Lecture 10

1 Lecture Outline

- Testing Dictator functions
- Juntas

2 Recall (from lecture 9)

- A function f is Boolean if $f:\{ \pm 1\}^{n}->\{ \pm 1\}$
- A Boolean function f is linear if $\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})=\mathrm{f}(\mathrm{xy})$
- $\chi_{y}(\mathrm{x})=\prod_{\mathrm{i}=1}^{n} x_{i} y_{i} \quad\left[\right.$ if $\mathrm{y}=\emptyset$ then $\left.\chi_{y}(x)=1\right]$
- Let $S \subseteq[n]$ then $\chi_{S}(x) \equiv \prod_{i \in S} x_{i}$
- For all linear functions :
a) $\chi_{s}(\mathrm{x}) \chi_{s}(y)=\chi_{s}(x y)$
b) $\mathrm{f}(\mathrm{x})=\sum_{s \subseteq[n]} \hat{f}(s) \chi_{s}(\mathrm{x})$, where $\hat{f}(z)=\frac{1}{2^{n}} \sum_{x} f(x) \chi_{s}(x)$
c) $\chi_{s}(x) \chi_{t}(x)=\chi_{s \Delta t}(x)$
d) If $\mathrm{f}(\mathrm{x})=\chi_{s}(x)$ then $\hat{\mathrm{f}}(\mathrm{S})=1$

$$
\hat{\mathrm{f}}(\mathrm{~T})=0 \text { for all } \mathrm{T} \neq \mathrm{S}
$$

e) $\hat{f}(s)=1-2 \operatorname{pr}\left[f(x) \neq \chi_{s}(x)\right]$
f) Plancherel: : $\langle\mathrm{f}, \mathrm{g}\rangle=\sum_{\mathrm{s} \subseteq[n]} \hat{\mathrm{f}}(\mathrm{s}) \hat{\mathrm{g}}(\mathrm{s})$
g) Boolean parseval : $\sum_{s \subseteq[n]} \hat{\mathrm{f}}(\mathrm{s})^{2}=1$ (f Boolean)
h) $\mathrm{E}_{\mathrm{x}}\left[\chi_{\mathrm{s}}(\mathrm{x})\right]=\left\{\begin{array}{l}1 \quad \text { if } s=\varnothing \\ 0 \quad \text { otherwise }\end{array}\right.$

3) Testing Dictator functions

the dictator function $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}, f \in[n]$ are $\chi_{\{1\}}, \chi_{\{2\}}, \ldots, \chi_{\{n\}}$
We will drop the set notation and denote them by $\mathrm{f}(\mathrm{x})=\chi_{i}$

Def: Hẵstad Test (δ)

- pick $\mathrm{x}, \mathrm{y} \in_{R}\{ \pm 1\}^{\mathrm{n}}$
- pick $w \in_{R}\{ \pm 1\}$ with δ biased distribution $\left(\operatorname{pr}\left[\mathrm{w}_{\mathrm{i}}=-1\right]=\delta\right.$ and $\left.\operatorname{pr}\left[\mathrm{w}_{\mathrm{i}}=1\right]=1-\delta\right)$
- $Z \leftarrow X * Y^{*} W \quad$ (* is coordinate wise multiplication)
- Accept if $f(x) f(y) f(z)=1$
- Reject otherwise

Thm:

$\operatorname{Pr}\left[\right.$ Hẵstad Test (δ) accepts] $=\frac{1}{2}+\frac{1}{2} \sum_{s \subseteq[\mathrm{n}]}(1-2 \delta)^{|\mathrm{s}|} \hat{\mathrm{f}}(\mathrm{s})^{3}$

Proof:

Indicator for Hẵstad's Accept

$$
1_{H}(x, y, z)=\frac{1}{2}+\frac{1}{2} f(x) f(y) f(z)
$$

$\operatorname{Pr}[$ Hã̃stad Test (δ) accepts $]=\mathrm{E}_{\mathrm{x}, \mathrm{y}, \mathrm{z}}\left[1_{\mathrm{H}}(\mathrm{x}, \mathrm{y}, \mathrm{z})\right]=$
$=\frac{1}{2}+\frac{1}{2} \mathrm{E}_{\mathrm{x}, \mathrm{y}, \mathrm{w}}[f(x) f(y) f(z)] \equiv \mathrm{A}$
To calculate the value of A , we evaluate the expectation $\mathrm{E}_{\mathrm{x}, \mathrm{y}, \mathrm{w}}[f(x) f(y) f(z)]$

