0368.416701 Sublinear Time Algorithms November 16, 2009

Lecture 5
Lecturer: Romnitt Rubinfeld Scribe: Hadas Biriné Michal Rosen

1 Lecture Outline

So far, we covered algorithms on sparse graphs, where the bound on the degree d assisted us in achieving
sub linear time. The input to these algorithms were graphs represented by adjacency lists.
Today we will explore property testing in dense graphs:

e Testing Bipartiteness

e A canonical tester

2 Property Testing of dense Graphs

Definition 2.1 (Adjacency Matrix Model) Given a graph G = (V, E), an algorithm in the Adja-
cency Matriz Model receives G as input in the form of a matriz A such that

1 (i,j) e E
Aij= ‘
0 otherwise
For a given (1, j), querying A;; is one time step.
We often refer to an entry in the adjacency matriz as an edge slot.

Definition 2.2 (Graph Property) A graph property P is a property of graphs that depends only on
the abstract structure, not on graph representations such as particular labellings or drawings of the graph.
Given a property P and a domain D, let P = {G € D | G has property P}.

Definition 2.3 (e-far from P) Given a property P and a graph G,
let G' € P be a graph with the minimal number of changes to edge slots in G’s adjacency matriz.
G is e-far from P if the number of change slots between G and G’ is at least en?.

Definition 2.4 (Property Tester) A property tester T for the property P is defined by

if © € P, then with high probability A(zx) = pass
if x is e-far from P, then with high probability A(z) = fail

3 Testing Bipartiteness

Definition 3.1 (Bipartite Graph) Given a graph G = (V, E), G is bipartite if there exists a parti-
tion of V into (V1,Va) such that V(u,v) € E, w € V; andv € V; fori#j.

Definition 3.2 (Violating Edge) Given a graph G = (V, E), a partition (V1,V2) of V and an edge
(u,v) € E, we say that (u,v) violates (V1,Va2) if u,v € Vi or u,v € V2.
So G 1is bipartite if and only if there exists a partition of V' with no violating edges.

Remark The property of bipartiteness is anti-monotone, i.e. to make a non-bipartite graph g be
bipartite, we must remove edges. This leads to an equivalent definition for being e-far from bipartiteness.

Definition 3.3 (e-far from bipartite) For two graphs G,G’, dist(G,G") is the fraction of locations
in A that are different (i.e. alli,j such that AiGj + Ag).
G is e-far from property P if for all G' that have property P, dist(G,G') > e.

Remark

1. For sparse graphs with less than en? edges, the definition above is not interesting as we can remove
all edges to make the graph bipartite, and therefore a tester can always output pass.

2. For sparse graphs, the sample complexity for testing bipartiteness is known to have a lower bound

of Q(v/n).

3. The best lower bound known in this model, the adjacency matrix model, is ﬁ(e%), due to: A.
Bogdanov and L. Trevisan. Lower bounds for testing bipartiteness in dense graphs.

4. With methods similar to the ones we’ll use today, we can test for 3-coloring in constant time!

We will now make a first attempt at testing for bipartiteness.
How about sampling m = 6(2 log 1) edges?
Assume G is e-far from being bipartite, therefore it has > en? violating edges. Therefore,

Pr [e is not a violating edge] < 1 — ¢
ecrFE

Then for all m samples:
Pr[We didn’t hit a violating edge in all m samples] < (1 — €)™

Therefore,

o=

Pr[Hitting a violating edge in at least one of m samples] > 1—(1—e)™ = 1—(1—¢) 3 x1—e 5 =1-6

The problem is that an edge is violating with respect to a given partition. In order to reject
graphs that are e-far from bipartite, we need to test whether for every partition there are at least en?
violating edges.

Lets try checking all possible partitions.

Algorithm 3.1 TestBipartite 0 (G)
1. Pickm = 9(% log %) random edge slots (i,7) and query A;.
2. For every partition (V1,Va):

(a) violatingy, v,) = the number of violating edges in the sample with respect to (Vi,Vz)
(b) If violatingv, v,) = 0 output PASS

8. Output FAIL

Figure 1: TestBipartite 0.

Claim 3.4 TestBipartite 0 is a tester for bipartiteness.

