October 26, 2009

Lecture 2

Lecturer: Ronitt Rubinfeld

Scribe: Svetlana Olonetsky & Iftah Gamzu

# 1 Lecture Outline

- Chernoff bound
- Estimating the number of connected components
- Estimating the weight of the minimum spanning tree
- Distributed algorithms vs. sublinear time algorithms

# 2 Chernoff Bound

Let  $X_1, X_2, \ldots, X_m$  be *m* independent identically distributed random variables such that  $X_i \in [0, 1]$ . Let  $S = \sum_{i=1}^m X_i$  and  $p = E[X_i] = E[S]/m$ . Then,

$$\Pr\left(\left|\frac{s}{m} - p\right| \ge \delta p\right) \le e^{-\Omega\left(mp\delta^2\right)}$$
.

### 3 Estimating the Number of Connected Components

Given an undirected graph G(V, E) having *n* nodes and maximal degree *d* (in an adjacency list representation), and  $\epsilon$ , we want to find an  $\epsilon n$ -additive estimate of the number of connected components. Specifically, if *c* denotes the number of connected components in *G* then the estimated number of connected components *y* should satisfy

$$c - \epsilon n \le y \le c + \epsilon n$$

**Definition 1** Let  $n_u$  be the number of nodes in u's connected component.

**Observation 2** For any connected component  $A \subseteq V$ , we have

$$\sum_{u \in A} \frac{1}{n_u} = \sum_{u \in A} \frac{1}{|A|} = 1 \; .$$

Furthermore, this implies that the number of connected components c is equal to

$$c = \sum_{u \in V} \frac{1}{n_u} \; .$$

**Definition 3** Let  $\hat{n}_u = \min\{n_u, 2/\epsilon\}$ , and let  $\hat{c} = \sum_{u \in V} 1/\hat{n}_u$ .

The following lemma bounds the amount by which the estimates can be off.

Lemma 4 For any node u, it holds that

$$\left|\frac{1}{\hat{n}_u} - \frac{1}{n_u}\right| \le \frac{\epsilon}{2} \ .$$

**Proof.** We know that  $\hat{n}_u \leq n_u$  by the definition of  $\hat{n}_u$ . If  $n_u \leq 2/\epsilon$  then  $\hat{n}_u = n_u$ , and therefore, the left hand side in the above inequality is equal to 0. If  $n_u > 2/\epsilon$  then  $\epsilon/2 = 1/\hat{n}_u \geq 1/n_u \geq 0$  and the lemma follows.

Corollary 5  $|c - \hat{c}| \leq \epsilon n/2.$ 

**Lemma 6** We can compute  $\hat{n}_u$  in  $O(d/\epsilon)$  time.

**Proof.** We begin by presenting the algorithm that computes  $\hat{n}_u$ .

 $estimate_cc(u)$ 

**run** BFS from u until:

- visited the whole connected component
- or visited  $2/\epsilon$  distinct nodes of the connected component

**output** the number of visited nodes

It is clear that during execution of the algorithm at most  $2/\epsilon$  nodes are visited. Since the degree of each node is at most d, the running time of the algorithm is  $O(d/\epsilon)$ .

We now present algorithm approx\_num\_cc( $G, \epsilon$ ), which calculates an  $\epsilon n$ -additive estimation of the number of connected components.

approx\_num\_cc( $G, \epsilon$ ): choose a set  $U = \{u_1, u_2, \dots, u_r\}$  of  $r = \Theta(1/\epsilon^3)$  random nodes for each  $u \in U$  compute  $\hat{n}_u$  using estimate\_cc(u) output  $\tilde{c} = \frac{n}{r} \sum_{u \in U} \frac{1}{\hat{n}_u}$ 

One can easily verify that the running time of the algorithm is  $O(1/\epsilon^3 \cdot d/\epsilon) = O(d/\epsilon^4)$ . We turn to prove that  $\tilde{c}$  is an  $\epsilon n$ -additive estimation of c with constant probability.

