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1 Lecture Outline

So far, we covered algorithms on sparse graphs, where the bound on the degree d assisted us in achieving
sub linear time. The input to these algorithms were graphs represented by adjacency lists.
Today we will explore property testing in dense graphs:

• Testing Bipartiteness

• A canonical tester

2 Property Testing of dense Graphs

Definition 2.1 (Adjacency Matrix Model) Given a graph G = (V,E), an algorithm in the Adja-
cency Matrix Model receives G as input in the form of a matrix A such that

Aij=

{
1 (i, j) ∈ E

0 otherwise
.

For a given (i, j), querying Aij is one time step.
We often refer to an entry in the adjacency matrix as an edge slot.

Definition 2.2 (Graph Property) A graph property P is a property of graphs that depends only on
the abstract structure, not on graph representations such as particular labellings or drawings of the graph.
Given a property P and a domain D, let P = {G ∈ D | G has property P}.

Definition 2.3 (ε-far from P) Given a property P and a graph G,
let G′ ∈ P be a graph with the minimal number of changes to edge slots in G’s adjacency matrix.
G is ε-far from P if the number of change slots between G and G′ is at least εn2.

Definition 2.4 (Property Tester) A property tester T for the property P is defined by

if x ∈ P, then with high probability A(x) = pass

if x is ε-far from P, then with high probability A(x) = fail

3 Testing Bipartiteness

Definition 3.1 (Bipartite Graph) Given a graph G = (V,E), G is bipartite if there exists a parti-
tion of V into (V1, V2) such that ∀(u, v) ∈ E, u ∈ Vi and v ∈ Vj for i 6= j.

Definition 3.2 (Violating Edge) Given a graph G = (V,E), a partition (V1, V2) of V and an edge
(u, v) ∈ E, we say that (u, v) violates (V1, V2) if u, v ∈ V1 or u, v ∈ V 2.
So G is bipartite if and only if there exists a partition of V with no violating edges.

Remark The property of bipartiteness is anti-monotone, i.e. to make a non-bipartite graph g be
bipartite, we must remove edges. This leads to an equivalent definition for being ε-far from bipartiteness.
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Definition 3.3 (ε-far from bipartite) For two graphs G,G′, dist(G,G′) is the fraction of locations
in A that are different (i.e. all i, j such that AGij 6= AG

′

ij ).
G is ε-far from property P if for all G′ that have property P , dist(G,G′) > ε.

Remark

1. For sparse graphs with less than εn2 edges, the definition above is not interesting as we can remove
all edges to make the graph bipartite, and therefore a tester can always output pass.

2. For sparse graphs, the sample complexity for testing bipartiteness is known to have a lower bound
of Ω(

√
n).

3. The best lower bound known in this model, the adjacency matrix model, is Ω̃( 1
ε1.5 ), due to: A.

Bogdanov and L. Trevisan. Lower bounds for testing bipartiteness in dense graphs.

4. With methods similar to the ones we’ll use today, we can test for 3-coloring in constant time!

We will now make a first attempt at testing for bipartiteness.
How about sampling m = θ( 1

ε log 1
δ ) edges?

Assume G is ε-far from being bipartite, therefore it has ≥ εn2 violating edges. Therefore,

Pr
e∈RE

[e is not a violating edge] < 1− ε

Then for all m samples:

Pr[We didn’t hit a violating edge in all m samples] < (1− ε)m

Therefore,

Pr[Hitting a violating edge in at least one of m samples] ≥ 1−(1−ε)m = 1−(1−ε) 1
ε ln

1
δ ≈ 1−e−ln 1

δ = 1−δ

The problem is that an edge is violating with respect to a given partition. In order to reject
graphs that are ε-far from bipartite, we need to test whether for every partition there are at least εn2

violating edges.

Lets try checking all possible partitions.

Algorithm 3.1 TestBipartite 0 (G)

1. Pick m = θ( 1
ε log 1

δ ) random edge slots (i, j) and query Aij.

2. For every partition (V1, V2):

(a) violating(V1,V2) = the number of violating edges in the sample with respect to (V1, V2)

(b) If violating(V1,V2) = 0 output PASS

3. Output FAIL

Figure 1: TestBipartite 0.

Claim 3.4 TestBipartite 0 is a tester for bipartiteness.
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Proof If G is bipartite, then there exists a partition of V into (V1, V2) with no violating edges. When
TestBipartite 0 iterates all possible partitions, it will also check partition (V1, V2) and output PASS.
Assume G is ε-far from bipartite.
For any partition of V into (V1, V2) there are at least εn2 violating edges. The algorithm samples m
independent samples and so for every partition (V1, V2) we have that

Pr[violatingV1,V2 > 0] ≥ 1− (1− ε)m ≥ 1− (1− ε) 1
ε ln

1
δ ≈ 1− e−ln 1

δ = 1− δ
With union bound on all partitions we get

Pr[ ∀V1, V2 violatingV1,V2 > 0] ≥ (1− δ)2n

So if we take δ < 1
2n we get that TestBipartite 0 is indeed a tester for bipartiteness.

