November 16, 2009

Lecture 5

Lecturer: Ronitt Rubinfeld

Scribe: Hadas Birin& Michal Rosen

1 Lecture Outline

So far, we covered algorithms on sparse graphs, where the bound on the degree d assisted us in achieving sub linear time. The input to these algorithms were graphs represented by adjacency lists. Today we will explore property testing in dense graphs:

- Testing Bipartiteness
- A canonical tester

2 Property Testing of dense Graphs

Definition 2.1 (Adjacency Matrix Model) Given a graph G = (V, E), an algorithm in the Adjacency Matrix Model receives G as input in the form of a matrix A such that

$$A_{ij} = \begin{cases} 1 & (i,j) \in E \\ 0 & otherwise \end{cases}$$

For a given (i, j), querying A_{ij} is one time step.

We often refer to an entry in the adjacency matrix as an edge slot.

Definition 2.2 (Graph Property) A graph property P is a property of graphs that depends only on the abstract structure, not on graph representations such as particular labellings or drawings of the graph. Given a property P and a domain D, let $\mathcal{P} = \{G \in D \mid G \text{ has property } P\}$.

Definition 2.3 (ϵ -far from \mathfrak{P}) Given a property P and a graph G, let $G' \in \mathfrak{P}$ be a graph with the minimal number of changes to edge slots in G's adjacency matrix. G is ϵ -far from \mathfrak{P} if the number of change slots between G and G' is at least ϵn^2 .

Definition 2.4 (Property Tester) A property tester \mathcal{T} for the property P is defined by

if $x \in \mathcal{P}$, then with high probability $\mathcal{A}(x) = pass$ if x is ϵ -far from \mathcal{P} , then with high probability $\mathcal{A}(x) = fail$

3 Testing Bipartiteness

Definition 3.1 (Bipartite Graph) Given a graph G = (V, E), G is **bipartite** if there exists a partition of V into (V_1, V_2) such that $\forall (u, v) \in E$, $u \in V_i$ and $v \in V_j$ for $i \neq j$.

Definition 3.2 (Violating Edge) Given a graph G = (V, E), a partition (V_1, V_2) of V and an edge $(u, v) \in E$, we say that (u, v) violates (V_1, V_2) if $u, v \in V_1$ or $u, v \in V_2$. So G is bipartite if and only if there exists a partition of V with no violating edges.

Remark The property of bipartiteness is anti-monotone, i.e. to make a non-bipartite graph g be bipartite, we must remove edges. This leads to an equivalent definition for being ϵ -far from bipartiteness.

Definition 3.3 (*\epsilon*-far from bipartite) For two graphs G, G', dist(G, G') is the fraction of locations in A that are different (i.e. all i, j such that $A_{ij}^G \neq A_{ij}^{G'}$). G is ϵ -far from property P if for all G' that have property P, $dist(G, G') > \epsilon$.

Remark

- 1. For sparse graphs with less than ϵn^2 edges, the definition above is not interesting as we can remove all edges to make the graph bipartite, and therefore a tester can always output pass.
- 2. For sparse graphs, the sample complexity for testing bipartiteness is known to have a lower bound of $\Omega(\sqrt{n})$.
- 3. The best lower bound known in this model, the adjacency matrix model, is $\widehat{\Omega}(\frac{1}{\epsilon^{1.5}})$, due to: A. Bogdanov and L. Trevisan. Lower bounds for testing bipartiteness in dense graphs.
- 4. With methods similar to the ones we'll use today, we can test for 3-coloring in constant time!

