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Lecture 11

Lecturer: Ronitt Rubinfeld Scribe: Netanel Nimni and Nir Muchtar

1 Lecture Topic

Testing functions for the k-junta property.

1.1 Last Week

We found a property tester for dictator functions.
We de�ned k-junta functions and introduced a k-junta testing algorithm.

2 De�nitions and Lemmas From Last Week

De�nition 1. A function f is a k-junta function if its output depends only on k or less input variables.

De�nition 2. Xs ≡ ordered− list(Xi | i ∈ S)

De�nition 3. XsYs ≡ Z s.t ∀i∈S Zi = Xi and ∀i∈S̄ Zi = Yi

De�nition 4. Inff (s) ≡ 2Prx,y|xs̄=ys̄ [f(x) 6= f(y)]

Last week we showed the following:
Inff (s) ≡ 2Prx,y|xs̄=ys̄ [f(x) 6= f(y)] =

∑
f̂(T )2 =

T |S∩T 6=φ

∑
T

f̂(T )2 −
∑
T⊆S̄

f̂(T )2 = 1−
∑
T⊆S̄

f̂(T )2

where the last equality is derived from the boolean Parseval equality.

Lemma 5. If a function f is ε-far from being a k-junta then
∀J:|J|≤kInff ([n] \ J) ≥ ε

3 Main Theorem

3.1 Algorithm For Testing The k-junta Property

given k, ε

• randomly partition 1..n into s parts I1...Iswhere s = poly(k, 1
ε )

• R← φ

• repeat up to r = O(kε ) times

� generate x, y randomly s.t. xR = yR

� if f(x) = f(y)

∗ use binary search to �nd relevant Ij

∗ R← R ∪ Ij
� if R has more than k relevant parts, REJECT

• ACCEPT

Note: The binary search here is performed on the partitions rather than the input bits themselves.
That's why we obtain a running time, which is independent from n
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3.2 Main Lemma

If f is ε− far from k − junta, andI is a random partition into s = 1020k9

ε5 parts,
we can get with probability≥ 5

6 :
∀J s.t. J is a union of at most k parts of I, Inff ([n] \ J) ≥ ε

2
.
We'll �rst see how we can use the lemma to get our desired result.

Claim 6. There exists an AlgorithmT that uses O(kε + klog(k)) queries such that:

• if a function f is a k − junta, T will always pass on f

• if a function f is ε− far from being a k − junta, Pr[T will fail f ] ≥ 2
3

Proof. Let f be a function.

• If f is a k − junta =⇒ any partition of 1..n can have at most k relevant partitions (in respect to
f),

and hence the algorithm will ACCEPT.

• If f is ε− far from being a k − junta =⇒Prx,y|xR=yR [f(x) 6= f(y)] = Inff ([n] \R) ≥ ε
2

where the �rst equality is simply the de�nition and the second inequality is derived from the
main-lemma.

=⇒ E[time to �nd more than k + 1 relevant parts] ≤ (k + 1)( 4
ε )

Now, using Markov's inequality we get Pr[don′t find morethenkpartsafter 6( 4
ε )(k + 1)] ≤ 1

6

In addition to the error probability of 1
6 that we get from Markov's inequality, we also get an

error probability of 1
6 from the main-lemma,

so altogether we get an error probability of 1
3 =⇒ Pr[T will fail f ] ≥ 2

3

3.3 Proving The Main Lemma

What's left is to prove the following:
for most partitions T & ∀

J|J is a union of k parts of T s.t. J is a union of k parts of T :

Inff ([n] \R) =
by lemma

∑
f̂(S)

S⊆[n]

−
∑
f̂(S)2

S⊆J

?
≥ ε′ ≡ ε

2

We pick θ ≡
(
ε2log(kε )

)
/109k4

De�nition 7. Inf≤kf (S) ≡
∑
f̂(T )2

T |T∩S 6=φ and | T |≤ 2k

De�nition 8. Inf>kf (S) ≡
∑
f̂(T )2

T |T∩S 6=φ and | T |> 2k

De�nition 9. Inff (i) ≡ Inff ({i})
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3.3.1 Nice Property

Inff (S) ≤ Inff (S ∪ S′) ≤ Inff (S) + Inff (S′)

The �rst inequality derives from the fact that S ∪ S′is possibly a bigger set then just S,
and since Inff (S) is a sum of positive elements (Inff (S) =

∑
f̂(T )2

T |T∩S 6=φ
).

