
0368.416701 Sublinear Time Algorithms October 26, 2009

Lecture 2

Lecturer: Ronitt Rubinfeld Scribe: Svetlana Olonetsky & Iftah Gamzu

1 Lecture Outline

∙ Chernoff bound

∙ Estimating the number of connected components

∙ Estimating the weight of the minimum spanning tree

∙ Distributed algorithms vs. sublinear time algorithms

2 Chernoff Bound

Let X1, X2, . . . , Xm be m independent identically distributed random variables such that Xi ∈ [0, 1].
Let S =

∑m
i=1 Xi and p = E[Xi] = E[S]/m. Then,

Pr
(
∣

∣

∣

s

m
− p
∣

∣

∣
≥ �p

)

≤ e−Ω
(

mp�2
)

.

3 Estimating the Number of Connected Components

Given an undirected graph G(V,E) having n nodes and maximal degree d (in an adjacency list rep-
resentation), and �, we want to find an �n-additive estimate of the number of connected components.
Specifically, if c denotes the number of connected components in G then the estimated number of con-
nected components y should satisfy

c− �n ≤ y ≤ c+ �n

Definition 1 Let nu be the number of nodes in u’s connected component.

Observation 2 For any connected component A ⊆ V , we have

∑

u∈A

1

nu

=
∑

u∈A

1

∣A∣
= 1 .

Furthermore, this implies that the number of connected components c is equal to

c =
∑

u∈V

1

nu

.

Definition 3 Let n̂u = min{nu, 2/�}, and let ĉ =
∑

u∈V 1/n̂u.

The following lemma bounds the amount by which the estimates can be off.

Lemma 4 For any node u, it holds that

∣

∣

∣

∣

1

n̂u

−
1

nu

∣

∣

∣

∣

≤
�

2
.

Proof. We know that n̂u ≤ nu by the definition of n̂u. If nu ≤ 2/� then n̂u = nu, and therefore, the
left hand side in the above inequality is equal to 0. If nu > 2/� then �/2 = 1/n̂u ≥ 1/nu ≥ 0 and the
lemma follows.

1

Corollary 5 ∣c− ĉ∣ ≤ �n/2.

Lemma 6 We can compute n̂u in O(d/�) time.

Proof. We begin by presenting the algorithm that computes n̂u.

estimate cc(u)
run BFS from u until:

∙ visited the whole connected component
∙ or visited 2/� distinct nodes of the connected component

output the number of visited nodes

It is clear that during execution of the algorithm at most 2/� nodes are visited. Since the degree of each
node is at most d, the running time of the algorithm is O(d/�).

We now present algorithm approx num cc(G, �), which calculates an �n-additive estimation of the
number of connected components.

approx num cc(G, �):
choose a set U = {u1, u2, . . . , ur} of r = Θ(1/�3) random nodes
for each u ∈ U compute n̂u using estimate cc(u)
output c̃ = n

r

∑

u∈U
1
n̂u

One can easily verify that the running time of the algorithm is O(1/�3 ⋅ d/�) = O(d/�4). We turn to
prove that c̃ is an �n-additive estimation of c with constant probability.

Theorem 7 Pr(∣c̃− ĉ∣ ≤ �n/2) ≥ 3/4.

Proof. We apply the Chernoff bound from Section 2 with p = E[1/n̂ui
], S =

∑r
i=1 1/n̂ui

, m = r, and
� = �/2, and get that

Pr

(
∣

∣

∣

∣

∣

1

r

r
∑

i=1

1

n̂ui

− E

[

1

n̂ui

]

∣

∣

∣

∣

∣

≥
�

2
E

[

1

n̂ui

]

)

≤ exp

(

−Ω

(

rE

[

1

n̂ui

]

(�

2

)2
))

.

Notice that c̃ = n/r ⋅
∑r

i=1 1/n̂ui
, E[1/n̂ui

] = 1/n ⋅
∑n

i=1 1/n̂ui
= ĉ/n, and r = Θ(1/�3), and thus,

Pr

(∣

∣

∣

∣

c̃

n
−

ĉ

n

∣

∣

∣

∣

≥
�

2

ĉ

n

)

= Pr
(

∣c̃− ĉ∣ ≥
�

2
ĉ
)

≤ exp

(

−Ω

(

r
ĉ

n

(�

2

)2
))

= exp

(

−Ω

(

1

�

ĉ

n

))

By the definition of n̂u, we know that �/2 ≤ 1/n̂u ≤ 1, and therefore, �n/2 ≤ ĉ ≤ n. Consequently, we
attain that

Pr
(

∣c̃− ĉ∣ ≥
�

2
n
)

≤ Pr
(

∣c̃− ĉ∣ ≥
�

2
ĉ
)

≤ e−Ω(1) <
1

4
.

Corollary 8 Pr(∣c− c̃∣ ≤ �n) ≥ 3/4.

Proof. By Corollary 5 and the triangle inequality ∣c− c̃∣ ≤ ∣c− ĉ∣ + ∣ĉ− c̃∣, one can obtain that
Pr(∣c− c̃∣ ≤ �n) = Pr(∣c̃− ĉ∣ ≤ �n/2).

