Lecture 11

Lecturer: Ronitt Rubinfeld
Scribe: Netanel Nimni and Nir Muchtar

1 Lecture Topic

Testing functions for the k-junta property.

1.1 Last Week

We found a property tester for dictator functions.
We defined k -junta functions and introduced a k -junta testing algorithm.

2 Definitions and Lemmas From Last Week

Definition 1. A function f is a k-junta function if its output depends only on k or less input variables.
Definition 2. $X_{s} \equiv$ ordered $-\operatorname{list}\left(X_{i} \mid i \in S\right)$
Definition 3. $X_{s} Y_{\bar{s}} \equiv Z$ s.t $\forall_{i \in S} Z_{i}=X_{i}$ and $\forall_{i \in \bar{S}} Z_{i}=Y_{i}$
Definition 4. $\operatorname{Inf}_{f}(s) \equiv 2 P r_{x, y \mid x_{\bar{s}}=y_{\bar{s}}}[f(x) \neq f(y)]$
Last week we showed the following:
$\operatorname{Inf} f_{f}(s) \equiv 2 P r_{x, y \mid x_{\bar{s}}=y_{\bar{s}}}[f(x) \neq f(y)]=\sum_{T \mid S \cap T \neq \phi} \hat{f}(T)^{2}=\sum_{T} \hat{f}(T)^{2}-\sum_{T \subseteq \bar{S}} \hat{f}(T)^{2}=1-\sum_{T \subseteq \bar{S}} \hat{f}(T)^{2}$
where the last equality is derived from the boolean Parseval equality.
Lemma 5. If a function f is ϵ-far from being a k-junta then $\forall_{J:|J| \leq k} \operatorname{Inf} f_{f}([n] \backslash J) \geq \epsilon$

3 Main Theorem

3.1 Algorithm For Testing The k-junta Property

```
given \(k, \epsilon\)
```

- randomly partition 1 ..n into s parts $I_{1} \ldots I_{s}$ where $s=\operatorname{poly}\left(k, \frac{1}{\epsilon}\right)$
- $R \leftarrow \phi$
- repeat up to $r=O\left(\frac{k}{\epsilon}\right)$ times
- generate x, y randomly s.t. $x_{R}=y_{R}$
- if $f(x)=f(y)$
* use binary search to find relevant I_{j}
* $R \leftarrow R \cup I_{j}$
- if R has more than k relevant parts, REJECT

- ACCEPT

Note: The binary search here is performed on the partitions rather than the input bits themselves. That's why we obtain a running time, which is independent from n

3.2 Main Lemma

If f is $\epsilon-f$ far from $k-j u n t a$, and \mathcal{I} is a random partition into $s=\frac{10^{20} k^{9}}{\epsilon^{5}}$ parts, we can get with probability $\geq \frac{5}{6}$:
\forall_{J} s.t. J is a union of at most k parts of $\mathcal{I}, \operatorname{Inf} f_{f}([n] \backslash J) \geq \frac{\epsilon}{2}$
We'll first see how we can use the lemma to get our desired result.
Claim 6. There exists an Algorithm \mathcal{T} that uses $O\left(\frac{k}{\epsilon}+k \log (k)\right)$ queries such that:

- if a function f is a k-junta, \mathcal{T} will always pass on f
- if a function f is $\epsilon-f$ far from being a $k-j u n t a, \operatorname{Pr}[\mathcal{T}$ will fail $f] \geq \frac{2}{3}$

Proof. Let f be a function.

