Lecture 2

Lecturer: Ronitt Rubinfeld
Scribe: Svetlana Olonetsky \& Iftah Gamzu

1 Lecture Outline

- Chernoff bound
- Estimating the number of connected components
- Estimating the weight of the minimum spanning tree
- Distributed algorithms vs. sublinear time algorithms

2 Chernoff Bound

Let $X_{1}, X_{2}, \ldots, X_{m}$ be m independent identically distributed random variables such that $X_{i} \in[0,1]$. Let $S=\sum_{i=1}^{m} X_{i}$ and $p=\mathrm{E}\left[X_{i}\right]=\mathrm{E}[S] / m$. Then,

$$
\operatorname{Pr}\left(\left|\frac{s}{m}-p\right| \geq \delta p\right) \leq e^{-\Omega\left(m p \delta^{2}\right)}
$$

3 Estimating the Number of Connected Components

Given an undirected graph $G(V, E)$ having n nodes and maximal degree d (in an adjacency list representation), and ϵ, we want to find an ϵn-additive estimate of the number of connected components. Specifically, if c denotes the number of connected components in G then the estimated number of connected components y should satisfy

$$
c-\epsilon n \leq y \leq c+\epsilon n
$$

Definition 1 Let n_{u} be the number of nodes in u's connected component.
Observation 2 For any connected component $A \subseteq V$, we have

$$
\sum_{u \in A} \frac{1}{n_{u}}=\sum_{u \in A} \frac{1}{|A|}=1
$$

Furthermore, this implies that the number of connected components c is equal to

$$
c=\sum_{u \in V} \frac{1}{n_{u}}
$$

Definition 3 Let $\hat{n}_{u}=\min \left\{n_{u}, 2 / \epsilon\right\}$, and let $\hat{c}=\sum_{u \in V} 1 / \hat{n}_{u}$.
The following lemma bounds the amount by which the estimates can be off.
Lemma 4 For any node u, it holds that

$$
\left|\frac{1}{\hat{n}_{u}}-\frac{1}{n_{u}}\right| \leq \frac{\epsilon}{2}
$$

Proof. We know that $\hat{n}_{u} \leq n_{u}$ by the definition of \hat{n}_{u}. If $n_{u} \leq 2 / \epsilon$ then $\hat{n}_{u}=n_{u}$, and therefore, the left hand side in the above inequality is equal to 0 . If $n_{u}>2 / \epsilon$ then $\epsilon / 2=1 / \hat{n}_{u} \geq 1 / n_{u} \geq 0$ and the lemma follows.

Corollary $5|c-\hat{c}| \leq \epsilon n / 2$.
Lemma 6 We can compute \hat{n}_{u} in $O(d / \epsilon)$ time.
Proof. We begin by presenting the algorithm that computes \hat{n}_{u}.
estimate_cc (u)
run BFS from u until:

- visited the whole connected component
- or visited $2 / \epsilon$ distinct nodes of the connected component
output the number of visited nodes
It is clear that during execution of the algorithm at most $2 / \epsilon$ nodes are visited. Since the degree of each node is at most d, the running time of the algorithm is $O(d / \epsilon)$.

We now present algorithm approx_num_cc (G, ϵ), which calculates an ϵn-additive estimation of the number of connected components.
approx_num_cc (G, ϵ) :
choose a set $U=\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$ of $r=\Theta\left(1 / \epsilon^{3}\right)$ random nodes
for each $u \in U$ compute \hat{n}_{u} using estimate_cc (u)
output $\tilde{c}=\frac{n}{r} \sum_{u \in U} \frac{1}{\hat{n}_{u}}$
One can easily verify that the running time of the algorithm is $O\left(1 / \epsilon^{3} \cdot d / \epsilon\right)=O\left(d / \epsilon^{4}\right)$. We turn to prove that \tilde{c} is an ϵn-additive estimation of c with constant probability.

