
0368.416701 Sublinear Time Algorithms November 9, 2009

Lecture 4
Lecturer: Ronitt Rubinfeld Scribe: Mille Gandelsman

Sublinear time algorithm for maximal matching

Reminder

Last time we described the implementation of the oracle for the greedy sequential algorithm for finding
maximal matching in a graph G = (V,E). Such an oracle uses random numbers {re}e∈E assigned to
each of the edges as follows:

Oracle implementation
Given an edge e, for every e′ neighboring e of smaller rank than e, recursively check if e′ ∈M :

• if yes: return ”e /∈M”

• else: continue.

• if no neighboring e′ (of smaller rank) in M , return “e ∈M”

Concretely, the algorithm itself is as follows:

• assign re ∈r [0, 1] to each edge e ∈ E for the use of the oracle.

• run the oracle reduction algorithm on a set S of Θ(1
ε2) randomly picked edges, set Xe = 1 if oracle

says e ∈M and Xe = 0 otherwise.

• return m
|S|

∑
e∈S Xe + ε

2m, where m denotes the total number of edges in the graph.

Recall the recursion description (that appears in the scribe notes of the last lecture), and note the
number of edges on which we recurse. It specifically means that we recurse only on lower numbered
edges.

Correctness
The correctness follows directly from the correctness of the naive greedy algorithm, as the described
algorithm is just a variant of the latter.

Running time analysis

Claim 1 The expected number of queries to graph to handle a single oracle query is 2O(d)

There are O(1
ε2) turns to the oracle, so the next claim using the above is immediate:

Claim 2 E[total number of queries] ≤ 1
ε2 2O(d)

Proof of claim 1
Pr[given path of length k is explored] = Pr[ranks of edges in path are decreasing] = 1

k!
On the other hand, the number of paths of length k ≤ dk, and therefore: E[number of vertices explored in the tree] ≤∑∞
k=0

dk

k! ≤ e
d, meaning that: E[query complexity] = O(ded) = 2O(d), as required.

1

Comments

• We don’t have to allocate re for all edges in advance. Rather, we can hold a data structure (for
instance: binary search tree for the edges using their re’s as keys) and check each time we encounter
an edge e whether generated such re already exists. We will generate a new value re only if it
wasn’t already generated.

• The algorithm in this sense is very sublinear, meaning that for most of the edges we will not
generate the value re.

Approximating the average degree of a graph

Given a simple graph G = (V,E) (meaning - no self loops and no parallel edges), we will denote for
every vertex v ∈ V : d(v) = deg(v) = no. of v’s neighbors

Definition 3 (The average degree of a graph) The average degree of a graph G = (V,E), denoted
by d is: d = 1

|V |
∑
v∈V d(v)

We will use two types of queries for the algorithm:

• Degree query: given v ∈ V output d(v).

• Neighbor query: given v ∈ V and some integer i ∈ N output the i− th neighbor of v.

The straightforward algorithm will naturally look like this: Pick s nodes v1, v2, ..., vs ∈ V , and output
1
s

∑s
i=1 d(vi). The following problem rises in the naive analysis of this algorithm: for each vertex vi ∈ V

it holds that 0 ≤ d(vi) ≤ n where n = |V |, so in order to estimate the average degree using (for instance)
Chernoff bound, without assuming anything else about the numbers, we need Ω(n) samples. However,
we’ll see that since the di’s come from the degrees of a graph, the estimates can actually be much better.
Note that the algorithm itself is not necessarily so bad, it is just that the analysis described is bad.

The problem is well demonstrated in the example of the following two graphs:

• G1 = (V1, E1) where V1 = {v1
1 , v

2
1 , ..., v

k
1} and E1 = {(v1

1 , v
2
1), (v3

1 , v
4
1), ..., (vk−1

1 , vk1)} - the graph
with disjoint k

2 edges.

• G2 = (V2, E2) where V2 = {v1
2 , v

2
2 , ..., v

k
2} and E2 = {(v1

2 , v
2
2), (v1

2 , v
3
2), ..., (v1

2 , v
k
2)} - the “”star”

graph, with k − 1 edges.

d(G1) = 1 whereas d(G2) = 2, something that it will be impossible for the naive algorithm to distinguish
without sampling Ω(n) vertices. There two questions we should ask ourselves are therefore:

• If we can accept a mistake factor 2, is it enough to use degree queries?