The second inequality is true since:∑
T |T∩(S∪S′) 6=φ

=
∑

T |T∩S 6=φand T ∩ S′ = φ
+

∑
T |T∩S 6=φand T ∩ S′ 6= φ

+
∑

T |T∩S=φand T ∩ S′ 6= φ
=merging the �rst two

∑
s

∑
T |T∩S 6=φ

+
∑

T |T∩S=φand T ∩ S′ 6= φ
≤adding another Σ

∑
T |T∩S 6=φ

+
∑

T |T∩S=φand T ∩ S′ 6= φ
+

∑
T |T∩S 6=φand T ∩ S′ 6= φ

=merging the last two Σs
∑

T |T∩S 6=φ
+

∑
T |T∩S′ 6=φ

and so we get that Inff (S ∪ S′) ≤ Inff (S) + Inff (S′).

3.3.2 Lemma∑
i∈[n]

Inf≤2k
f (i) ≤ 2k

Proof.
∑
i∈[n]

Inf≤2k
f (i) =

∑
i∈[n]

∑
T : i∈T and| T |≤ 2k

f̂(T )2

=
∑

T :|T |≤2k

| T | f̂(T )2 ≤ 2k
∑
f̂(T )2

T :|T |≤2k

≤ 2k
∑
T

f̂(T )2 = 2k

3.3.3 �Heavy� Index Groups

De�nition 10. we de�ne the group H to be the group of the �heavy� indices, in the sense that they
have a large in�uence on f :

H =
{
i ∈ [n] | Inf≤2k

f (i) ≥ Θ
}

Corollary 11. | H |≤ 2k
Θ

Proof. otherwise we get:∑
i∈[n]

Inf≤2k
f (i) ≥

∑
i∈H

Inf≤2k
f (i) ≥

∑
i∈H

Θ =| H | Θ ≥ 2k
Θ Θ = 2k

in contradiction to the last lemma.

The previous corollary implies that there aren't too many �heavy� indices.
(less then 2k

Θ , which is a lot smaller then s).
This is the reason that with a high probability (more then 17

18 ) each of these �heavy� indices
is on a di�erent part Ii:

Recall that s = 1020k9

ε5 and that θ =
ε2log( kε )

109k4 =⇒ 72k2

Θ2 = 72k2·1018k8

ε4log2( kε )
≤ 1020k10

ε5 = s

since s ≥ 72k2

Θ2 ,

Pr
[
∀i∈[n] | H ∩ Ii |≤ 1

]
≥ 1− Pr

[
∃i∈[n]s.t. | H ∩ Ii |> 2

]
≥ 1−

(|H|
2

)
· 1
S ≥ 1−

(
2k
Θ

)2 · Θ2

72k2 ≥ 17
18

In other words, we have just shown that with high probability, each set of the partition gets at most
one member of H.
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3.3.4 Breaking Down The in�uence

We de�ne Partition subsets of J:
H = {S ⊆ J | S ⊆ J ∩H, | S |≤ 2k}
L = {S ⊆ J | S * J ∩H, | S |≤ 2k}
B = {S ⊆ J || S |> 2k}

We now present the in�uence in terms of the above subsets:

Inff ([n] \R) =
∑
S⊆[n]

f̂(S)−
∑
S⊆J

f̂(S)2 =
∑
S⊆[n]

f̂(S)2 −
∑
S∈H

f̂(S)2

︸ ︷︷ ︸
t1

−
∑
S∈L

f̂(S)2

︸ ︷︷ ︸
t2

−
∑
S∈B

f̂(S)2

︸ ︷︷ ︸
t3

We denote the above marked terms as t1, t2, t3 respectively.
We'll prove that t1 is su�ciently large and t2, t3 are su�ciently small to prove the main lemma.

