f(x)^{2}\right]=\sum_{S} \hat{f}(S)^{2}$.

We conclude this section with two lemmas.
We define $\chi_{\emptyset}=1$. This is essentially the multiplication of zero elements.
Lemma $17 \operatorname{Exp}[f]=\operatorname{Exp}[f(x) \cdot 1]=\hat{f}(\emptyset) \chi_{\emptyset}(\emptyset)=\hat{f}(\emptyset)$.
Lemma $18 \operatorname{Exp}\left[\chi_{S}(x)\right]=\left\{\begin{array}{ll}1 & \text { if } S=\emptyset \\ 0 & \text { otherwise }\end{array}\right.$.

5 Applying Fourier analysis for linearity testing

Consider a single tester step, which samples a random x, y and tests whether $f(x) f(y)=$ $f(x y)$. Since the range of f is $\{ \pm 1\}$, we turn to look at the quantity $f(x) f(y) f(x y)$, which is 1 if the test accepts, and -1 if the test rejects. We can convert this quantity into an indicator variable:

$$
\frac{1-f(x) f(y) f(x y)}{2}= \begin{cases}0 & \text { if test accepts } \\ 1 & \text { if test rejects }\end{cases}
$$

Definition 19 Let the rejection probability be

$$
\delta \stackrel{\text { def }}{=} \operatorname{Exp}_{x, y}\left[\frac{1-f(x) f(y) f(x y)}{2}\right]
$$

Let the acceptable probability be

$$
1-\delta \stackrel{\text { def }}{=} \operatorname{Exp}_{x, y}\left[\frac{1+f(x) f(y) f(x y)}{2}\right]
$$

We now turn to stating and proving the main lemma which will assist us in proving Claim 8.

Lemma 20 (Main Lemma)

$$
1-\delta=\operatorname{Pr}[f(x) f(y) f(x y)=1]=\frac{1}{2}+\frac{1}{2} \sum_{S \in[n]} \hat{f}(s)^{3}
$$

Proof

$$
1-\delta=\operatorname{Exp}_{x y}\left[\frac{1+f(x) f(y) f(x y)}{2}\right]=\frac{1}{2}+\frac{1}{2} \operatorname{Exp}_{x y}[f(x) f(y) f(x y)]
$$

and

$$
\begin{aligned}
\operatorname{Exp}_{x y}[f(x) f(y) f(x y)] & =\operatorname{Exp}_{x y}\left[\left(\sum_{S} \hat{f}(S) \chi_{S}(x)\right)\left(\sum_{T} \hat{f}(T) \chi_{T}(y)\right)\left(\sum_{U} \hat{f}(U) \chi_{T}(x y)\right)\right] \\
& =\operatorname{Exp}_{x y}\left[\sum_{S T U} \hat{f}(S) \hat{f}(T) \hat{f}(U) \chi_{S}(x) \chi_{T}(y) \chi_{U}(x y)\right] \\
& =\sum_{S T U} \hat{f}(S) \hat{f}(T) \hat{f}(U) \operatorname{Exp}\left[\chi_{S}(x) \chi_{T}(y) \chi_{U}(x y)\right] \\
& =\sum_{S=T=U} \hat{f}(S)^{3} .
\end{aligned}
$$

The last equality follows from the fact that
$\operatorname{Exp}_{x y}\left[\chi_{S}(x) \chi_{T}(y) \chi_{U}(x y)\right]$

$$
\begin{aligned}
& =\operatorname{Exp}\left[\prod_{i \in S} x_{i} \prod_{j \in T} y_{j} \prod_{k \in U} x_{k} y_{k}\right] \\
& =\operatorname{Exp}\left[\prod_{i \in S \Delta U} x_{i} \prod_{j \in T \Delta U} y_{j}\right] \\
& =\operatorname{Exp}\left[\prod_{i \in S \Delta U} x_{i}\right] \operatorname{Exp}\left[\prod_{j \in T \Delta U} y_{j}\right] \\
& =\operatorname{Exp}\left[\chi_{S}(x) \chi_{U}(x)\right] \cdot \operatorname{Exp}\left[\chi_{T}(y) \chi_{U}(y)\right]= \begin{cases}1 & \text { if } S=U \text { and } T=U \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Proof (of Claim 8) Assume f is ϵ-far from linear, but $\operatorname{Pr}[f(x) \cdot f(y) \neq f(x \cdot y)]<\epsilon$. Rearranging and substituting the expression for test acceptable, we get

$$
1-\epsilon<\operatorname{Pr}[f(x) f(y) f(x y)=1] .
$$

By Main Lemma, we have

$$
1-\epsilon<\frac{1}{2}+\frac{1}{2} \sum_{S \in[n]} \hat{f}(S)^{3}
$$

Rearranging, we have

$$
1-2 \epsilon<\sum_{S} \hat{f}(S)^{3}=\sum_{S} \hat{f}(S)^{2} \hat{f}(S) .
$$

Let T be such that $\hat{f}(T)$ maximizes $\hat{f}(S)$ over all $S \in[n]$.

$$
\left.1-2 \epsilon<\hat{f}(T) \sum_{S} \hat{f}(S)^{2}=\hat{f}(T) \text { (by Corollary } 16\right)
$$

Using Lemma 12, we have:

$$
1-2 \epsilon<1-2 \operatorname{Pr}\left[f(x) \neq \chi_{T}(x)\right] \Rightarrow \epsilon>\operatorname{Pr}\left[f(x) \neq \chi_{T}(x)\right]
$$

Therefore f cannot be ϵ-far from linear; a contradiction.