Proof If G is bipartite, then there exists a partition of V into (V1, V) with no violating edges. When
TestBipartite 0 iterates all possible partitions, it will also check partition (Vi,Va2) and output PASS.
Assume G is e-far from bipartite.
For any partition of V into (Vi,Vs) there are at least en? violating edges. The algorithm samples m
independent samples and so for every partition (V4, V) we have that

Prviolatingy, v, > 0] >1—(1—em>1—(1—e)ms xl—e"s =14
With union bound on all partitions we get

Pr[VYV, Vi violatingy, v, > 0] > (1 —§)%"

So if we take § < 2% we get that Test Bipartite 0 is indeed a tester for bipartiteness. B

Observation 3.5 By the proof above, the running time of TestBipartite 0 is Q(+log 4)= Q(2), i.e.

o

sub-linear in the size of the input (which is O(n?)).

Algorithm 3.2 TestBipartite 1

1. (a) Choose U nodes uniformly, s.t |U| = © (£ log 1)

(b) Choose U’ nodes uniformly, s.t |U'| =0 (6% log %) Think of U’ as a group of pairs:
U/ =P= {(vl,ul), ('UQ,UQ) .. }

2. V(U1,Us) partition of U:
(a) Check V(u;,v;) € P: X; = DoesViolate Partition(Uy, Us, u;, v;).

(6) If o SI0) X; < 3¢ ACCEPT and halt.
Else continue.

8. FAIL

Figure 2: TestBipartite 1

DoesViolatePartition checks if the pair (u;,v;) violates the partition (V,V1:Uz, V;)Ul’Uz)7 which we
induce from (Uy, Us) to the rest of the graph as follows:

Algorithm 3.3 InduceToRestO fGraph(Uy,Us, V, E)
1. Yu € Uy: put u € VI1:Uz,
2. YVu e Us: put u € VbUl’U2.
3. YueV\ (UyUlsy):

(a) If u has a neighbor in Uy: put u € ‘/’bUhUz-

(b) else: put u € VU1Uz,

Figure 3: InduceToRestOfGraph.

Note: We don’t need to run InduceToRestO f Graph in advance. We will run it only for the vertices
in P to figure out in which part of the partition {V,V1:V2, VbUl’U2} they fall. For each vertex v it will take
O (% log %) (to check if v € Uy, v € Us, or checking neighbors).

Theorem 3.6 TestBipartite 1 is a property tester for bipartiteness. More precisely,

Figure 4: InduceToRestOfGraph

Algorithm 3.4 DoesViolate Partition(Uy, Us, u;, v;)
1. Find x € {a,b} for u;, where u; € V.V1:Y2 according to InduceToRestO fGraph.
2. Find y € {a,b} for v;, where v; € VyUl*U2 according to InduceloRestO fGraph.
3. If x =y return 1.

4. Else return 0.

Figure 5: DoesViolatePartition.

(1) if G is bipartite, TestBipartite 1 PASSES with probability > %.
. 7
(2) if G is e — far from bipartiteness, Pr| TestBipartite 1 outputs FAIL | > §.

Proof of Theorem 1(1):

Assume G is bipartite.

Therefore, there exists a partition (Y7,Y2) of V' with no violating edges.
For a sample U, let Uy = U NY; and U, = U NYs.

From InduceToRestO fGraph we get (VaUl’UZ,VbUl’UQ).

How close is (V.U1:Uz, VbUl’Uz) to (Y1,Y2)?

Observation 3.7 If (Y1,Y2) is a bipartition, no vertex v has a neighbor in both Uy and Us (because
Uy C Y1 and Uy C Ys). Therefore, a difference between (V.V1:Uz, V;,UI’UZ) and (Y1,Y2) (if exists) is due
to nodes that don’t have neighbors in U.

We have two kind of vertices:
1. v with small degree (d(v) < {n).
2. v with high degree (d(v) > {n).

Definition 3.1 Let HighDeg be the event where at most gn "high degree” nodes in 'V don’t have
neighbors in U.