4 Estimating the Weight of the Minimum Spanning Tree

4.1 Problem statement

The input for the problem is a connected undirected graph G = (V,E) in which the degree of each node
is at most d. Furthermore, each edge (i, j) has an integer weight wij ∈ [w] ∪ {∞}. Note that the graph
is given in an adjacency list format, and edges of weight ∞ do not appear in it. The goal is to find the

2

weight of a minimum spanning tree (MST) of G. Specifically, if we let w(T) =
∑

(ij)∈T wij for T ⊆ E,
then our objective is to find

M = min
T spans G

w(T) .

Since we are interested in sublinear time algorithms for this problem, and therefore, cannot hope to
find M , we focus on finding an �-multiplicative estimate of M , that is, a weight M̂ which satisfies

(1− �)M ≤ M̂ ≤ (1 + �)M .

We note that n− 1 ≤ M ≤ w ⋅ (n− 1), where n = ∣V ∣. This follows since G is connected, and thus,
any spanning tree of it consists of n− 1 edges, and by the assumption on the input weights.

4.2 From motivation to characterization

In what follows, we relate the weight of a MST of G to the number of connected components in certain
subgraphs of G. We begin by introducing the following notation for a graph G:

∙ Let G(i) = (V,E(i)) be the subgraph of G that consists of the edges having a weight of at most i.

∙ Let C(i) be the number of connected components in G(i).

1

1

1

2

2

G G(1), C(1)
= 2

Figure 1: A graph G having w = 2, and its induced subgraph G(1).

A motivation. Let us consider two simple cases. The first case is when w = 1, namely, all the edges
of G have a weight of 1. In this case, it is clear that the weight of a MST is n− 1. Now, let us consider
the case that w = 2, and let us focus on G(1). Clearly, one has to use C(1) − 1 edges (of weight 2) to
connect the connected components in G(1). This implies that the weight of a MST in this case is

2 ⋅ (C(1) − 1) + 1 ⋅ (n− 1− (C(1) − 1)) = n− 2 + C(1) .

The characterization. We extend and formalize the intuition presented above. Specifically, we char-
acterize the weight of a MST of G using the C(i)’s, for any integer w.

Claim 9 M = n− w +
∑w−1

i=1 C(i)

Proof. Let �i be the number of edges of weight i in any MST of G. Remark that it is well-known that
all minimum spanning trees of G have the same number of edges of weight i, and hence, the �i’s are
well defined. It is easy to validate that the number of edges having weight greater than ℓ is equal to the
number of connected components in G(ℓ) minus 1. That is,

∑w
i=ℓ+1 �i = C(ℓ) − 1, where C(0) is set to

be n. Now, notice that

M =

w
∑

i=1

i ⋅ �i

=
w
∑

i=1

�i +
w
∑

i=2

�i +
w
∑

i=3

�i + . . .+ �w

= (n− 1) + (C(1) − 1) + (C(2) − 1) + . . .+ (C(w−1) − 1)

= n− w +
w−1
∑

i=1

C(i)

3

4.3 Approximation algorithm

Algorithm MST approx, formally defined below, estimates the weight of the MST.

MST approx(G, �, w)
for i = 1 to w − 1

Ĉ(i) = approx num cc(G(i), �/(2w))

output M̂ = n− w +
∑w−1

i=1 C(i)

Running time. One can easily see that there are w calls to approx num cc. Recall that the running
time of this procedure is O(d/(�/(2w))4) = O(dw4/�4), and hence, the running time of MST approx is
O(dw5/�4). It is worth noting that rather than extracting G(i) from G for each call of approx num cc
(which would make the algorithm have non-sublinear time), we simply modify approx num cc so it ignores
edges with weight greater than i.

Approximation guarantee. We establish that (1−�)M ≤ M̂ ≤ (1+�)M with high probability (whp).
For this purpose, recall that approx num cc outputs an estimation Ĉ(i) of the number of connected
components which satisfies ∣Ĉ(i) − C(i)∣ ≤ n�/(2w) whp. Consequently, we get that ∣M − M̂ ∣ ≤ n�/2
whp. Notice that M ≥ n−1 ≥ n/2, where the last inequality is valid for any “interesting” n, i.e., n ≥ 2.
Therefore, ∣M − M̂ ∣ ≤ M�, which completes the proof.

Concluding remark. The current state of the art algorithm for finding an �-multiplicative estimate
of M has a running time of O(dw/�2 ⋅ log dw/�). On the lower bound side, it is known that the running
time of any algorithm must be Ω(dw/�2).

5 Distributed Algorithms vs. Sublinear Time Algorithms

We introduce a definition and a theorem, which will be used in the next lesson.

Definition 10 ŷ is an (�, �)-estimate of a solution value y for a minimization problem of size n if

y ≤ ŷ ≤ �y + �n .

Theorem 11 (Vizing’s Theorem) Every graph is edge-colorable1 with at most d + 1 colors, where d is

the maximum degree of the graph.

Corollary 12 Every graph whose maximum degree is d has a matching of size at least ∣E∣/(d+ 1).

Corollary 13 The vertex cover size of every graph whose maximum degree is d is at least ∣E∣/(d+ 1).

1An edge coloring of a graph is an assignment of colors to the edges of the graph so that no two adjacent edges have

the same color.

4

