0368.416701 Sublinear Time Algorithms		November 30, 2009
Lecture 7		
Lecturer: Ronitt Rubinfeld		Scribe: Udi Weinsberg and Dror Marcus

1 Lecture Topic

A lower bound for Δ-free testing (dense model).

1.1 Last Week

We saw that certain properties of dense graphs can be tested in time independent of the size of the adjacency matrix. The dependence on ϵ is a tower of two's of size $1 / \epsilon^{4}$.

Today, we will see the following in property testing in dense graphs: any tester for \triangle-freeness needs super-polynomial queries in ϵ.

2 Main Theorem

In adjacency matrix model, $\exists c$, such that any 1 -sided error tester for \triangle-free needs at least $(c / \epsilon)^{c \log (c / \epsilon)}$ queries.

Notice that since the algorithm has 1 -sided error, it must find a triangle (or \triangle) in order to say that the graph is \triangle-free. ${ }^{1}$

2.1 Testing H-freeness

The concept is to check whether a graph does not contain subgraph H.
Given that H bi-partite, and $|H|=h$:

- there is a 2 -sided error test with $O\left(\frac{1}{\epsilon}\right)$ queries.
- there is a 1 -sided error test with $O\left(h^{2}\left(\frac{1}{2 \epsilon}\right)^{\frac{n^{2}}{4}}\right)$ queries.

2.2 Goldreich-Trevisan Theorem

Given an adjacency matrix with a tester T for property P, which performs $q(n, \epsilon)$ queries.
There is a "canonical" tester T^{\prime} that uses $O\left(q(n, \epsilon)^{2}\right)$ queries:

- pick $2 q(n, \epsilon)$ nodes
- query only the sub-matrix induced by these nodes
- make decision

Note that if T has 1-sided error then T^{\prime} also has 1-sided error.
Corollary: lower bound of q^{\prime} queries for canonical algorithm with 1-sided error gives a lower bound of $\Omega\left(\sqrt{q^{\prime}}\right)$ with 1 -sided error.

[^0]
2.3 Additive Number Theory Lemma

Theorem 1. $\forall m, \exists X \subseteq M=\{1, . ., m\}$ of size at least $\frac{m}{e^{10 \sqrt{\log m}}}$ with no nontrivial ${ }^{2}$ solution to $x_{1}+x_{2}=$ $2 x_{3}$ where $x_{1}, x_{2}, x_{3} \in X$ (denoted as the "sum" property of X).
Proof Let d be integer (equal to $\left.e^{10 \sqrt{\log m}}\right)$, and $k=\left\lfloor\frac{\log m}{\log d}\right\rfloor-1,\left(k \approx \frac{\log m}{10 \sqrt{\log m}} \approx \frac{\log m}{10}\right)$.
Define $X_{B}=\left\{\sum_{i=0}^{k} x_{i} d^{i} \left\lvert\, x_{i}<\frac{d}{2}\right.\right.$ for $\left.0 \leq i \leq k, \sum_{i=0}^{k} x_{i}^{2}=B\right\}$. View $x \in M$ as represented in base $d, X=\left(x_{0}, \ldots, x_{k}\right), x_{i}<d$.

Note: x_{i} is small, therefore summing pairs of elements in X_{B} does not generate a carry.
Bound on largest number in any X_{B} :

$$
<\left(\frac{d}{2}\right) d^{k}+\left(\frac{d}{2}\right) d^{k-1}+\ldots<d^{k+1}<d^{\frac{\log m}{\log d}}=m \Rightarrow X_{B} \subseteq M
$$

Claim 2. X_{B} has the "sum" property, i.e., $\forall x, y, z \in X_{B}$ such that $x+y=2 z$ it must be that $x=y=z$.
Proof of claim: For $\forall x, y, z \in X_{B}$:

$$
\begin{gathered}
x+y=2 z \Leftrightarrow \sum_{i=0}^{k} x_{i} d^{i}+\sum_{i=0}^{k} y_{i} d^{i}=2 \sum_{i=0}^{k} z_{i} d^{i} \\
\Leftrightarrow x_{0}+y_{0}=2 z_{0} \\
x_{1}+y_{1}=2 z_{1} \\
\cdots \\
x_{k}+y_{k}=2 z_{k}
\end{gathered}
$$

Subclaim If the above holds then $\forall i, x_{i}^{2}+y_{i}^{2} \geq 2 z_{i}^{2}$ with equality only if $x_{i}=y_{i}=z_{i}$.
Proof of Subclaim: $f(a)=a^{2}$ is strictly convex. Using Jensen's inequality:

$$
\begin{gathered}
\frac{\sum_{i=1}^{n} f\left(a_{i}\right)}{n} \geq f\left(\frac{\sum a_{i}}{n}\right), \text { with equality only if } a_{1}=a_{2}=\ldots=a_{n} \\
\Rightarrow \frac{x_{i}^{2}+y_{i}^{2}}{2} \geq\left(\frac{x_{i}+y_{i}}{2}\right)^{2}=z_{i}^{2} \Rightarrow x_{i}^{2}+y_{i}^{2} \geq 2 z_{i}^{2}, \text { with equality only if } x_{i}=y_{i}=z_{i}
\end{gathered}
$$