We will now make a first attempt at testing for bipartiteness. How about sampling $m = \theta(\frac{1}{\epsilon} \log \frac{1}{\delta})$ edges? Assume G is ϵ -far from being bipartite, therefore it has $\geq \epsilon n^2$ violating edges. Therefore,

$$\Pr_{e \in {}_R E}[e \text{ is not a violating edge}] < 1 - \epsilon$$

Then for all m samples:

 $\Pr[\text{We didn't hit a violating edge in all } m \text{ samples}] < (1 - \epsilon)^m$

Therefore,

 $\Pr[\text{Hitting a violating edge in at least one of } m \text{ samples}] \geq 1 - (1 - \epsilon)^m = 1 - (1 - \epsilon)^{\frac{1}{\epsilon} ln\frac{1}{\delta}} \approx 1 - e^{-ln\frac{1}{\delta}} = 1 - \delta$

The problem is that an edge is violating with respect to a given partition. In order to reject graphs that are ϵ -far from bipartite, we need to test whether for every partition there are at least ϵn^2 violating edges.

Lets try checking all possible partitions.

Algorithm 3.1 TestBipartite 0 (G)
1. Pick m = θ(¹/_ε log ¹/_δ) random edge slots (i, j) and query A_{ij}.
2. For every partition (V₁, V₂):

(a) violating_(V1,V2) = the number of violating edges in the sample with respect to (V₁, V₂)
(b) If violating_(V1,V2) = 0 output PASS

3. Output FAIL

Figure 1: TestBipartite 0.

Claim 3.4 TestBipartite 0 is a tester for bipartiteness.

Proof If G is bipartite, then there exists a partition of V into (V_1, V_2) with no violating edges. When *TestBipartite* 0 iterates all possible partitions, it will also check partition (V_1, V_2) and output PASS. Assume G is ϵ -far from bipartite.

For any partition of V into (V_1, V_2) there are at least ϵn^2 violating edges. The algorithm samples m independent samples and so for every partition (V_1, V_2) we have that

 $\Pr[violating_{V_1,V_2} > 0] \ge 1 - (1 - \epsilon)^m \ge 1 - (1 - \epsilon)^{\frac{1}{\epsilon} ln\frac{1}{\delta}} \approx 1 - e^{-ln\frac{1}{\delta}} = 1 - \delta$

With union bound on all partitions we get

 $Pr[\forall V_1, V_2 \ violating_{V_1, V_2} > 0] \ge (1 - \delta)^{2^n}$

So if we take $\delta < \frac{1}{2^n}$ we get that $TestBipartite \ 0$ is indeed a tester for bipartiteness.

Observation 3.5 By the proof above, the running time of TestBipartite 0 is $\Omega(\frac{1}{\epsilon} \log \frac{1}{\frac{1}{2^n}}) = \Omega(\frac{n}{\epsilon})$, i.e. sub-linear in the size of the input (which is $O(n^2)$).

Algorithm 3.2 TestBipartite 1

- 1. (a) Choose U nodes uniformly, s.t $|U| = \Theta\left(\frac{1}{\epsilon}\log\frac{1}{\epsilon}\right)$
 - (b) Choose U' nodes uniformly, s.t $|U'| = \Theta\left(\frac{1}{\epsilon^2}\log\frac{1}{\epsilon}\right)$. Think of U' as a group of pairs: $U' = P = \{(v_1, u_1), (v_2, u_2) \dots\}$
- 2. $\forall (U_1, U_2)$ partition of U:
 - (a) Check $\forall (u_i, v_i) \in P: X_i = DoesViolatePartition(U_1, U_2, u_i, v_i).$
 - (b) If $\frac{1}{|P|} \sum_{i=1}^{|P|} X_i \leq \frac{3}{4} \epsilon$ ACCEPT and halt. Else continue.
- 3. FAIL

Figure 2: TestBipartite 1

DoesViolatePartition checks if the pair (u_i, v_i) violates the partition $(V_a^{U_1, U_2}, V_b^{U_1, U_2})$, which we induce from (U_1, U_2) to the rest of the graph as follows:

Algorithm 3.3 Induce ToRest Of Graph (U_1, U_2, V, E) 1. $\forall u \in U_1$: put $u \in V_a^{U_1, U_2}$. 2. $\forall u \in U_2$: put $u \in V_b^{U_1, U_2}$. 3. $\forall u \in V \setminus (U_1 \cup U_2)$: (a) If u has a neighbor in U_1 : put $u \in V_b^{U_1, U_2}$. (b) else: put $u \in V_a^{U_1, U_2}$.

