0368.416701 Sublinear Time Algorithms October 26, 2009

Lecture 2
Lecturer: Ronitt Rubinfeld Scribe: Svetlana Olonetsky & Iftah Gamzu

1 Lecture Outline

Chernoff bound

Estimating the number of connected components

Estimating the weight of the minimum spanning tree

Distributed algorithms vs. sublinear time algorithms

2 Chernoff Bound

Let X1, Xs,...,X,, be m independent identically distributed random variables such that X; € [0, 1].
Let S =", X; and p = E[X;] = E[S]/m. Then,

Pr (‘i _p’ > 5])) < e—Q(mpéz) .
m

3 Estimating the Number of Connected Components

Given an undirected graph G(V, E) having n nodes and maximal degree d (in an adjacency list rep-
resentation), and e, we want to find an en-additive estimate of the number of connected components.
Specifically, if ¢ denotes the number of connected components in G then the estimated number of con-
nected components y should satisfy

c—en<y<c+en

Definition 1 Let n, be the number of nodes in u’s connected component.

Observation 2 For any connected component A C V', we have
1 1
Sy
ucA M u€A |A‘
Furthermore, this implies that the number of connected components c is equal to
1
Cc = Z niu .
Definition 3 Let 1, = min{n,,2/e}, and let ¢ =3 .\, 1/7y.

The following lemma bounds the amount by which the estimates can be off.

Lemma 4 For any node u, it holds that

1 1

= <
Ny Ty

§ .
Proof. We know that 7, < n, by the definition of 7,. If n, < 2/¢ then f,, = n,, and therefore, the

left hand side in the above inequality is equal to 0. If n, > 2/e then ¢/2 = 1/n, > 1/n, > 0 and the
lemma follows. []

Corollary 5 |c— ¢ < en/2.
Lemma 6 We can compute 1, in O(d/e) time.

Proof. We begin by presenting the algorithm that computes n,,.

estimate_cc(u)
run BFS from v until:
e visited the whole connected component
e or visited 2/e distinct nodes of the connected component
output the number of visited nodes

It is clear that during execution of the algorithm at most 2/¢ nodes are visited. Since the degree of each
node is at most d, the running time of the algorithm is O(d/e). []

We now present algorithm approx_num_cc(G,€), which calculates an en-additive estimation of the
number of connected components.

approx_num_cc(G, €):
choose a set U = {uy,us,...,u.} of r = O(1/e*) random nodes
for cach u € U compute 7, using estimate_cc(u)
output ¢=2% L
One can easily verify that the running time of the algorithm is O(1/€® - d/e) = O(d/e*). We turn to
prove that ¢ is an en-additive estimation of ¢ with constant probability.
Theorem 7 Pr(|¢ — ¢ <en/2) > 3/4.

Proof. We apply the Chernoff bound from Section 2 with p = E[1/7,,], S = >"|_, 1/fy,, m = r, and

0 =¢/2, and get that

I 1 1 € 1 1 €\2
Pr||= - > = < - - .
r(T;ﬁu7 E [ﬁ7Li:| N 2E |:ﬁu7:|> _exp(Q (TE |:ﬁuz':| <2)))

Notice that é =n/r- > ;_, 1/fu,, E[1/f,,] =1/n->" 1/f,, =¢/n, and r = ©(1/€®), and thus,

> ;;) = Pr(je—¢ > 5¢) <exp (—Q (7“2 (;)2» = exp (‘Q (12))

By the definition of 7, we know that ¢/2 < 1/7,, < 1, and therefore, en/2 < é < n. Consequently, we
attain that

Pr(\e—a > %n) §Pr(\é—é| >
Corollary 8 Pr(|c —¢| <en) > 3/4.

Proof. By Corollary 5 and the triangle inequality |c —¢é| < |c—¢é| 4+ |é— ¢é|, one can obtain that
Pr(lc — ¢| < en) = Pr(|¢ — ¢ < en/2). [

4 Estimating the Weight of the Minimum Spanning Tree

4.1 Problem statement

The input for the problem is a connected undirected graph G = (V, E) in which the degree of each node
is at most d. Furthermore, each edge (7, j) has an integer weight w;; € [w] U {oo}. Note that the graph
is given in an adjacency list format, and edges of weight co do not appear in it. The goal is to find the

weight of a minimum spanning tree (MST) of G. Specifically, if we let w(T) = >_ ;e wij for T C E,
then our objective is to find
M= min w(T).
T spans G
Since we are interested in sublinear time algorithms for this problem, and therefore, cannot hope to
find M, we focus on finding an e-multiplicative estimate of M, that is, a weight M which satisfies

(1-e)M <M< (14+e)M.