■(subclaim)
Assume that $(x=y=z)$ does not hold, i.e. $\exists i$ such that not $\left(x_{i}=y_{i}=z_{i}\right)$.
From the subclaim we get that:

- For this $i, x_{i}^{2}+y_{i}^{2}>2 z_{i}^{2}$
- For all other i 's, $x_{i}^{2}+y_{i}^{2} \geq 2 z_{i}^{2}$
$\therefore \sum_{i=0}^{k} x_{i}+\sum_{i=0}^{k} y_{i}>2 \sum_{i=0}^{k} z_{i}$
Recall from the definition of X_{B} that $B=\sum_{i=0}^{k} x_{i}=\sum_{i=0}^{k} y_{i}=\sum_{i=0}^{k} z_{i}=$, so we got that $B+B>$ $2 B$ which is a contradiction!
■(claim 2)

[^1]Claim 3. X_{B} can be selected such that $\left|X_{B}\right| \geq \frac{m}{e^{10 \sqrt{\log m}}}$
Proof of claim: Pick B to maximize $\left|X_{B}\right|$.
How big is X_{B} ?

$$
\begin{gathered}
B \leq(k+1)\left(\frac{d}{2}\right)^{2}<k \cdot d^{2} \\
\sum\left|X_{B}\right|=\left|\bigcup X_{B}\right|=\left(\frac{d}{2}\right)^{k+1}>\left(\frac{d}{2}\right)^{k} \\
\left.\Rightarrow \exists B, \text { such that }\left|X_{B}\right| \geq \frac{\left(\frac{d}{2}\right)^{k}}{k \cdot d^{2}} \geq \frac{m}{e^{10 \sqrt{\log m}}} \text { (by choice of } d, k\right)
\end{gathered}
$$

■(claim 3)

The additive number theory theorem immediately follows from Claims 2 and 3

2.4 Proof of Main Theorem

2.4.1 Proof Outline

We will show a graph, with the help of the additive number theory, for which any canonical triangle-free tester must use $q>\left(\frac{c^{*}}{\epsilon}\right)^{c^{*} \log \frac{c^{*}}{\epsilon}}$ queries. From the Goldreich-Trevisan theorem we will conclude a lower bound of $(c / \epsilon)^{c \log (c / \epsilon)}$ queries for any triangle-free tester.

2.4.2 Initial Graph

Figure 1: Graph G build using three node groups. Each node in the set V_{1} is connected to $|X|$ nodes in V_{2} and $|X|$ nodes in V_{3}. Each node in the set V_{2} is also connected to additional $|X|$ nodes in V_{3}

Given a sum-free $X \subseteq\{1 . . m\}$ we create a tri-partite graph G :

- Nodes of the graph are divided into 3 sets $-V_{1}=\{1 . . m\}, V_{2}=\{1 . .2 m\}, V_{3}=\{1 . .3 m\}$
- Nodes from V_{1} are connected to nodes from V_{2} using edges $(x, x+\ell), \forall x, \ell \in X$
- Nodes from V_{1} are connected to nodes from V_{3} using edges $(x, x+2 \ell), \forall x, \ell \in X$
- Nodes from V_{2} are connected to nodes from V_{3} using edges $(x, x+\ell), \forall x, \ell \in X$
- There are no edges between two nodes of the same set

Definition 1. Intended Triangle: Triangles created by $x, x+l, x+2 l\left(x \in V_{1}, l \in \ell\right)$ are defined as "intended triangles".

Figure 2: Example of an intended triangle.

Claim 4. The total number of triangles in G is equal to $m|X|$, moreover all triangles in G are "intended triangles".
Proof of claim: Let $\triangle(u, v, w)$ be a triangle in G, connected by the edges l_{1}, l_{2}, l_{3}. There are no internal edges \Rightarrow without loss of generality. $u \in V_{1}, v \in V_{2}, w \in V_{3}$
By definition of $G: u+l_{1}=v, v+l_{2}=w, u+2 l_{3}=w=v+l_{2}=u+l_{1}+l_{2} \Rightarrow 2 l_{3}=l_{1}+l_{2} \Rightarrow l_{1}=l_{2}=l_{3}$ and we get that $\triangle(u, v, w)$ is an intended triangle.

- The total number of nodes in $\mathrm{G}=6 \mathrm{~m}$
- The total number number of edges in $\mathrm{G}=\Theta(m|x|)=\Theta\left(\frac{n^{2}}{e^{10 \sqrt{1 \log n}}}\right)$

So $m|X|$ such intended triangles exits. \square (claim 4)

Claim 5. Intended triangles are edge disjoint (i.e. there are no two intended triangles with the same edge)

Figure 3: Intended triangles disjoint proof.