Theorem 7  $\Pr(|\tilde{c} - \hat{c}| \le \epsilon n/2) \ge 3/4.$ 

**Proof.** We apply the Chernoff bound from Section 2 with  $p = E[1/\hat{n}_{u_i}]$ ,  $S = \sum_{i=1}^r 1/\hat{n}_{u_i}$ , m = r, and  $\delta = \epsilon/2$ , and get that

$$\Pr\left(\left|\frac{1}{r}\sum_{i=1}^{r}\frac{1}{\hat{n}_{u_i}} - \operatorname{E}\left[\frac{1}{\hat{n}_{u_i}}\right]\right| \ge \frac{\epsilon}{2}\operatorname{E}\left[\frac{1}{\hat{n}_{u_i}}\right]\right) \le \exp\left(-\Omega\left(r\operatorname{E}\left[\frac{1}{\hat{n}_{u_i}}\right]\left(\frac{\epsilon}{2}\right)^2\right)\right)$$

Notice that  $\tilde{c} = n/r \cdot \sum_{i=1}^{r} 1/\hat{n}_{u_i}$ ,  $E[1/\hat{n}_{u_i}] = 1/n \cdot \sum_{i=1}^{n} 1/\hat{n}_{u_i} = \hat{c}/n$ , and  $r = \Theta(1/\epsilon^3)$ , and thus,

$$\Pr\left(\left|\frac{\tilde{c}}{n} - \frac{\hat{c}}{n}\right| \ge \frac{\epsilon}{2}\frac{\hat{c}}{n}\right) = \Pr\left(\left|\tilde{c} - \hat{c}\right| \ge \frac{\epsilon}{2}\hat{c}\right) \le \exp\left(-\Omega\left(r\frac{\hat{c}}{n}\left(\frac{\epsilon}{2}\right)^2\right)\right) = \exp\left(-\Omega\left(\frac{1}{\epsilon}\frac{\hat{c}}{n}\right)\right)$$

By the definition of  $\hat{n}_u$ , we know that  $\epsilon/2 \leq 1/\hat{n}_u \leq 1$ , and therefore,  $\epsilon n/2 \leq \hat{c} \leq n$ . Consequently, we attain that

$$\Pr\left(|\tilde{c} - \hat{c}| \ge \frac{\epsilon}{2}n\right) \le \Pr\left(|\tilde{c} - \hat{c}| \ge \frac{\epsilon}{2}\hat{c}\right) \le e^{-\Omega(1)} < \frac{1}{4}.$$

Corollary 8  $\Pr(|c - \tilde{c}| \le \epsilon n) \ge 3/4.$ 

**Proof.** By Corollary 5 and the triangle inequality  $|c - \tilde{c}| \leq |c - \hat{c}| + |\hat{c} - \tilde{c}|$ , one can obtain that  $\Pr(|c - \tilde{c}| \leq \epsilon n) = \Pr(|\tilde{c} - \hat{c}| \leq \epsilon n/2)$ .

### 4 Estimating the Weight of the Minimum Spanning Tree

#### 4.1 Problem statement

The input for the problem is a connected undirected graph G = (V, E) in which the degree of each node is at most d. Furthermore, each edge (i, j) has an integer weight  $w_{ij} \in [w] \cup \{\infty\}$ . Note that the graph is given in an adjacency list format, and edges of weight  $\infty$  do not appear in it. The goal is to find the weight of a minimum spanning tree (MST) of G. Specifically, if we let  $w(T) = \sum_{(ij)\in T} w_{ij}$  for  $T \subseteq E$ , then our objective is to find

$$M = \min_{T \text{ spans } G} w(T)$$

Since we are interested in sublinear time algorithms for this problem, and therefore, cannot hope to find M, we focus on finding an  $\epsilon$ -multiplicative estimate of M, that is, a weight  $\hat{M}$  which satisfies

$$(1-\epsilon)M \le M \le (1+\epsilon)M$$
.

We note that  $n-1 \leq M \leq w \cdot (n-1)$ , where n = |V|. This follows since G is connected, and thus, any spanning tree of it consists of n-1 edges, and by the assumption on the input weights.

#### 4.2 From motivation to characterization

In what follows, we relate the weight of a MST of G to the number of connected components in certain subgraphs of G. We begin by introducing the following notation for a graph G:

- Let  $G^{(i)} = (V, E^{(i)})$  be the subgraph of G that consists of the edges having a weight of at most i.
- Let  $C^{(i)}$  be the number of connected components in  $G^{(i)}$ .



**Figure 1**: A graph G having w = 2, and its induced subgraph  $G^{(1)}$ .

A motivation. Let us consider two simple cases. The first case is when w = 1, namely, all the edges of G have a weight of 1. In this case, it is clear that the weight of a MST is n - 1. Now, let us consider the case that w = 2, and let us focus on  $G^{(1)}$ . Clearly, one has to use  $C^{(1)} - 1$  edges (of weight 2) to connect the connected components in  $G^{(1)}$ . This implies that the weight of a MST in this case is

$$2 \cdot (C^{(1)} - 1) + 1 \cdot (n - 1 - (C^{(1)} - 1)) = n - 2 + C^{(1)}.$$

The characterization. We extend and formalize the intuition presented above. Specifically, we characterize the weight of a MST of G using the  $C^{(i)}$ 's, for any integer w.