1. Evaluating t1

t1 =
∑
S⊆[n]

f̂(S)2 −
∑
S∈H

f̂(S)2 ≥
∑
S⊆[n]

f̂(S)2 −
∑

S⊆J∩H
f̂(S)2 = Inff ([n]− J ∩H)

From 3.3.3, we get that |J ∩H| ≤ k, (because Pr
[
∀i∈[n] | H ∩ Ii |≤ 1

]
≥ 17

18 )

and by last week's lemma we get:

t1 ≥ ε

2. Evaluating t2

Claim 12. If s ≥ 16k2

ε and θ ≤ ε2

64k
2 log(18s), then with probability at least 17

18

Inf≤2k
f (Ii \H) ≤ ε

4k for every i ∈ [s]

First we'll use the claim to provide an upper bound on t2.

The claim implies that ∀J s.t. J is a union of at most k parts of I, the following is true:∑
S∈L

f̂(S)2 ≤ Inf≤2k
f (J \H) ≤nice property+previous claim k · ε4k = ε

4

Explanation of the �rst inequality:

By de�nitions, Inf≤2k
f (J \H) =

∑
f̂(s)2

S | S ∩ (J \H) 6= φ, | S |≤ 2k︸ ︷︷ ︸
T

andL = {S ⊆ J | S * J ∩H, | S |≤ 2k} = {S ⊆ J | S ∩ (J \H) 6= φ, | S |≤ 2k}
L ⊆ T since T may contain elements that are not in J .∑
S∈L

f̂(S)2 ≤
∑
S∈T

f̂(S)2 and the inequality is derived.

We'll now prove the claim by using Hoe�ding's inequality:

Pr[s− E(s) ≥ nt] ≤ e
−2n2k2∑
(bi−ai)2 where s =

n∑
i=1

xi and ai ≤ xi ≤ bi.

Proof. For each i ∈ [s] we de�ne: ∀ j ∈ [n] Xj ≡

{
Inf≤2k

f (j) j ∈ Ii \H
0 otherwise

Inf≤2k
f (Ii \H) ≤nice property

∑
j∈Ii\H

Inf≤2k
f (j) ≤

∑
j∈[n]

Xj
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Thus, E[
∑
j∈[n]

Xj ] ≤
∑

j∈[n]\H
Inf≤2k

f (j) · E[1j∈Ii ]︸ ︷︷ ︸
1
s

= 1
s

∑
j∈[n]\H

Inf≤2k
f (j) ≤

from 3.3.2

2k
s ≤

ε
8k .

We'll now use Hoe�ding's inequality where ai = 0 and bi = Inf≤2k
f (i)∑

i∈[n]\H
(bi − ai)2 =

∑
i∈[n]\H

Inf≤2k
f (i) ≤ maxi∈[n]\H(Inf≤2k

f (i)) ·
∑
Inf(i) ≤ θ · 2k

Pr[
∑
xj − E[

∑
j∈[n]

Xj ]︸ ︷︷ ︸
ε

8k

≥ ε
8k ] = Pr[

∑
xi ≥ ε

4k ] ≤ e
( ε
2k

)2

θ·2k ≤ 1
18s

The last inequality applies for each index i, and since we have s indices, summing them up will
produce probability of no more than 1

18 .

3. Evaluating t3

All S ∈ B are subsets of J , which is a union of less the k parts

Claim 13. If S > 72ek
ε , then with probability of at least 17

18 ,∑
f̂(S)2

S||S|≥2k∧s∈less than k parts of I
≤ ε

4

Proof. Since |S| ≥ 2k We get,

Pr[All elements of S sent to no more than k parts in I] ≤
(|S|
k

) (
k
|S|

)2k+1

≤
(
e|S|
k

)k (
k
|S|

)2k+1

≤ ε
72

We can now put an upper bound on the term's expectation:

E

[ ∑
f̂(S)2

S||S|≥2k∧s∈less than k parts of I

]
≤
∑
f̂(S)2 · Pr [1S∈k parts of L] ≤ ε

72

∑
f̂(S)2

=by boolean parseval
ε

72 · 1 ≤
k
72

To recap,

Inff ([n] \R) =
∑
S⊆[n]

f̂(S)2 −
∑
S∈H

f̂(S)2

︸ ︷︷ ︸
−
∑
S∈L

f̂(S)2

︸ ︷︷ ︸−
∑
S∈B

f̂(S)2

︸ ︷︷ ︸ ≡ t1 − t2 − t3 ≥ ε−
ε
4 −

ε
4 ≥

ε
2

The last inequality proves our main lemma, and in turn, our main theorem.
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