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{x}, \mathrm{y}, \mathrm{w}}[f(x) f(y) f(z)]=\text { (৮ by "b" from Recall) } \\
& =\mathrm{E}_{\mathrm{x}, \mathrm{y}, \mathrm{w}}\left[\sum_{S \subseteq[\mathrm{n}]} \hat{f}(S) \chi_{S}(x) \sum_{T \subseteq[\mathrm{n}]} \hat{f}(T) \chi_{T}(y) \sum_{\mathrm{U} \subseteq[\mathrm{n}]} \hat{f}(\mathrm{U}) \chi_{\mathrm{U}}(z)\right]= \\
& =\sum_{S \subseteq[\mathrm{n}], T \subseteq[\mathrm{n}], U \subseteq[\mathrm{n}]} \hat{f}(S) \hat{f}(T) \hat{f}(\mathrm{U}) \mathrm{E}_{\mathrm{x}, \mathrm{y}, \mathrm{w}}\left[\chi_{S}(x) \chi_{T}(y) \chi_{\mathrm{U}}(z)\right] \equiv B
\end{aligned}
$$

To calculate the value of B, we evaluate the $\mathrm{E}_{\mathrm{x}, \mathrm{y}, \mathrm{w}}\left[\chi_{S}(x) \chi_{T}(y) \chi_{\mathrm{U}}(z)\right]$]
When $\mathrm{S} \subseteq[\mathrm{n}], \mathrm{T} \subseteq[\mathrm{n}]$ and $\mathrm{U} \subseteq[\mathrm{n}]$.
$\mathrm{E}_{\mathrm{x}, \mathrm{y}, \mathrm{w}}\left[\chi_{S}(x) \chi_{T}(y) \chi_{\mathrm{U}}(z)\right]=(\leftarrow$ by definition of z$)$
$=\mathrm{E}_{\mathrm{x}, \mathrm{y}, \mathrm{w}}\left[\chi_{S}(x) \chi_{T}(y) \chi_{\mathrm{U}}(x) \chi_{\mathrm{U}}(y) \chi_{\mathrm{U}}(w)\right]=(\leftarrow$ by "c" from Recall)

$$
\begin{aligned}
& =\mathrm{E}_{\mathrm{x}, \mathrm{y}, \mathrm{w}}\left[\chi_{S \Delta \mathrm{U}}(x) \chi_{T \Delta \mathrm{U}}(y) \chi_{\mathrm{U}}(w)\right]= \\
& =\mathrm{E}_{\mathrm{x}}\left[\chi_{S \Delta \mathrm{U}}(x)\right] \mathrm{E}_{\mathrm{y}}\left[\chi_{T \Delta \mathrm{U}}(y)\right] \mathrm{E}_{\mathrm{w}}\left[\chi_{\mathrm{U}}(w)\right] \equiv \mathrm{C}
\end{aligned}
$$

Because $\mathrm{E}_{\mathrm{x}}\left[\chi_{S \Delta \mathrm{U}}(x)\right]=\left\{\begin{array}{ll}1 & \text { if } \mathrm{S}=\mathrm{U} \\ 0 & \text { otherwise }\end{array}\right.$ and $\mathrm{E}_{\mathrm{y}}\left[\chi_{T \Delta \mathrm{U}}(y)\right]=\left\{\begin{array}{lc}1 & \text { if } \mathrm{t}=\mathrm{U} \\ 0 & \text { otherwise }\end{array}\right.$ therefore,

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{x}}\left[\chi_{S \Delta \mathrm{U}}(x)\right] \mathrm{E}_{\mathrm{y}}\left[\chi_{T \Delta \mathrm{U}}(y)\right]=\left\{\begin{array}{cc}
1 & \text { if } \mathrm{S}=\mathrm{T}=\mathrm{U} \\
0 & \text { otherwise }
\end{array}\right. \text { and } \\
& \mathrm{E}_{\mathrm{w}}\left[\chi_{\mathrm{U}}(w)\right]=\mathrm{E}_{\mathrm{w}}\left[\prod_{i \in \mathrm{U}} w_{i}\right]=\prod_{i \in \mathrm{U}} \mathrm{E}_{\mathrm{w}}\left[w_{i}\right] \\
& \mathrm{E}_{\mathrm{w}}\left[w_{i}\right]=(-1) \delta+(+1)(1-\delta)=1-2 \delta, \text { therefore, placing them in } \mathrm{C} \text { we get } \\
& \Rightarrow \mathrm{C}=\left\{\begin{array}{cc}
(1-2 \delta)^{|\mathrm{S}|} & \text { if } \mathrm{S}=\mathrm{T}=\mathrm{U} \\
0 & o . w
\end{array}\right. \text {, and conclude that } \\
& \Rightarrow \mathrm{A}=\frac{1}{2}+\frac{1}{2} \sum_{\mathrm{S} \mathrm{\subseteq[n]}}(1-2 \delta)^{|\mathrm{S}|} \hat{\mathrm{f}}(\mathrm{~S})^{3}
\end{aligned}
$$