**Claim 9**  $M = n - w + \sum_{i=1}^{w-1} C^{(i)}$ 

**Proof.** Let  $\alpha_i$  be the number of edges of weight *i* in any MST of *G*. Remark that it is well-known that all minimum spanning trees of *G* have the same number of edges of weight *i*, and hence, the  $\alpha_i$ 's are well defined. It is easy to validate that the number of edges having weight greater than  $\ell$  is equal to the number of connected components in  $G^{(\ell)}$  minus 1. That is,  $\sum_{i=\ell+1}^{w} \alpha_i = C^{(\ell)} - 1$ , where  $C^{(0)}$  is set to be *n*. Now, notice that

$$M = \sum_{i=1}^{w} i \cdot \alpha_i$$
  
=  $\sum_{i=1}^{w} \alpha_i + \sum_{i=2}^{w} \alpha_i + \sum_{i=3}^{w} \alpha_i + \dots + \alpha_w$   
=  $(n-1) + (C^{(1)} - 1) + (C^{(2)} - 1) + \dots + (C^{(w-1)} - 1)$   
=  $n - w + \sum_{i=1}^{w-1} C^{(i)}$ 

#### 4.3 Approximation algorithm

Algorithm MST\_approx, formally defined below, estimates the weight of the MST.

 $\begin{aligned} \mathsf{MST\_approx}(G, \epsilon, w) \\ & \mathbf{for} \ i = 1 \ \mathrm{to} \ w - 1 \\ & \hat{C}^{(i)} = \mathsf{approx\_num\_cc}(G^{(i)}, \epsilon/(2w)) \\ & \mathbf{output} \ \hat{M} = n - w + \sum_{i=1}^{w-1} C^{(i)} \end{aligned}$ 

**Running time.** One can easily see that there are w calls to  $approx\_num\_cc$ . Recall that the running time of this procedure is  $O(d/(\epsilon/(2w))^4) = O(dw^4/\epsilon^4)$ , and hence, the running time of MST\_approx is  $O(dw^5/\epsilon^4)$ . It is worth noting that rather than extracting  $G^{(i)}$  from G for each call of approx\_num\_cc (which would make the algorithm have non-sublinear time), we simply modify approx\_num\_cc so it ignores edges with weight greater than *i*.

Approximation guarantee. We establish that  $(1-\epsilon)M \leq \hat{M} \leq (1+\epsilon)M$  with high probability (whp). For this purpose, recall that approx\_num\_cc outputs an estimation  $\hat{C}^{(i)}$  of the number of connected components which satisfies  $|\hat{C}^{(i)} - C^{(i)}| \leq n\epsilon/(2w)$  whp. Consequently, we get that  $|M - \hat{M}| \leq n\epsilon/2$  whp. Notice that  $M \geq n-1 \geq n/2$ , where the last inequality is valid for any "interesting" n, i.e.,  $n \geq 2$ . Therefore,  $|M - \hat{M}| \leq M\epsilon$ , which completes the proof.

**Concluding remark.** The current state of the art algorithm for finding an  $\epsilon$ -multiplicative estimate of M has a running time of  $O(dw/\epsilon^2 \cdot \log dw/\epsilon)$ . On the lower bound side, it is known that the running time of any algorithm must be  $\Omega(dw/\epsilon^2)$ .

# 5 Distributed Algorithms vs. Sublinear Time Algorithms

We introduce a definition and a theorem, which will be used in the next lesson.

**Definition 10**  $\hat{y}$  is an  $(\alpha, \epsilon)$ -estimate of a solution value y for a minimization problem of size n if

$$y \le \hat{y} \le \alpha y + \epsilon n$$

**Theorem 11** (Vizing's Theorem) Every graph is edge-colorable<sup>1</sup> with at most d + 1 colors, where d is the maximum degree of the graph.

**Corollary 12** Every graph whose maximum degree is d has a matching of size at least |E|/(d+1).

**Corollary 13** The vertex cover size of every graph whose maximum degree is d is at least |E|/(d+1).

 $<sup>^{1}</sup>$ An *edge coloring* of a graph is an assignment of colors to the edges of the graph so that no two adjacent edges have the same color.