Lemma 3.8 Pry [~HighDeg] < & where |U| > 2log 32

1 if v is a "high degree” node and v has no neighbors in U
Proof Vv eV define o, =
0 otherwise

€

Eloy] = Pris, =1 < (1= £2)

Since the number of 1s in v’s row > ¢n, and n is the number of entries in v’s row. Therefore,

n €.4 32 110%3?2 €
FE v<1_L‘U|< 1_,;108§7<,
o] < (1= LU < (1 - S)2lee < 2 ”

Thus, by Markov’s inequality:

How many violating edges are in (VaUl’UQ,VbUl’UQ)?
Let N be the number of violating edges in (V,V1:V2 VbUl"U2) under the assumption of HighDeg.
Then:

N < 0
~—
#violating edges in (Y1,Y2)
+ €
—-n . n
4 ~~

Bound on # small degree nodes
Bound on the degree of small degree nodes

€

+ n : e
~~ 4
Bound on degree of high degree nodes ~~
Bound on #high degree nodes
€
< on?
2

Corollary 3.9 N < §n2 with probability %.
Assuming N < $n? we get that

V(’LLZ', ’Ui) c P
Pr{(u;, v;) violates (VaUl’U2,1/bU1’U2)] < %

= E(ui,vi)GP[v

1(u,~,v,y) violates (V, 1’U2,VbU1’U2)] <

N

Therefore we expect the fraction of violating pairs in P to be < 5.

Claim 3.10 Pr[Fraction of violating edges in the sample > 3¢ | HighDeg | < %

Proof Sample |P|=c- % log 1 for some ¢ > 1.

1 if ¢; violates (VU1U2 v,0002)
Let X17X2, N X|P\ be i.i.d s.t X’i =
0 otherwise
E[X;|HighDeg] < 5.
By Chernoft:
|P|
1 3
Pr|— X; > —€ >
i ; >G>
1 & 1
Prire sz > (1+ 5)E[Xi| HighDeg) | <
1=1
P dednt o L
g
choose ¢ s.t
|

Lemma 3.11 Pr[TestBipartite 1 outputs FAIL on a bipartite graph] < i
Proof

Pr[TestBipartite 1 outputs FAIL on a bipartite graph]

3
< Pr[Fraction of violating edges in the sample > ie\HighDeg] - Pr[HighDeg]

3
+ Pr|[Fraction of violating edges in the sample > Ze|ﬁHighDeg] - Pr[~HighDeg|

<l it
-8 8 4

That proves the first item in 3.6.
|

Proof of Theorem 1(2):
Suppose G is e-far from bipartite.
Therefore, all partitions (Y7, Ys) have > en? violating edges.
In particular, V(Uy, Us) partition of U, (VU1V2, V,/1V2) has > en? violating edges.
Pr [(us,v;) violates (VU1U2 1tz > en”
r ui, v;) violates (V, 77, ’ > — =€
(u;,v;,)EP b n?

= E(uiﬂ)i)eP[] > €

1 (ui,v;) violates (VU1'V2 ,VbU1 U2y

Proof of Theorem 3.6(2):

Suppose G is e-far from bipartite.

Therefore, all partitions (Y7, Y2) have > en? violating edges.

In particular, ¥(Uy, Us) partition of U, (VU2 VV0U2) has > en? violating edges.

2
. Us,U. n
o Pr [, ve) violates (V0 V)] > T

= E(Uhvi)ep[v

1(u,i,ui) violates (V, 1"U2,VbU1’U2)] 2 €

1 if e; violates (V.U1:U2 V})UI’UZ)
Let X1, Xs,... X|p| beiidst X; =
0 otherwise
By Chernoff:
1 |P|
Pr[XZ S 6]
PR
|P|
1 1
= Pr[—: X; <(1—>)¢
|P| = 4

Therefore, by union bound:

Pr[Algorithm outputs PASS]
€]

= Pr[There is a partition with fraction of violating pairs | <

e~ w

1 1 c
< 9lPlesse = gdzzlog ¢ 35;
~—

for some d>0

1 c c-d—32
— ¢ d3tEs — T <

1

8
~—~

Choose ¢, d s.t

4 A Canonical Tester

Theorem 4.1 Let P be any graph property in the adjacency matrix model.
Suppose T is a tester for P with query complexity q(n,€).
Then, there is a tester T' with query complezity of O(q?) in the following form:

1. Select 2q(n, €) nodes randomly.
2. Query all pairs in the sampling.
3. Make a decision.

Moreover, if T has one-sided error, so does T".

	Lecture Outline
	Property Testing of dense Graphs
	Testing Bipartiteness
	A Canonical Tester