Theorem : "Almost Dictator test"

$C=\{$ dictator $\} \cup\{1\}$
There is test that makes $\mathrm{O}\left(\frac{1}{\varepsilon^{2}}\right)$ queries
And if $f \in \mathbb{C}, \operatorname{Pr}\left[T_{(\beta)}^{f}\right]$ accepts $\geq 1-\beta$
If $f \varepsilon$-far from $C, \operatorname{Pr}\left[T_{(\beta)}^{f}\right]$ reject $\geq 1-\beta$
(For simplicity can think of $\quad \beta=\frac{1}{4}$)

Proof:

Plan:

- Given ε, f
- $\quad \varepsilon \leftarrow \min (\varepsilon, 0.1)$
- Run Hẵstad Test (δ) with $\delta=0.75 \varepsilon$

Case 1: $\mathrm{f}=\chi_{\mathrm{i}}$
$\operatorname{Pr}[\mathrm{f}$ passes $]=($ by d from recall) $)=\frac{1}{2}+\frac{1}{2}(1-2 \delta) 1^{3}=1-\delta=1-0.75 \varepsilon=0.25 \varepsilon$

Case 2: (proof of "counter positive")
Suppose

$$
\begin{aligned}
1- & \varepsilon \leq \operatorname{Pr}[f \text { passes }]=\frac{1}{2}+\frac{1}{2} \sum_{\mathrm{s} \subseteq[\mathrm{n}]}(1-2 \delta)^{|s|} \hat{\mathrm{f}}(\mathrm{~s})^{3} \text { therefore, } \\
\Rightarrow & 1-2 \varepsilon \leq \sum_{\mathrm{s} \subseteq[\mathrm{n}]}(1-2 \delta)^{|s|} \hat{\mathrm{f}}(\mathrm{~s})^{3} \\
& \leq \max _{\mathrm{s}}\left((1-2 \delta)^{|\mathrm{ss}|} \hat{\mathrm{f}}(\mathrm{~s})\right) \quad \sum_{\mathrm{s} \subseteq[\mathrm{n}]} \hat{\mathrm{f}}(\mathrm{~s})^{2} \equiv \quad \mathrm{D} \\
& \text { Because } \sum_{\mathrm{s} \subseteq[\mathrm{n}]} \hat{\mathrm{f}}(\mathrm{~s})^{2}=1 \quad \quad \text { (by Boolean Parseval from recall) } \\
& \left.\mathrm{D} \leq \max _{\mathrm{s}}\left((1-2 \delta)^{|\mathrm{s}|} \hat{\mathrm{f}}(\mathrm{~s})\right) \equiv \mathrm{K} \quad \text { (remember that }(1-2 \delta)<1\right)
\end{aligned}
$$

$\exists \hat{f}(\mathrm{~s})$ such that $\hat{\mathrm{f}}(\mathrm{s}) \geq 1-2 \varepsilon$

$$
\begin{aligned}
& \text { such that dist }\left(f, \chi_{S}\right) \leq \frac{1-(1-2 \varepsilon)}{2} \quad \text { (by e from recall) } \\
& \text { when } \operatorname{dist}\left(f, \chi_{S}\right) \equiv \operatorname{Pr}\left[f(x) \neq \chi_{S}(x)\right]
\end{aligned}
$$

recall that $\delta=0.75 \varepsilon$ therefore,
$K=\max _{s}\left(\left(1-\frac{3 \varepsilon}{2}\right)^{|s|} \hat{\mathrm{f}}(\mathrm{s})\right)$
Let denote that $|\mathrm{s}| \geq 2$, So because of $\hat{\mathrm{f}}(\mathrm{s}) \leq 1$
$1-2 \varepsilon \leq\left(1-\frac{3 \leq}{2}\right)^{2}=1-3 \varepsilon+\frac{9}{4} \varepsilon^{2} \quad$ and that is a contradiction, therefore
$\exists s$ such that $|s| \leq 1$ and $\left.\operatorname{Prif} f(x)=\chi_{s}(x)\right] \geq 1-\varepsilon$
For conclusion the Test is:

- Given ε, f
- $\quad \varepsilon \leftarrow \min (\varepsilon, 0.1)$
- Run Hẵstad Test (δ) with $\delta=0.75 \varepsilon$
- Accept if $\geq 1-0.8 \varepsilon$ fraction of runs accept
- Reject other wise

For checking dictator without "almost" can be done by few simple checks that it's not "1" by equation h from recall

4) Juntas

Def: f is a k-junta if depends on $\leq K$ vars .
How to find a relevant variable:

- pick X, Y
- if $f(X) \neq f(Y)$

$$
\begin{aligned}
& \text { lets define } X=X_{0}=\left(x_{0}, \ldots, x_{n}\right) \\
& \\
& X_{1}=\left(y_{0}, \ldots, x_{n}\right) \\
& \ldots \\
& Y=X_{n}=\left(y_{0}, \ldots, y_{n}\right)
\end{aligned}
$$

Therefore, there is i such that $f\left(X_{i}\right) \neq f\left(X_{i+1}\right)$
And X_{i} and X_{i+1} differ by only one bit. Therefore, that bit must be the relevant bit.
(*)

- find that i by $\mathrm{O}(\operatorname{logn})$ queries (by binary search)

$$
\text { if } \begin{aligned}
& \mathrm{f}\left(\mathrm{X}_{0}\right) \neq \mathrm{f}\left(\mathrm{X}_{\mathrm{n} / 2}\right) \text { then } \\
& \text { recurse on } 0 \ldots \frac{\mathrm{n}}{2} \\
& \text { else recurse on } \frac{n}{2}+1 \ldots \mathrm{n}
\end{aligned}
$$

but that too much queries ...

algorithm:

- given k, ε
- randomly partition $1 \ldots$...n into s parts I_{1}, \ldots, I_{s} (where $s=$ poly $\left(k, \frac{1}{\varepsilon}\right)$)
- $R \leftarrow \emptyset$
- Repeat up to $\mathrm{r}=\mathrm{O}\left(\frac{\mathrm{k}}{\varepsilon}\right)$ times
- Generate (x, y) randomly

Such that $\mathrm{X}_{\mathrm{r}}=Y_{r} \leftarrow$ agree on indices in R

- if $\mathrm{f}(\mathrm{X}) \neq f(y)$ use binary search to find relevant I_{j}
- $R \leftarrow R \cup I_{j}$
- if R has $>K$ relevant parts reject
- pass

Notation:

$\mathrm{X}_{\mathrm{s}} \equiv$ ordered list $\left(x_{i}: i \in s\right)$
$\mathrm{X}_{\mathrm{S}} \mathrm{Y}_{\mathrm{s}} \equiv \mathrm{Z}=\left(z_{1}, \ldots, z_{n}\right)$ such that $\mathrm{z}_{\mathrm{s}}=\mathrm{x}_{\mathrm{s}}$ and $\mathrm{z}_{\overline{\mathrm{s}}}=\mathrm{y}_{\overline{\mathrm{s}}}$
Def: "influence" of $S \subseteq[n]$ on f is

$$
\inf _{\mathrm{f}}(\mathrm{~s})=2 \operatorname{Pr}_{\mathrm{x}, \mathrm{y}}[\mathrm{f}(\mathrm{X}) \neq f(y)] \text { such that } \mathrm{x}_{\bar{s}}=\mathrm{y}_{\bar{s}}
$$

Prop(homework)

$$
\inf _{f}(\mathrm{~s})=\sum_{\mathrm{T} s . t \mathrm{t} \cap \mathrm{~T} \neq \theta} \hat{\mathrm{f}}(\mathrm{~T})^{2}
$$

Analysis

- If f is k -junta (pass)

Because never in more than k relevant parts

- If $\mathrm{f} \varepsilon$-far ?

Like in (*) but for groups:
Given partition of $1 . . . n$ into groups
Define: "relevant group" group that contains relevant variable
O(log \# groups) queries enough to find a relevant group.