Observation 3.5 By the proof above, the running time of TestBipartite 0 is Ω( 1
ε log 1

1
2n

)= Ω(nε ), i.e.

sub-linear in the size of the input (which is O(n2)).

Algorithm 3.2 TestBipartite 1

1. (a) Choose U nodes uniformly, s.t |U | = Θ
(

1
ε log 1

ε

)
(b) Choose U ′ nodes uniformly, s.t |U ′| = Θ

(
1
ε2 log 1

ε

)
. Think of U ′ as a group of pairs:

U ′ = P = {(v1, u1), (v2, u2) . . .}

2. ∀(U1, U2) partition of U :

(a) Check ∀(ui, vi) ∈ P : Xi = DoesV iolatePartition(U1, U2, ui, vi).

(b) If 1
|P |
∑|P |
i=1Xi ≤ 3

4ε ACCEPT and halt.
Else continue.

3. FAIL

Figure 2: TestBipartite 1

DoesV iolatePartition checks if the pair (ui, vi) violates the partition (V U1,U2
a , V U1,U2

b ), which we
induce from (U1, U2) to the rest of the graph as follows:

Algorithm 3.3InduceToRestOfGraph(U1, U2, V, E)

1. ∀u ∈ U1: put u ∈ V U1,U2
a .

2. ∀u ∈ U2: put u ∈ V U1,U2
b .

3. ∀u ∈ V \ (U1 ∪ U2):

(a) If u has a neighbor in U1: put u ∈ V U1,U2
b .

(b) else: put u ∈ V U1,U2
a .

Figure 3: InduceToRestOfGraph.

Note: We don’t need to run InduceToRestOfGraph in advance. We will run it only for the vertices
in P to figure out in which part of the partition {V U1,U2

a , V U1,U2
b } they fall. For each vertex v it will take

O
(

1
ε log 1

ε

)
(to check if v ∈ U1, v ∈ U2, or checking neighbors).

Theorem 3.6 TestBipartite 1 is a property tester for bipartiteness. More precisely,
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Figure 4: InduceToRestOfGraph

Algorithm 3.4DoesV iolatePartition(U1, U2, ui, vi)

1. Find x ∈ {a, b} for ui, where ui ∈ V U1,U2
x according to InduceToRestOfGraph.

2. Find y ∈ {a, b} for vi, where vi ∈ V U1,U2
y according to InduceToRestOfGraph.

3. If x = y return 1.

4. Else return 0.

Figure 5: DoesViolatePartition.

(1) if G is bipartite, TestBipartite 1 PASSES with probability ≥ 3
4 .

(2) if G is ε− far from bipartiteness, Pr [ TestBipartite 1 outputs FAIL ] ≥ 7
8 .

Proof of Theorem 1(1):
Assume G is bipartite.
Therefore, there exists a partition (Y1, Y2) of V with no violating edges.
For a sample U , let U1 = U ∩ Y1 and U2 = U ∩ Y2.
From InduceToRestOfGraph we get (V U1,U2

a , V U1,U2
b ).

How close is (V U1,U2
a , V U1,U2

b ) to (Y1, Y2)?

Observation 3.7 If (Y1, Y2) is a bipartition, no vertex v has a neighbor in both U1 and U2 (because
U1 ⊆ Y1 and U2 ⊆ Y2). Therefore, a difference between (V U1,U2

a , V U1,U2
b ) and (Y1, Y2) (if exists) is due

to nodes that don’t have neighbors in U .

We have two kind of vertices:

1. v with small degree (d(v) < ε
4n).

2. v with high degree (d(v) ≥ ε
4n).

Definition 3.1 Let HighDeg be the event where at most ε
4n ”high degree” nodes in V don’t have

neighbors in U .
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Lemma 3.8 PrU [¬HighDeg] ≤ 1
8 where |U | ≥ 4

ε log 32
ε

Proof ∀v ∈ V define σv =

{
1 if v is a ”high degree” node and v has no neighbors in U

0 otherwise
.

E[σv] = Pr[σv = 1] ≤ (1−
ε
4n

n
)|U |

Since the number of 1s in v’s row ≥ ε
4n, and n is the number of entries in v’s row. Therefore,

E[σv] ≤ (1−
ε
4n

n
)|U | ≤ (1− ε

4
)

4
ε log 32

ε ≤ 1
e

log 32
ε

=
ε

32

Thus, by Markov’s inequality:

Pr[
∑
v∈V

σv ≥ 8 · εn
32

] =
εn

4
≤ 1

8

How many violating edges are in (V U1,U2
a , V U1,U2

b )?
Let N be the number of violating edges in (V U1,U2

a , V U1,U2
b ) under the assumption of HighDeg.