Proof Idea Assume $u, v \in V_{1}$ are on both nodes in an intended triangle with a shared edge ℓ, as in figure 3. The triangle share two nodes so we get that $u+\ell=v+\ell$ and $u+2 \ell=v+2 \ell$ therefore $u=v$. Similarly we can show that any other edge in the triangle can't be shared

Corollary 6. Since triangles are edge disjoint and must remove ≥ 1 edges from each triangle to make graph G \triangle-free, then the absolute distance to \triangle-free is $m|X|\left(=\epsilon \cdot n^{2}\right)$. In other words, the distance to \triangle-free $=\frac{m|X|}{(6 m)^{2}}=\Theta\left(\frac{|X|}{m}\right)=\Theta\left(\frac{1}{e^{10 \sqrt{\log m}}}\right)$.

$V_{3}=\{1.3 m\}$

Figure 4: Graph Blow Up $G^{(s)}$.

2.4.3 Graph Blow Up

We now show a graph that is $\epsilon-f a r$ from being \triangle-free, yet any canonical triangle-free tester must use $q>\left(\frac{c^{*}}{\epsilon}\right)^{c^{*} \log \frac{c^{*}}{\epsilon}}$ queries in order to find a triangle with high probability for some chosen ϵ.

Let $G^{(s)}$ be a blown up version of the initial graph G shown above:

- Each vertex in G is blow up to be an independent set of size s in $G^{(s)}$.
- Each edge in G is a complete bipartite group in $G^{(s)}$.
- We get that for any triangle in G we get s^{3} triangles in $G^{(s)}$, and there are no new \triangle 's in $G^{(s)}$.

The parameters of $G^{(s)}$:

- number of nodes: $m \cdot s$
- number of edges: $m|x| \cdot s^{2}$
- number of $\triangle: m|x| \cdot s^{3}$

Claim 7. Number of edges that need to be removed from $G^{(s)}$ to make it \triangle-free is \geq numberofedge disjoint \triangle 's $\geq m|X| \cdot s^{2}$.
(Left to prove in the next problem set).
Claim 8. Given ϵ there exists a graph $G^{(s)}$ such that for any canonical tester $\mathrm{T}, \operatorname{Pr}[\mathrm{T}$ sees any triangle] $\ll 1$ unless the \# of queries in $\mathrm{T}>\left(\frac{c^{*}}{\epsilon}\right)^{c^{*} \log \frac{c^{*}}{\epsilon}}$ for some constant c^{*}.

Proof

Given ϵ, pick m to be the largest integer satisfying $\epsilon \leq \frac{1}{e^{10 \sqrt{\log m}}}$.
This m satisfies $m \geq\left(\frac{c}{\epsilon}\right)^{c \log \frac{c}{\epsilon}}$ for some c.
Pick $s=\frac{n}{6 m} \approx n \cdot\left(\frac{\epsilon}{c^{\prime}}\right)^{c \log \frac{c^{\prime}}{\epsilon}}$, so

$$
\# e d g e s \approx \operatorname{distance}(\text { absolute }) \approx m|X| \cdot s^{2} \approx \frac{m \cdot m}{e^{10 \sqrt{\log m}}} \cdot \frac{n^{2}}{(6 m)^{2}}=\epsilon n^{2}
$$

$$
\# \text { triangles } \approx\left(\frac{\epsilon}{c^{\prime \prime}}\right)^{c^{\prime \prime} \log \frac{c^{\prime \prime}}{\epsilon}}
$$

Finally, if we take a sample of size q :

$$
E[\text { Number of } \triangle \text { 's in sample }]<\frac{\binom{q}{3}\left(\frac{\epsilon}{c^{\prime \prime}}\right)^{c^{\prime \prime} \log \frac{c^{\prime \prime}}{\epsilon}} \cdot n^{3}}{\binom{n}{3}} \ll 1
$$

unless $q>\left(\frac{c^{*}}{\epsilon}\right)^{c^{*} \log \frac{c^{*}}{\epsilon}}$.
By Markov's inequality, $\operatorname{Pr}[$ see any triangle $] \ll 1$.

A 1-sided error sampling algorithm must see a triangle to fail, and by the last claim and the GoldreichTrevisan theorem we get that a any tester must use at least $(c / \epsilon)^{c \log (c / \epsilon)}$ queries to see a triangle in $G^{(s)}$ with high probability.

[^0]: ${ }^{1}$ This is because if it does not always find a triangle, then there is an input which does not have a triangle (namely the input which has 0's everywhere that the algorithm didn't query) which has positive probability of causing the testing algorithm to output triangle-free. If this is the case, then the algorithm does not have 1-sided error.

[^1]: ${ }^{2} \mathrm{~A}$ trivial solution is defined as $x_{1}=x_{2}=x_{3}$