- If f is a $k-j u n t a \Longrightarrow$ any partition of $1 . . n$ can have at most k relevant partitions (in respect to f), and hence the algorithm will ACCEPT.
- If f is ϵ - far from being a $k-j u n t a \Longrightarrow \operatorname{Pr}_{x, y \mid x_{R}=y_{R}}[f(x) \neq f(y)]=\operatorname{In} f_{f}([n] \backslash R) \geq \frac{\epsilon}{2}$ where the first equality is simply the definition and the second inequality is derived from the main-lemma.
$\Longrightarrow E\left[\right.$ time to find more than $k+1$ relevant parts] $\leq(k+1)\left(\frac{4}{\epsilon}\right)$
Now, using Markov's inequality we get $\operatorname{Pr}\left[\right.$ don't $^{\prime}$ find morethenkpartsafter $\left.6\left(\frac{4}{\epsilon}\right)(k+1)\right] \leq \frac{1}{6}$
In addition to the error probability of $\frac{1}{6}$ that we get from Markov's inequality, we also get an error probability of $\frac{1}{6}$ from the main-lemma,
so altogether we get an error probability of $\frac{1}{3} \Longrightarrow \operatorname{Pr}[\mathcal{T}$ will fail $f] \geq \frac{2}{3}$

3.3 Proving The Main Lemma

What's left is to prove the following:
for most partitions $\mathcal{T} \& \forall_{J \mid J}$ is a union of k parts of \mathcal{T} s.t. J is a union of k parts of \mathcal{T} :
$\operatorname{Inf} f([n] \backslash R)={ }_{b y}$ lemma $\sum_{S \subseteq[n]} \hat{f}(S)-\sum \underset{S \subseteq J}{\hat{f}(S)^{2} \geq \epsilon^{\prime} \equiv \frac{\epsilon}{2}}$
We pick $\theta \equiv\left(\epsilon^{2} \log \left(\frac{k}{\epsilon}\right)\right) / 10^{9} k^{4}$
Definition 7. $I n f_{f}^{\leq k}(S) \equiv \sum_{T \mid T \cap S \neq \phi} \hat{f}(T)^{2}$ and $|T| \leq 2 k$
Definition 8. $I n f_{f}^{>k}(S) \equiv \sum_{T \mid T \cap S \neq \phi \text { and }|T|>2 k}^{\sum \hat{f}(T)^{2}}$
Definition 9. $\operatorname{In} f_{f}(i) \equiv \operatorname{In} f_{f}(\{i\})$

3.3.1 Nice Property

$\operatorname{In} f_{f}(S) \leq \operatorname{In} f_{f}\left(S \cup S^{\prime}\right) \leq \operatorname{In} f_{f}(S)+\operatorname{In} f_{f}\left(S^{\prime}\right)$
The first inequality derives from the fact that $S \cup S^{\prime}$ is possibly a bigger set then just S, and since $\operatorname{Inf}_{f}(S)$ is a sum of positive elements $\left(\operatorname{Inf}_{f}(S)=\sum_{T \mid T \cap S \neq \phi} \hat{f}(T)^{2}\right)$.
The second inequality is true since:
$\sum_{T \mid T \cap\left(S \cup S^{\prime}\right) \neq \phi}=\sum_{T \mid T \cap S \neq \phi \text { and } T \cap S^{\prime}=\phi}+\sum_{T \mid T \cap S \neq \phi \text { and } T \cap S^{\prime} \neq \phi}+\sum_{T \mid T \cap S=\phi \text { and } T \cap S^{\prime} \neq \phi}$
$={ }_{\text {merging the first two }} \sum s \sum_{T \mid T \cap S \neq \phi}+\sum_{T \mid T \cap S=\phi \text { and } T \cap S^{\prime} \neq \phi}$
sadding another $\Sigma \sum_{T \mid T \cap S \neq \phi}+\sum_{T \mid T \cap S=\phi \text { and } T \cap S^{\prime} \neq \phi}+\sum_{T \mid T \cap S \neq \phi \text { and } T \cap S^{\prime} \neq \phi}$
$=$ merging the last two $\Sigma s \sum_{T \mid T \cap S \neq \phi}+\sum_{T \mid T \cap S^{\prime} \neq \phi}$
and so we get that $\operatorname{In} f_{f}\left(S \cup S^{\prime}\right) \leq \operatorname{In} f_{f}(S)+\operatorname{In} f_{f}\left(S^{\prime}\right)$.