Then:

N ≤ 0︸︷︷︸
#violating edges in (Y1,Y2)

+
ε

4
n︸︷︷︸

Bound on the degree of small degree nodes

· n︸︷︷︸
Bound on # small degree nodes

+ n︸︷︷︸
Bound on degree of high degree nodes

· ε

4
n︸︷︷︸

Bound on #high degree nodes

≤ ε

2
n2

Corollary 3.9 N ≤ ε
2n

2 with probability 7
8 .

Assuming N ≤ ε
2n

2 we get that

∀(ui, vi) ∈ P :

Pr[(ui, vi) violates (V U1,U2
a , V U1,U2

b )] ≤ ε

2
=⇒ E(ui,vi)∈P [1

(ui,vi) violates (V
U1,U2
a ,V

U1,U2
b )

] ≤ ε

2

Therefore we expect the fraction of violating pairs in P to be ≤ ε
2 .
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Claim 3.10 Pr[Fraction of violating edges in the sample ≥ 3
4ε | HighDeg ] < 1

8

Proof Sample |P | = c · 1
ε2 log 1

ε for some c > 1.

Let X1, X2, . . . X|P | be i.i.d s.t Xi =

{
1 if ei violates (V U1,U2

a , V U1,U2
b )

0 otherwise
.

E[Xi|HighDeg] ≤ ε
2 .

By Chernoff:

Pr[
1
|P |

|P |∑
i=1

Xi ≥
3
4
ε] ≥

Pr[
1
|P |

|P |∑
i=1

Xi ≥ (1 +
1
2

)E[Xi|HighDeg] ] ≤

e−( 1
2 )2 ε2

|P |
3 = e−

ε
24 c·

1
ε2

log 1
ε = ε

c
24ε <

1
8︸︷︷︸

choose c s.t

Lemma 3.11 Pr[ TestBipartite 1 outputs FAIL on a bipartite graph] ≤ 1
4

Proof

Pr[ TestBipartite 1 outputs FAIL on a bipartite graph]

≤ Pr[Fraction of violating edges in the sample ≥ 3
4
ε|HighDeg] · Pr[HighDeg]

+ Pr[Fraction of violating edges in the sample ≥ 3
4
ε|¬HighDeg] · Pr[¬HighDeg]

≤ 1
8
· 1 + 1 · 1

8
=

1
4
.

That proves the first item in 3.6.

Proof of Theorem 1(2):
Suppose G is ε-far from bipartite.
Therefore, all partitions (Y1, Y2) have ≥ εn2 violating edges.
In particular, ∀(U1, U2) partition of U , (V U1,U2

a , V U1,U2
b ) has ≥ εn2 violating edges.

Pr
(ui,vi)∈P

[(ui, vi) violates (V U1,U2
a , V U1,U2

b )] ≥ εn2

n2
= ε

=⇒ E(ui,vi)∈P [1
(ui,vi) violates (V

U1,U2
a ,V

U1,U2
b )

] ≥ ε
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Proof of Theorem 3.6(2):
Suppose G is ε-far from bipartite.
Therefore, all partitions (Y1, Y2) have ≥ εn2 violating edges.
In particular, ∀(U1, U2) partition of U , (V U1,U2

a , V U1,U2
b ) has ≥ εn2 violating edges.

Pr
(ui,vi)∈P

[(ui, vi) violates (V U1,U2
a , V U1,U2

b )] ≥ εn2

n2
= ε

=⇒ E(ui,vi)∈P [1
(ui,vi) violates (V

U1,U2
a ,V

U1,U2
b )

] ≥ ε

Let X1, X2, . . . X|P | be i.i.d s.t Xi =

{
1 if ei violates (V U1,U2

a , V U1,U2
b )

0 otherwise
.

By Chernoff:

Pr[
1
|P |

|P |∑
i=1

Xi ≤
3
4
ε]

= Pr[
1
|P |

|P |∑
i=1

Xi ≤ (1− 1
4

)ε]

< e−( 1
4 )2
|P |
2 ε = e−

1
32

1
ε2

log 1
ε εc

= ε
c

32ε

Therefore, by union bound:

Pr[Algorithm outputs PASS]

= Pr[There is a partition with fraction of violating pairs ] ≤ 3
4
ε]

< 2|P |ε
c

32ε =︸︷︷︸
for some d>0

2d
1
ε2

log 1
ε ε

c
32ε

= ε−d
1
ε2

+ c
32ε = ε

c·d−32
32ε <

1
8︸︷︷︸

Choose c, d s.t

4 A Canonical Tester

Theorem 4.1 Let P be any graph property in the adjacency matrix model.
Suppose T is a tester for P with query complexity q(n, ε).
Then, there is a tester T ′ with query complexity of O(q2) in the following form:

1. Select 2q(n, ε) nodes randomly.

2. Query all pairs in the sampling.

3. Make a decision.

Moreover, if T has one-sided error, so does T ′.
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