Theorem $7 \operatorname{Pr}(|\tilde{c}-\hat{c}| \leq \epsilon n / 2) \geq 3 / 4$.
Proof. We apply the Chernoff bound from Section 2 with $p=\mathrm{E}\left[1 / \hat{n}_{u_{i}}\right], S=\sum_{i=1}^{r} 1 / \hat{n}_{u_{i}}, m=r$, and $\delta=\epsilon / 2$, and get that

$$
\operatorname{Pr}\left(\left|\frac{1}{r} \sum_{i=1}^{r} \frac{1}{\hat{n}_{u_{i}}}-\mathrm{E}\left[\frac{1}{\hat{n}_{u_{i}}}\right]\right| \geq \frac{\epsilon}{2} \mathrm{E}\left[\frac{1}{\hat{n}_{u_{i}}}\right]\right) \leq \exp \left(-\Omega\left(r \mathrm{E}\left[\frac{1}{\hat{n}_{u_{i}}}\right]\left(\frac{\epsilon}{2}\right)^{2}\right)\right) .
$$

Notice that $\tilde{c}=n / r \cdot \sum_{i=1}^{r} 1 / \hat{n}_{u_{i}}, \mathrm{E}\left[1 / \hat{n}_{u_{i}}\right]=1 / n \cdot \sum_{i=1}^{n} 1 / \hat{n}_{u_{i}}=\hat{c} / n$, and $r=\Theta\left(1 / \epsilon^{3}\right)$, and thus,

$$
\operatorname{Pr}\left(\left|\frac{\tilde{c}}{n}-\frac{\hat{c}}{n}\right| \geq \frac{\epsilon}{2} \frac{\hat{c}}{n}\right)=\operatorname{Pr}\left(|\tilde{c}-\hat{c}| \geq \frac{\epsilon}{2} \hat{c}\right) \leq \exp \left(-\Omega\left(r \frac{\hat{c}}{n}\left(\frac{\epsilon}{2}\right)^{2}\right)\right)=\exp \left(-\Omega\left(\frac{1}{\epsilon} \frac{\hat{c}}{n}\right)\right)
$$

By the definition of \hat{n}_{u}, we know that $\epsilon / 2 \leq 1 / \hat{n}_{u} \leq 1$, and therefore, $\epsilon n / 2 \leq \hat{c} \leq n$. Consequently, we attain that

$$
\operatorname{Pr}\left(|\tilde{c}-\hat{c}| \geq \frac{\epsilon}{2} n\right) \leq \operatorname{Pr}\left(|\tilde{c}-\hat{c}| \geq \frac{\epsilon}{2} \hat{c}\right) \leq e^{-\Omega(1)}<\frac{1}{4} .
$$

Corollary $8 \operatorname{Pr}(|c-\tilde{c}| \leq \epsilon n) \geq 3 / 4$.
Proof. By Corollary 5 and the triangle inequality $|c-\tilde{c}| \leq|c-\hat{c}|+|\hat{c}-\tilde{c}|$, one can obtain that $\operatorname{Pr}(|c-\tilde{c}| \leq \epsilon n)=\operatorname{Pr}(|\tilde{c}-\hat{c}| \leq \epsilon n / 2)$.

4 Estimating the Weight of the Minimum Spanning Tree

4.1 Problem statement

The input for the problem is a connected undirected graph $G=(V, E)$ in which the degree of each node is at most d. Furthermore, each edge (i, j) has an integer weight $w_{i j} \in[w] \cup\{\infty\}$. Note that the graph is given in an adjacency list format, and edges of weight ∞ do not appear in it. The goal is to find the
weight of a minimum spanning tree (MST) of G. Specifically, if we let $w(T)=\sum_{(i j) \in T} w_{i j}$ for $T \subseteq E$, then our objective is to find

$$
M=\min _{T \text { spans } G} w(T)
$$

Since we are interested in sublinear time algorithms for this problem, and therefore, cannot hope to find M, we focus on finding an ϵ-multiplicative estimate of M, that is, a weight \hat{M} which satisfies

$$
(1-\epsilon) M \leq \hat{M} \leq(1+\epsilon) M
$$

We note that $n-1 \leq M \leq w \cdot(n-1)$, where $n=|V|$. This follows since G is connected, and thus, any spanning tree of it consists of $n-1$ edges, and by the assumption on the input weights.

4.2 From motivation to characterization

In what follows, we relate the weight of a MST of G to the number of connected components in certain subgraphs of G. We begin by introducing the following notation for a graph G :

- Let $G^{(i)}=\left(V, E^{(i)}\right)$ be the subgraph of G that consists of the edges having a weight of at most i.
- Let $C^{(i)}$ be the number of connected components in $G^{(i)}$.