We note that n — 1 < M < w - (n— 1), where n = |V|. This follows since G is connected, and thus,
any spanning tree of it consists of n — 1 edges, and by the assumption on the input weights.

4.2 From motivation to characterization

In what follows, we relate the weight of a MST of G to the number of connected components in certain
subgraphs of G. We begin by introducing the following notation for a graph G:

e Let GO = (V, E™) be the subgraph of G’ that consists of the edges having a weight of at most i.

e Let C® be the number of connected components in G().

1 \
1 2 0 o

G G“),C“) -9

Figure 1: A graph G having w = 2, and its induced subgraph G(1).

A motivation. Let us consider two simple cases. The first case is when w = 1, namely, all the edges
of G have a weight of 1. In this case, it is clear that the weight of a MST is n — 1. Now, let us consider
the case that w = 2, and let us focus on G(). Clearly, one has to use C(!) — 1 edges (of weight 2) to
connect the connected components in GV, This implies that the weight of a MST in this case is

2.(CY 1) +1-n-1-(CY —1))=n-2+Cc0 .

The characterization. We extend and formalize the intuition presented above. Specifically, we char-
acterize the weight of a MST of G using the CV)’s, for any integer w.

Claim 9 M =n—w+ Y. ' C®

Proof. Let a; be the number of edges of weight ¢ in any MST of G. Remark that it is well-known that
all minimum spanning trees of G have the same number of edges of weight i, and hence, the «;’s are
well defined. It is easy to validate that the number of edges having weight greater than ¢ is equal to the
number of connected components in G minus 1. That is, Z;U=£+1 a; = CW — 1, where C0 is set to
be n. Now, notice that

w
M o= i
i=1
w w w
= Zai—l—Zai—i—Zai—l—...—&—aw
i=1 i=2 i=3

= (n-D+CY-D+CH-1)+.. . +(C™D_1)

w—1

= n—w—&—ZC(i)
i=1

4.3 Approximation algorithm
Algorithm MST _approx, formally defined below, estimates the weight of the MST.

MST _approx(G, €, w)
fori=1tow—1
C = approx_num_cc(GD, ¢/(2w))
output M =n —w+ 2?:11 c®

Running time. One can easily see that there are w calls to approx_.num_cc. Recall that the running
time of this procedure is O(d/(e/(2w))*) = O(dw*/e*), and hence, the running time of MST _approx is
O(dw®/e*). Tt is worth noting that rather than extracting G(*) from G for each call of approx_num_cc
(which would make the algorithm have non-sublinear time), we simply modify approx_num_cc so it ignores
edges with weight greater than 1.

Approximation guarantee. We establish that (1—e)M < M < (14 €)M with high probability (whp).
For this purpose, recall that approx_num_cc outputs an estimation C® of the number of connected
components which satisfies |V — C)| < ne/(2w) whp. Consequently, we get that |M — M| < ne/2
whp. Notice that M > n—1 > n/2, where the last inequality is valid for any “interesting” n, i.e., n > 2.
Therefore, |M — M| < Me, which completes the proof.

Concluding remark. The current state of the art algorithm for finding an e-multiplicative estimate
of M has a running time of O(dw/€? - log dw/e€). On the lower bound side, it is known that the running
time of any algorithm must be Q(dw/€?).

5 Distributed Algorithms vs. Sublinear Time Algorithms

We introduce a definition and a theorem, which will be used in the next lesson.

Definition 10 3 is an («,¢)-estimate of a solution value y for a minimization problem of size n if
y<yg<ay+en.

Theorem 11 (Vizing’s Theorem) Every graph is edge-colorable! with at most d + 1 colors, where d is
the maximum degree of the graph.

Corollary 12 Every graph whose maximum degree is d has a matching of size at least |E|/(d + 1).

Corollary 13 The vertex cover size of every graph whose mazximum degree is d is at least |E|/(d + 1).

1An edge coloring of a graph is an assignment of colors to the edges of the graph so that no two adjacent edges have
the same color.