3.3.2 Lemma

$$
\sum_{i \in[n]} \operatorname{In} f_{f}^{\leq 2 k}(i) \leq 2 k
$$

$$
\begin{aligned}
\text { Proof. } \sum_{i \in[n]} \operatorname{Inf} f_{f}^{\leq 2 k}(i)=\sum_{i \in[n]} \sum_{T: i \in T} \sum_{\text {and }|T| \leq 2 k} \hat{f}(T)^{2} \\
=\sum_{T:|T| \leq 2 k}|T| \hat{f}(T)^{2} \leq 2 k \sum_{T:|T| \leq 2 k} \hat{f}(T)^{2} \leq 2 k \sum_{T} \hat{f}(T)^{2}=2 k
\end{aligned}
$$

3.3.3 "Heavy" Index Groups

Definition 10. we define the group H to be the group of the "heavy" indices, in the sense that they have a large influence on f :

$$
H=\left\{i \in[n] \mid \operatorname{In} f_{f}^{\leq 2 k}(i) \geq \Theta\right\}
$$

Corollary 11. $|H| \leq \frac{2 k}{\Theta}$
Proof. otherwise we get:
$\sum_{i \in[n]} \operatorname{Inf} f_{f}^{\leq 2 k}(i) \geq \sum_{i \in H} \operatorname{In} f_{f}^{\leq 2 k}(i) \geq \sum_{i \in H} \Theta=|H| \Theta \geq \frac{2 k}{\Theta} \Theta=2 k$
in contradiction to the last lemma.

The previous corollary implies that there aren't too many "heavy" indices. (less then $\frac{2 k}{\Theta}$, which is a lot smaller then s).
This is the reason that with a high probability (more then $\frac{17}{18}$) each of these "heavy" indices is on a different part I_{i} :
Recall that $s=\frac{10^{20} k^{9}}{\epsilon^{5}}$ and that $\theta=\frac{\epsilon^{2} \log \left(\frac{k}{\epsilon}\right)}{10^{9} k^{4}} \Longrightarrow \frac{72 k^{2}}{\Theta^{2}}=\frac{72 k^{2} \cdot 10^{18} k^{8}}{\epsilon^{4} \log ^{2}\left(\frac{k}{\epsilon}\right)} \leq \frac{10^{20} k^{10}}{\epsilon^{5}}=s$
since $s \geq \frac{72 k^{2}}{\Theta^{2}}$,
$\operatorname{Pr}\left[\forall_{i \in[n]}\left|H \cap I_{i}\right| \leq 1\right] \geq 1-\operatorname{Pr}\left[\exists_{i \in[n]}\right.$ s.t. $\left.\left|H \cap I_{i}\right|>2\right] \geq 1-\binom{|H|}{2} \cdot \frac{1}{S} \geq 1-\left(\frac{2 k}{\Theta}\right)^{2} \cdot \frac{\Theta^{2}}{72 k^{2}} \geq \frac{17}{18}$
In other words, we have just shown that with high probability, each set of the partition gets at most one member of H .

3.3.4 Breaking Down The influence

We define Partition subsets of J:
$\mathcal{H}=\{S \subseteq J|S \subseteq J \cap H, \quad| S \mid \leq 2 k\}$
$\mathcal{L}=\{S \subseteq J|S \nsubseteq J \cap H, \quad| S \mid \leq 2 k\}$
$\mathcal{B}=\{S \subseteq J \| S \mid>2 k\}$
We now present the influence in terms of the above subsets:
$\operatorname{Inf} f_{f}([n] \backslash R)=\sum_{S \subseteq[n]} \hat{f}(S)-\sum_{S \subseteq J} \hat{f}(S)^{2}=\underbrace{\sum_{S \subseteq[n]} \hat{f}(S)^{2}-\sum_{S \in \mathcal{H}} \hat{f}(S)^{2}}_{t_{1}}-\underbrace{\sum_{S \in \mathcal{L}} \hat{f}(S)^{2}}_{t_{2}}-\underbrace{\sum_{S \in \mathcal{B}} \hat{f}(S)^{2}}_{t_{3}}$
We denote the above marked terms as t_{1}, t_{2}, t_{3} respectively.
We'll prove that $t 1$ is sufficiently large and t_{2}, t_{3} are sufficiently small to prove the main lemma.