G

$G^{(1)}, C^{(1)}=2$

Figure 1: A graph G having $w=2$, and its induced subgraph $G^{(1)}$.
A motivation. Let us consider two simple cases. The first case is when $w=1$, namely, all the edges of G have a weight of 1 . In this case, it is clear that the weight of a MST is $n-1$. Now, let us consider the case that $w=2$, and let us focus on $G^{(1)}$. Clearly, one has to use $C^{(1)}-1$ edges (of weight 2) to connect the connected components in $G^{(1)}$. This implies that the weight of a MST in this case is

$$
2 \cdot\left(C^{(1)}-1\right)+1 \cdot\left(n-1-\left(C^{(1)}-1\right)\right)=n-2+C^{(1)} .
$$

The characterization. We extend and formalize the intuition presented above. Specifically, we characterize the weight of a MST of G using the $C^{(i)}$'s, for any integer w.
Claim $9 \quad M=n-w+\sum_{i=1}^{w-1} C^{(i)}$
Proof. Let α_{i} be the number of edges of weight i in any MST of G. Remark that it is well-known that all minimum spanning trees of G have the same number of edges of weight i, and hence, the α_{i} 's are well defined. It is easy to validate that the number of edges having weight greater than ℓ is equal to the number of connected components in $G^{(\ell)}$ minus 1. That is, $\sum_{i=\ell+1}^{w} \alpha_{i}=C^{(\ell)}-1$, where $C^{(0)}$ is set to be n. Now, notice that

$$
\begin{aligned}
M & =\sum_{i=1}^{w} i \cdot \alpha_{i} \\
& =\sum_{i=1}^{w} \alpha_{i}+\sum_{i=2}^{w} \alpha_{i}+\sum_{i=3}^{w} \alpha_{i}+\ldots+\alpha_{w} \\
& =(n-1)+\left(C^{(1)}-1\right)+\left(C^{(2)}-1\right)+\ldots+\left(C^{(w-1)}-1\right) \\
& =n-w+\sum_{i=1}^{w-1} C^{(i)}
\end{aligned}
$$

4.3 Approximation algorithm

Algorithm MST_approx, formally defined below, estimates the weight of the MST.
MST_approx (G, ϵ, w)

```
    for \(i=1\) to \(w-1\)
        \(\hat{C}^{(i)}=\) approx_num_cc \(\left(G^{(i)}, \epsilon /(2 w)\right)\)
    output \(\hat{M}=n-w+\sum_{i=1}^{w-1} C^{(i)}\)
```

Running time. One can easily see that there are w calls to approx_num_cc. Recall that the running time of this procedure is $O\left(d /(\epsilon /(2 w))^{4}\right)=O\left(d w^{4} / \epsilon^{4}\right)$, and hence, the running time of MST_approx is $O\left(d w^{5} / \epsilon^{4}\right)$. It is worth noting that rather than extracting $G^{(i)}$ from G for each call of approx_num_cc (which would make the algorithm have non-sublinear time), we simply modify approx_num_cc so it ignores edges with weight greater than i.
Approximation guarantee. We establish that $(1-\epsilon) M \leq \hat{M} \leq(1+\epsilon) M$ with high probability (whp). For this purpose, recall that approx_num_cc outputs an estimation $\hat{C}^{(i)}$ of the number of connected components which satisfies $\left|\hat{C}^{(i)}-C^{(i)}\right| \leq n \epsilon /(2 w)$ whp. Consequently, we get that $|M-\hat{M}| \leq n \epsilon / 2$ whp. Notice that $M \geq n-1 \geq n / 2$, where the last inequality is valid for any "interesting" n, i.e., $n \geq 2$. Therefore, $|M-\hat{M}| \leq M \epsilon$, which completes the proof.
Concluding remark. The current state of the art algorithm for finding an ϵ-multiplicative estimate of M has a running time of $O\left(d w / \epsilon^{2} \cdot \log d w / \epsilon\right)$. On the lower bound side, it is known that the running time of any algorithm must be $\Omega\left(d w / \epsilon^{2}\right)$.

5 Distributed Algorithms vs. Sublinear Time Algorithms

We introduce a definition and a theorem, which will be used in the next lesson.
Definition $10 \hat{y}$ is an (α, ϵ)-estimate of a solution value y for a minimization problem of size n if

$$
y \leq \hat{y} \leq \alpha y+\epsilon n .
$$

Theorem 11 (Vizing's Theorem) Every graph is edge-colorable ${ }^{1}$ with at most $d+1$ colors, where d is the maximum degree of the graph.

Corollary 12 Every graph whose maximum degree is d has a matching of size at least $|E| /(d+1)$.
Corollary 13 The vertex cover size of every graph whose maximum degree is d is at least $|E| /(d+1)$.

[^0]
[^0]: ${ }^{1}$ An edge coloring of a graph is an assignment of colors to the edges of the graph so that no two adjacent edges have the same color.

