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Lecture 7
Lecturer: Ronitt Rubinfeld Scribe: Udi Weinsberg and Dror Marcus

1 Lecture Topic
A lower bound for ∆-free testing (dense model).

1.1 Last Week
We saw that certain properties of dense graphs can be tested in time independent of the size of the
adjacency matrix. The dependence on ε is a tower of two’s of size 1/ε4.

Today, we will see the following in property testing in dense graphs: any tester for 4-freeness needs
super-polynomial queries in ε.

2 Main Theorem
In adjacency matrix model, ∃c, such that any 1-sided error tester for 4-free needs at least (c/ε)c log(c/ε)

queries.
Notice that since the algorithm has 1-sided error, it must find a triangle (or 4) in order to say that

the graph is 4-free.1

2.1 Testing H-freeness
The concept is to check whether a graph does not contain subgraph H.

Given that H bi-partite, and |H| = h:

• there is a 2-sided error test with O( 1
ε ) queries.

• there is a 1-sided error test with O(h2( 1
2ε )

n2
4 ) queries.

2.2 Goldreich-Trevisan Theorem
Given an adjacency matrix with a tester T for property P , which performs q(n, ε) queries.

There is a “canonical" tester T ′ that uses O
(
q (n, ε)2

)
queries:

• pick 2q(n, ε) nodes

• query only the sub-matrix induced by these nodes

• make decision

Note that if T has 1-sided error then T ′ also has 1-sided error.
Corollary: lower bound of q′ queries for canonical algorithm with 1-sided error gives a lower bound

of Ω(
√
q′) with 1-sided error.

1This is because if it does not always find a triangle, then there is an input which does not have a triangle (namely
the input which has 0’s everywhere that the algorithm didn’t query) which has positive probability of causing the testing
algorithm to output triangle-free. If this is the case, then the algorithm does not have 1-sided error.
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2.3 Additive Number Theory Lemma
Theorem 1. ∀m,∃X ⊆M = {1, ..,m} of size at least m

e10
√

logm with no nontrivial2 solution to x1 +x2 =
2x3 where x1, x2, x3 ∈ X (denoted as the "sum" property of X).

Proof Let d be integer (equal to e10
√

logm), and k =
⌊

logm
log d

⌋
− 1,

(
k ≈ logm

10
√

logm
≈ logm

10

)
.

Define XB =
{∑k

i=0 xid
i|xi < d

2 for 0 ≤ i ≤ k,
∑k
i=0 x

2
i = B

}
. View x ∈ M as represented in base

d, X = (x0, ..., xk), xi < d.
Note: xi is small, therefore summing pairs of elements in XB does not generate a carry.
Bound on largest number in any XB :

<

(
d

2

)
dk +

(
d

2

)
dk−1 + ... < dk+1 < d

logm
log d = m⇒ XB ⊆M

Claim 2. XB has the “sum" property, i.e., ∀x, y, z ∈ XB such that x+y = 2z it must be that x = y = z.

Proof of claim: For ∀x, y, z ∈ XB :

x+ y = 2z ⇔
k∑
i=0

xid
i +

k∑
i=0

yid
i = 2

k∑
i=0

zid
i

⇔ x0 + y0 = 2z0

x1 + y1 = 2z1
...

xk + yk = 2zk
Subclaim If the above holds then ∀i, x2

i + y2
i ≥ 2z2

i with equality only if xi = yi = zi.
Proof of Subclaim: f(a) = a2 is strictly convex. Using Jensen’s inequality:∑n

i=1 f(ai)
n

≥ f
(∑

ai
n

)
, with equality only if a1 = a2 = ... = an

⇒ x2
i + y2

i

2
≥
(
xi + yi

2

)2

= z2
i ⇒ x2

i + y2
i ≥ 2z2

i , with equality only if xi = yi = zi

(subclaim)

Assume that (x = y = z) does not hold, i.e. ∃i such that not (xi = yi = zi).
From the subclaim we get that:

• For this i, x2
i + y2

i > 2z2
i

• For all other i’s, x2
i + y2

i ≥ 2z2
i

∴
∑k
i=0 xi +

∑k
i=0 yi > 2

∑k
i=0 zi

Recall from the definition of XB that B =
∑k
i=0 xi =

∑k
i=0 yi =

∑k
i=0 zi =, so we got that B +B >

2B which is a contradiction!
(claim 2)

2A trivial solution is defined as x1 = x2 = x3
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Claim 3. XB can be selected such that |XB | ≥ m
e10
√

logm

Proof of claim: Pick B to maximize |XB |.
How big is XB?

B ≤ (k + 1)
(
d

2

)2

< k · d2

∑
|XB | =

∣∣∣⋃XB

∣∣∣ =
(
d

2

)k+1

>

(
d

2

)k

⇒ ∃B, such that |XB | ≥
(
d
2

)k
k · d2

≥ m

e10
√

logm
(by choice of d, k)

(claim 3)

The additive number theory theorem immediately follows from Claims 2 and 3

2.4 Proof of Main Theorem
2.4.1 Proof Outline

We will show a graph, with the help of the additive number theory, for which any canonical triangle-free

tester must use q >
(
c∗

ε

)c∗ log c∗
ε

queries. From the Goldreich-Trevisan theorem we will conclude a lower

bound of (c/ε)c log(c/ε) queries for any triangle-free tester.