Figure 3: InduceToRestOfGraph.

Note: We don't need to run *InduceToRestOfGraph* in advance. We will run it only for the vertices in P to figure out in which part of the partition $\{V_a^{U_1,U_2}, V_b^{U_1,U_2}\}$ they fall. For each vertex v it will take $O\left(\frac{1}{\epsilon}\log\frac{1}{\epsilon}\right)$ (to check if $v \in U_1, v \in U_2$, or checking neighbors).

Theorem 3.6 TestBipartite 1 is a property tester for bipartiteness. More precisely,

Figure 4: InduceToRestOfGraph

Algorithm 3.4 Does Violate Partition (U_1, U_2, u_i, v_i)

- 1. Find $x \in \{a, b\}$ for u_i , where $u_i \in V_x^{U_1, U_2}$ according to InduceToRestOfGraph.
- 2. Find $y \in \{a, b\}$ for v_i , where $v_i \in V_y^{U_1, U_2}$ according to InduceToRestOfGraph.
- 3. If x = y return 1.
- 4. Else return 0.

Figure 5: DoesViolatePartition.

- (1) if G is bipartite, TestBipartite 1 PASSES with probability $\geq \frac{3}{4}$.
- (2) if G is ϵ far from bipartiteness, Pr[TestBipartite 1 outputs FAIL $] \geq \frac{7}{8}$.

Proof of Theorem 1(1):

Assume G is bipartite. Therefore, there exists a partition (Y_1, Y_2) of V with no violating edges. For a sample U, let $U_1 = U \cap Y_1$ and $U_2 = U \cap Y_2$. From InduceToRestOfGraph we get $(V_a^{U_1,U_2}, V_b^{U_1,U_2})$. How close is $(V_a^{U_1,U_2}, V_b^{U_1,U_2})$ to (Y_1, Y_2) ?

Observation 3.7 If (Y_1, Y_2) is a bipartition, no vertex v has a neighbor in both U_1 and U_2 (because $U_1 \subseteq Y_1$ and $U_2 \subseteq Y_2$). Therefore, a difference between $(V_a^{U_1,U_2}, V_b^{U_1,U_2})$ and (Y_1, Y_2) (if exists) is due to nodes that don't have neighbors in U.

We have two kind of vertices:

- 1. v with small degree $(d(v) < \frac{\epsilon}{4}n)$.
- 2. v with high degree $(d(v) \ge \frac{\epsilon}{4}n)$.

Definition 3.1 Let HighDeg be the event where at most $\frac{\epsilon}{4}n$ "high degree" nodes in V don't have neighbors in U.

Lemma 3.8 $Pr_U[\neg HighDeg] \leq \frac{1}{8}$ where $|U| \geq \frac{4}{\epsilon} \log \frac{32}{\epsilon}$

 $\mathbf{Proof} \quad \forall v \in V \text{ define } \sigma_v = \begin{cases} 1 & \text{if } v \text{ is a "high degree" node and v has no neighbors in } U \\ 0 & \text{otherwise} \end{cases}$

$$E[\sigma_v] = \Pr[\sigma_v = 1] \le (1 - \frac{\frac{\epsilon}{4}n}{n})^{|U|}$$

Since the number of 1s in v's row $\geq \frac{\epsilon}{4}n$, and n is the number of entries in v's row. Therefore,

$$E[\sigma_v] \le (1 - \frac{\frac{\epsilon}{4}n}{n})^{|U|} \le (1 - \frac{\epsilon}{4})^{\frac{4}{\epsilon}\log\frac{32}{\epsilon}} \le \frac{1}{e}^{\log\frac{32}{\epsilon}} = \frac{\epsilon}{32}$$