• If we would like a better approximation, how and how much can neighbor queries help?

The first idea of the sublinear algorithm is to group vertices into buckets with similar degrees. Note that
each bucket will have low variance.

Definitions

• β = ε
c for c > 1.

• l is a lower bound for d.

• Bucketing - define Bi as: Bi = {v|(1 + β)i−1 < d(v) ≤ (1 + β)i} for i = 0, ..., t − 1 where t is an
upper bound on log(1+β)n + 1; B−1 = {v|d(v) = 0}.

• n = |V |.

2

Algorithm description

Sample some S ⊆ V , for each bucket Bi denote: Si = S ∩Bi, and set γi as follows:

• if Si is “large”, meaning that |Si| ≥ 1
t

√
ε
6
l
n : γi = |Si|

|S| which is our approximation for |Bi|
n .

• otherwise: set γi = 0.

Output:
∑
i γi(1 + β)i−1.

Recall that (1 + β)i−1 is the lower bound on the degree of some vertex v ∈ Bi. Assuming that for
every i: |Si|

|S| ≤
|Bi|
n (1 + ρ) for some ρ, we get that:∑

i γi(1 + β)i−1 ≤
∑
i
|Si|
|S| (1 + β)i−1 ≤ |Bi|

n (1 + β)i−1(1 + ρ) ≤ d(1 + ρ)
where the first inequality is true because some of the γi’s equal to 0, the second is simply our assumption,
and the third uses the definition of Bi.
Let us now try to determine how much could we underestimate the value of d, there are three pairwise
disjoint sets of edges e = (u, v):

• E1 = edges (u, v) s.t. both u and v are in some large Bi; such edges are counted twice in the
algorithm.

• E2 = edges (u, v) s.t. u is in some large Bi, whereas v is in some small Bi; such edges are counted
once in the algorithm.

• E3 = edges (u, v) s.t. both u and v are in some small Bi; such edges are not counted in the
algorithm at all.

It holds that: E = E1 ∪ E2 ∪ E3. By our choice of the cutoff for deciding which Bi’s are large we
guarantee that |E3| ≤ O(εn) so:

∑
i γi(1 + β)i−1 ≥ d

2
1−ρ
1+β − ε (the total number of vertices in small

buckets is O(
√
εn) which implies that the total number of edges in E3 is about O(

√
εn over 2) = O(εn)).

Claim 4 Sample size of n√
εn

=
√

n
ε gives (2−O(1)) approximation of d

The claim is straightforward conclusion from the above discussion.

Full scale algorithm description

The full scale algorithm uses also the random neighbors queries as follows: For large bucket i, denote
by αi the fraction of edges from E2 hanging off bucket i. The lower bound on the average degree of the
edges in Bi is (1 + αi)γi(1 + β)i−1, where the αi is added to make up for the edges from E2 that were
not seen in small buckets.

How to approximate αi

For every vertex in a large Si, we pick a random neighbor and set Xi as follows: Xi = 1 if the neighbor
is in some small Sj and Xi = 0 otherwise. If all vertices in Bi would have had the same degree then
we could choose a vertex uniformly at random from Bi, here two vertices have nearly the same degree
(concretely - up to (1 + β)). Denote: p = Pr[edge slot of Si is picked]. For an edge (u, v) such that
u ∈ Bi the probability to pick an edge is 1

|Bi|
1

d(u) so: 1
#S′

i
s edge slots

1
1+β ≤ p ≤

1
#S′

i
s edge slots (1+β) where

by edge slot we mean the number of vertices of the edge that are in the bucket.
The full scale algorithm will look like this:

• set S = Θ(
√

n
l ε
− 4

5 log2(n)log(1
ε)) sampled vertices.

• set Si = S ∩Bi.

• if Si is large, i.e. |Si|
|S| ≥

1
t

√
ε
6
l
n use |Si|

|S| to approximate |Bi|
n , setting: γi = |Si|

|S| .

3

• for every large bucket i and for every v ∈ Si: pick random neighbor u of v and set Xv as follows:
Xv = 1 if u is in some small bucket and Xv = 0 otherwise.

• for every large bucket i: set αi = |{v∈Si|Xv=1}|
|Si| .

• Output 1
|S|

∑
i∈{j|j is a large bucket index}(1 + αi)|Si|(1 + β)i.

4