2.4.2 Initial Graph

Figure 1: Graph G build using three node groups. Each node in the set V1 is connected to |X|
nodes in V2 and |X| nodes in V3. Each node in the set V2 is also connected to additional |X| nodes in V3

Given a sum-free X ⊆ {1..m} we create a tri-partite graph G:

• Nodes of the graph are divided into 3 sets - V1 = {1..m}, V2 = {1..2m}, V3 = {1..3m}

• Nodes from V1 are connected to nodes from V2 using edges (x, x+ `), ∀x, ` ∈ X

• Nodes from V1 are connected to nodes from V3 using edges (x, x+ 2`), ∀x, ` ∈ X
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• Nodes from V2 are connected to nodes from V3 using edges (x, x+ `), ∀x, ` ∈ X

• There are no edges between two nodes of the same set

Definition 1. Intended Triangle: Triangles created by x, x + l, x + 2l (x ∈ V1, l ∈ `) are defined as
"intended triangles".

Figure 2: Example of an intended triangle.

Claim 4. The total number of triangles in G is equal to m|X|, moreover all triangles in G are "intended
triangles".

Proof of claim: Let 4(u, v, w) be a triangle in G, connected by the edges l1, l2, l3. There are no
internal edges ⇒ without loss of generality. u ∈ V1, v ∈ V2, w ∈ V3

By definition of G: u+ l1 = v, v+ l2 = w, u+2l3 = w = v+ l2 = u+ l1 + l2 ⇒2l3 = l1 + l2 ⇒ l1 = l2 = l3
and we get that 4(u, v, w) is an intended triangle.

• The total number of nodes in G = 6m

• The total number number of edges in G =Θ(m|x|) = Θ
(

n2

e10
√

1 logn

)
So m|X| such intended triangles exits. (claim 4)

Claim 5. Intended triangles are edge disjoint (i.e. there are no two intended triangles with the same
edge)

Figure 3: Intended triangles disjoint proof.

Proof Idea Assume u, v ∈ V1 are on both nodes in an intended triangle with a shared edge `, as in
figure 3. The triangle share two nodes so we get that u+ ` = v + ` and u+ 2` = v + 2` therefore u = v.
Similarly we can show that any other edge in the triangle can’t be shared
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Corollary 6. Since triangles are edge disjoint and must remove ≥ 1 edges from each triangle to make
graph G 4-free, then the absolute distance to 4-free is m|X|(= ε · n2). In other words, the distance to
4-free = m|X|

(6m)2 = Θ
(
|X|
m

)
= Θ

(
1

e10
√

logm

)
.

Figure 4: Graph Blow Up G(s).

2.4.3 Graph Blow Up

We now show a graph that is ε− far from being 4-free, yet any canonical triangle-free tester must use

q >
(
c∗

ε

)c∗ log c∗
ε

queries in order to find a triangle with high probability for some chosen ε.

Let G(s) be a blown up version of the initial graph G shown above:

• Each vertex in G is blow up to be an independent set of size s in G(s).

• Each edge in G is a complete bipartite group in G(s).

• We get that for any triangle in G we get s3 triangles in G(s), and there are no new 4’s in G(s).

The parameters of G(s):

• number of nodes: m · s

• number of edges: m|x| · s2

• number of 4: m|x| · s3

Claim 7. Number of edges that need to be removed from G(s) to make it 4-free is ≥ numberofedge−
disjoint4’s ≥ m|X| · s2.

(Left to prove in the next problem set).

Claim 8. Given ε there exists a graph G(s) such that for any canonical tester T, Pr[T sees any triangle]

� 1 unless the # of queries in T >
(
c∗

ε

)c∗ log c∗
ε

for some constant c∗.

Proof
Given ε, pick m to be the largest integer satisfying ε ≤ 1

e10
√

logm .

This m satisfies m ≥
(
c
ε

)c log c
ε for some c.

Pick s = n
6m ≈ n ·

(
ε
c′

)c log c′
ε , so

#edges ≈ distance(absolute) ≈ m|X| · s2 ≈ m ·m
e10
√

logm
· n2

(6m)2
= εn2
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#triangles ≈
( ε
c′′

)c′′ log c
′′

ε

Finally, if we take a sample of size q:

E [Number of 4 ’s in sample ] <

(
q
3

) (
ε
c′′

)c′′ log c
′′

ε · n3(
n
3

) � 1

unless q >
(
c∗

ε

)c∗ log c∗
ε

.
By Markov’s inequality, Pr[see any triangle] � 1.

A 1-sided error sampling algorithm must see a triangle to fail, and by the last claim and the Goldreich-
Trevisan theorem we get that a any tester must use at least (c/ε)c log(c/ε) queries to see a triangle in G(s)

with high probability.
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