Thus, by Markov's inequality:

$$\Pr[\sum_{v \in V} \sigma_v \ge 8 \cdot \frac{\epsilon n}{32}] = \frac{\epsilon n}{4} \le \frac{1}{8}$$

How many violating edges are in $(V_a^{U_1,U_2}, V_b^{U_1,U_2})$? Let N be the number of violating edges in $(V_a^{U_1,U_2}, V_b^{U_1,U_2})$ under the assumption of HighDeg. Then:

Corollary 3.9 $N \leq \frac{\epsilon}{2}n^2$ with probability $\frac{7}{8}$. Assuming $N \leq \frac{\epsilon}{2}n^2$ we get that

$$\begin{aligned} \forall (u_i, v_i) \in P : \\ \Pr[(u_i, v_i) \text{ violates } (V_a^{U_1, U_2}, V_b^{U_1, U_2})] &\leq \frac{\epsilon}{2} \\ \implies E_{(u_i, v_i) \in P}[\mathbf{1}_{(u_i, v_i) \text{ violates } (V_a^{U_1, U_2}, V_b^{U_1, U_2})] &\leq \frac{\epsilon}{2} \end{aligned}$$

Therefore we expect the fraction of violating pairs in P to be $\leq \frac{\epsilon}{2}$.

Claim 3.10 $Pr[Fraction of violating edges in the sample \geq \frac{3}{4}\epsilon \mid HighDeg \rceil < \frac{1}{8}$

 $\begin{array}{ll} \mathbf{Proof} & \mathrm{Sample} \; |P| = c \cdot \frac{1}{\epsilon^2} \log \frac{1}{\epsilon} \; \mathrm{for \; some} \; c > 1. \\ \mathrm{Let} \; X_1, X_2, \ldots X_{|P|} \; \mathrm{be \; i.i.d \; s.t} \; X_i = \left\{ \begin{array}{ll} 1 & \mathrm{if} \; e_i \; \mathrm{violates} \; (V_a^{U_1, U_2}, V_b^{U_1, U_2}) \\ 0 & \mathrm{otherwise} \end{array} \right. \\ E[X_i|HighDeg] \leq \frac{\epsilon}{2}. \\ \mathrm{By \; Chernoff:} \end{array} \right.$

$$\Pr\left[\frac{1}{|P|} \sum_{i=1}^{|P|} X_i \ge \frac{3}{4}\epsilon\right] \ge$$

$$\Pr\left[\frac{1}{|P|} \sum_{i=1}^{|P|} X_i \ge (1+\frac{1}{2})E[X_i|HighDeg]\right] \le$$

$$e^{-\left(\frac{1}{2}\right)^2 \frac{\epsilon}{2} \frac{|P|}{3}} = e^{-\frac{\epsilon}{24}c \cdot \frac{1}{\epsilon^2} \log \frac{1}{\epsilon}} = \epsilon^{\frac{c}{24\epsilon}} \underbrace{<\frac{1}{8}}_{\text{choose } c \text{ s.t}}$$

Lemma 3.11 Pr[*TestBipartite* 1 *outputs FAIL on a bipartite graph*] $\leq \frac{1}{4}$ **Proof**

$$\begin{split} &\Pr[\ TestBipartite\ 1\ \text{outputs}\ FAIL\ \text{on a bipartite graph}] \\ &\leq \Pr[\text{Fraction of violating edges in the sample}\ \geq \frac{3}{4}\epsilon |HighDeg] \cdot \Pr[HighDeg] \\ &+ \Pr[\text{Fraction of violating edges in the sample}\ \geq \frac{3}{4}\epsilon |\neg HighDeg] \cdot \Pr[\neg HighDeg] \\ &\leq \frac{1}{8}\cdot 1 + 1\cdot \frac{1}{8} = \frac{1}{4}. \end{split}$$

That proves the first item in 3.6.