1. Evaluating t_{1}

$t_{1}=\sum_{S \subseteq[n]} \hat{f}(S)^{2}-\sum_{S \in \mathcal{H}} \hat{f}(S)^{2} \geq \sum_{S \subseteq[n]} \hat{f}(S)^{2}-\sum_{S \subseteq J \cap H} \hat{f}(S)^{2}=\operatorname{Inf} f_{f}([n]-J \cap H)$
From 3.3.3, we get that $|J \cap H| \leq k$, (because $\operatorname{Pr}\left[\forall_{i \in[n]}\left|H \cap I_{i}\right| \leq 1\right] \geq \frac{17}{18}$)
and by last week's lemma we get:
$t_{1} \geq \epsilon$

2. Evaluating t_{2}

Claim 12. If $s \geq \frac{16 k^{2}}{\epsilon}$ and $\theta \leq \frac{\epsilon^{2}}{64} k^{2} \log (18 s)$, then with probability at least $\frac{17}{18}$ $\operatorname{In} f_{f}^{\leq 2 k}\left(I_{i} \backslash H\right) \leq \frac{\epsilon}{4 k}$ for every $i \in[s]$

First we'll use the claim to provide an upper bound on t_{2}.
The claim implies that \forall_{J} s.t. J is a union of at most k parts of \mathcal{I}, the following is true:
$\sum_{S \in \mathcal{L}} \hat{f}(S)^{2} \leq \operatorname{Inf} f_{f}^{\leq 2 k}(J \backslash H) \leq_{\text {nice property }+ \text { previous claim }} k \cdot \frac{\epsilon}{4 k}=\frac{\epsilon}{4}$
Explanation of the first inequality:
By definitions, $\operatorname{Inf} f_{f}^{\leq 2 k}(J \backslash H)=\underbrace{\substack{\sum \hat{f}(s)^{2} \\ S|S \cap(J \backslash H) \neq \phi, \quad| S \mid \leq 2 k}}_{\mathcal{T}}$
and $\mathcal{L}=\{S \subseteq J|S \nsubseteq J \cap H,|S| \leq 2 k\}=\{S \subseteq J|S \cap(J \backslash H) \neq \phi,|S| \leq 2 k\}$
$\mathcal{L} \subseteq \mathcal{T}$ since \mathcal{T} may contain elements that are not in J.
$\sum_{S \in \mathcal{L}} \hat{f}(S)^{2} \leq \sum_{S \in \mathcal{T}} \hat{f}(S)^{2}$ and the inequality is derived.
We'll now prove the claim by using Hoeffding's inequality:
$\operatorname{Pr}[s-E(s) \geq n t] \leq e^{\frac{-2 n^{2} k^{2}}{\sum\left(b_{i}-a_{i}\right)^{2}}}$ where $s=\sum_{i=1}^{n} x_{i}$ and $a_{i} \leq x_{i} \leq b_{i}$.
Proof. For each $i \in[s]$ we define: $\forall j \in[n] X_{j} \equiv \begin{cases}\operatorname{In} f_{f}^{\leq 2 k}(j) & j \in I_{i} \backslash H \\ 0 & \text { otherwise }\end{cases}$
$\operatorname{In} f_{f}^{\leq 2 k}\left(I_{i} \backslash H\right) \leq$ nice property $\sum_{j \in I_{i} \backslash H} \operatorname{Inf} f_{f}^{\leq 2 k}(j) \leq \sum_{j \in[n]} X_{j}$