Proof of Theorem 1(2): Suppose G is ϵ -far from bipartite. Therefore, all partitions (Y_1, Y_2) have $\geq \epsilon n^2$ violating edges. In particular, $\forall (U_1, U_2)$ partition of U, $(V_a^{U_1, U_2}, V_b^{U_1, U_2})$ has $\geq \epsilon n^2$ violating edges.

$$\Pr_{(u_i,v_i)\in P}[(u_i,v_i) \text{ violates } (V_a^{U_1,U_2},V_b^{U_1,U_2})] \ge \frac{\epsilon n^2}{n^2} = \epsilon$$
$$\implies E_{(u_i,v_i)\in P}[\mathbf{1}_{(u_i,v_i) \text{ violates } (V_a^{U_1,U_2},V_b^{U_1,U_2})}] \ge \epsilon$$

Proof of Theorem 3.6(2):

Suppose G is ϵ -far from bipartite.

Therefore, all partitions (Y_1, Y_2) have $\geq \epsilon n^2$ violating edges.

In particular, $\forall (U_1, U_2)$ partition of U, $(V_a^{U_1, U_2}, V_b^{U_1, U_2})$ has $\geq \epsilon n^2$ violating edges.

$$\Pr_{\substack{(u_i, v_i) \in P}} [(u_i, v_i) \text{ violates } (V_a^{U_1, U_2}, V_b^{U_1, U_2})] \ge \frac{\epsilon n^2}{n^2} = \epsilon$$
$$\implies E_{(u_i, v_i) \in P} [\mathbf{1}_{(u_i, v_i) \text{ violates } (V_a^{U_1, U_2}, V_b^{U_1, U_2})}] \ge \epsilon$$

Let $X_1, X_2, \dots X_{|P|}$ be i.i.d s.t $X_i = \begin{cases} 1 & \text{if } e_i \text{ violates } (V_a^{U_1, U_2}, V_b^{U_1, U_2}) \\ 0 & \text{otherwise} \end{cases}$.

By Chernoff:

$$\Pr\left[\frac{1}{|P|} \sum_{i=1}^{|P|} X_i \le \frac{3}{4}\epsilon\right]$$
$$= \Pr\left[\frac{1}{|P|} \sum_{i=1}^{|P|} X_i \le (1 - \frac{1}{4})\epsilon\right]$$
$$< e^{-\left(\frac{1}{4}\right)^2 \frac{|P|}{2}\epsilon} = e^{-\frac{1}{32} \frac{1}{\epsilon^2} \log \frac{1}{\epsilon}\epsilon c}$$
$$= e^{\frac{c}{32\epsilon}}$$

Therefore, by union bound:

Pr[Algorithm outputs PASS]

$$= \Pr[\text{There is a partition with fraction of violating pairs }] \le \frac{3}{4}\epsilon]$$

$$< 2^{|P|} \epsilon^{\frac{c}{32\epsilon}} = 2^{d\frac{1}{\epsilon^2} \log \frac{1}{\epsilon}} \epsilon^{\frac{c}{32\epsilon}}$$
for some $d > 0$

$$= \epsilon^{-d\frac{1}{\epsilon^2} + \frac{c}{32\epsilon}} = \epsilon^{\frac{c \cdot d - 32}{32\epsilon}} \underbrace{< \frac{1}{8}}_{\text{Choose } c, d \text{ s.t}}$$

4 A Canonical Tester

Theorem 4.1 Let P be any graph property in the adjacency matrix model. Suppose T is a tester for P with query complexity $q(n, \epsilon)$. Then, there is a tester T' with query complexity of $O(q^2)$ in the following form:

- 1. Select $2q(n, \epsilon)$ nodes randomly.
- 2. Query all pairs in the sampling.
- 3. Make a decision.

Moreover, if T has one-sided error, so does T'.