Thus, $E\left[\sum_{j \in[n]} X_{j}\right] \leq \sum_{j \in[n] \backslash H} \operatorname{Inf} f_{f}^{\leq 2 k}(j) \cdot \underbrace{E\left[1_{j \in I_{i}}\right]}_{\frac{1}{s}}=\frac{1}{s} \sum_{j \in[n] \backslash H} \operatorname{Inf} f_{f}^{\leq 2 k}(j) \underset{\text { from 3.3.2 }}{\leq} \frac{2 k}{s} \leq \frac{\epsilon}{8 k}$.
We'll now use Hoeffding's inequality where $a_{i}=0$ and $b_{i}=\operatorname{Inf} f_{f}^{\leq 2 k}(i)$

$$
\begin{aligned}
& \sum_{i \in[n] \backslash H}\left(b_{i}-a_{i}\right)^{2}=\sum_{i \in[n] \backslash H} \operatorname{Inf}_{f}^{\leq 2 k}(i) \leq \max _{i \in[n] \backslash H}\left(\operatorname{In} f_{f}^{\leq 2 k}(i)\right) \cdot \sum \operatorname{Inf}(i) \leq \theta \cdot 2 k \\
& \operatorname{Pr}[\sum x_{j}-\underbrace{E\left[\sum_{j \in[n]} X_{j}\right]}_{\frac{\epsilon}{8 k}} \geq \frac{\epsilon}{8 k}]=\operatorname{Pr}\left[\sum x i \geq \frac{\epsilon}{4 k}\right] \leq e^{\frac{\left(\frac{\epsilon}{2 .}\right)^{2}}{\theta \cdot 2 k}} \leq \frac{1}{18 s}
\end{aligned}
$$

The last inequality applies for each index i, and since we have s indices, summing them up will produce probability of no more than $\frac{1}{18}$.

3. Evaluating t_{3}

All $S \in \mathcal{B}$ are subsets of J, which is a union of less the k parts
Claim 13. If $S>\frac{72 e k}{\epsilon}$, then with probability of at least $\frac{17}{18}$,
$\sum_{S| | S \mid \geq 2 k \wedge s \in \text { less than } k \text { parts of } \mathcal{I}} \hat{f}(S)^{2} \frac{\epsilon}{4}$
Proof. Since $|S| \geq 2 k$ We get,
$\operatorname{Pr}[$ All elements of S sent to no more than k parts in $\mathcal{I}] \leq\binom{|S|}{k}\left(\frac{k}{|S|}\right)^{2 k+1} \leq\left(\frac{e|S|}{k}\right)^{k}\left(\frac{k}{|S|}\right)^{2 k+1} \leq \frac{\epsilon}{72}$
We can now put an upper bound on the term's expectation:
$\left.E\left[\sum_{S| | S \mid \geq 2 k \wedge s \in \text { less }}^{\sum_{\text {than }} \hat{f}(S)^{2}} \quad\right] \leq \sum \hat{f}(S)^{2} \cdot \operatorname{Pr}\left[1_{S \in k \text { parts of }} \mathcal{I}\right] \mathcal{L}\right] \leq \frac{\epsilon}{72} \sum \hat{f}(S)^{2}$
$={ }_{b y}$ boolean parseval $\frac{\epsilon}{72} \cdot 1 \leq \frac{k}{72}$
To recap,
$\operatorname{Inf} f_{f}([n] \backslash R)=\underbrace{\sum_{S \subseteq[n]} \hat{f}(S)^{2}-\sum_{S \in \mathcal{H}} \hat{f}(S)^{2}}-\underbrace{\sum_{S \in \mathcal{L}} \hat{f}(S)^{2}}-\underbrace{\sum_{S \in \mathcal{B}} \hat{f}(S)^{2}} \equiv t_{1}-t_{2}-t_{3} \geq \epsilon-\frac{\epsilon}{4}-\frac{\epsilon}{4} \geq \frac{\epsilon}{2}$
The last inequality proves our main lemma, and in turn, our main theorem.