Lemma: (warm up) f ε - far from k-junta \rightarrow

$$
\forall J \text { s.t }|\vec{J}| \leq K \quad 2 \operatorname{Pr}_{\text {s.t } x_{j}=y_{j}}^{\mathrm{x}, \mathrm{y}} \underset{\mathrm{y}}{ }[\mathrm{f}(\mathrm{X}) \neq f(y)]=\inf ([\mathrm{n}] \backslash \tilde{J}) \geq 2 \varepsilon
$$

Proof:

Fix \bar{j} such that $|\bar{j}| \leq K$
Define h such that $\mathrm{h}(\mathrm{x}) \equiv$ majority $_{\mathrm{Z}} \mathrm{f}\left(\mathrm{X}_{j} \mathrm{Z}_{\mathcal{J}}\right)=\operatorname{sign}\left(\mathrm{E}_{\mathrm{z}}\left[\mathrm{f}\left(\mathrm{X}_{\mathrm{j}} \mathrm{Z}_{\tilde{j}}\right)\right]\right)$

- $h(x)$ only depends on X_{j}
- h is the junta on the variables J that has the best agreement with f.
$2 \operatorname{Pr}_{\mathrm{x}}[\mathrm{f}(\mathrm{x}) \neq \mathrm{h}(\mathrm{x})]=1-\mathrm{E}_{\mathrm{x}}[\mathrm{f}(\mathrm{x}) \mathrm{h}(\mathrm{x})] \equiv \mathrm{D}$
$\mathrm{E}_{\mathrm{x}}[\mathrm{f}(\mathrm{x}) \mathrm{h}(\mathrm{x})]=(+1)(\operatorname{Pr}[\mathrm{f}(\mathrm{x})=\mathrm{h}(\mathrm{x})]+(-1) \operatorname{Pr}[\mathrm{f}(\mathrm{x}) \neq \mathrm{h}(\mathrm{x})]=$
$=1-2 \alpha$ when $\operatorname{Pr}[f(\mathrm{x})=\mathrm{h}(\mathrm{x})]=1-\alpha \rightarrow \operatorname{Pr}[\mathrm{f}(\mathrm{x}) \neq \mathrm{h}(\mathrm{x})]=\alpha$
Therefore, $\mathrm{D}=1-(1-2 \alpha)=2 \alpha$
$\mathrm{D}=1-\mathrm{E}_{\mathrm{x}} \mathrm{E}_{\mathrm{z}}\left[\mathrm{f}\left(\mathrm{X}_{\mathrm{j}} \mathrm{Z}_{j}\right) \mathrm{h}\left(\mathrm{X}_{\mathrm{j}} \mathrm{Z}_{j}\right)\right]=(\leftarrow$ by construction of h$)$
$=1-\mathrm{E}_{\mathrm{x}}\left[\mathrm{E}_{\mathrm{Z}}\left[\mathrm{f}\left(\mathrm{X}_{\mathrm{j}} \mathrm{Z}_{\bar{j}}\right)\right] \mathrm{h}\left(\mathrm{X}_{\mathrm{j}}\right)\right]$ and $\mathrm{h}\left(\mathrm{X}_{\mathrm{j}}\right)=\operatorname{sign}\left(E\left[f\left(\mathrm{X}_{\mathrm{j}} \mathrm{Z}_{\mathrm{j}}\right)\right]\right)$
And because $|g(x)|=g(x) \operatorname{sign}(g(x))$ therefore,
$\mathrm{D}=1-\mathrm{E}_{\mathrm{x}}\left[\left|\mathrm{E}_{\mathrm{z}}\left[\mathrm{f}\left(\mathrm{X}_{\mathrm{j}} \mathrm{Z}_{j}\right)\right]\right|\right] \leq 1-\mathrm{E}_{\mathrm{x}}\left[\mathrm{E}_{\mathrm{z}}\left[\mathrm{f}\left(\mathrm{X}_{\mathrm{j}} \mathrm{Z}_{j}\right)\right]^{2}\right] \quad\left(\leftarrow\right.$ if $\mathrm{g}<1$ then $\left.\mathrm{g}^{2}<\mathrm{g}\right)$
$=1-\mathrm{E}_{\mathrm{x}}\left[\mathrm{E}_{\mathrm{Z}}\left[\sum_{s} \hat{f}(s) \chi_{s}(\mathrm{x})\right]^{2}\right]=$
$=1-\mathrm{E}_{\mathrm{x}}\left[\sum_{s \subseteq J} \sum_{T \subseteq J} \hat{f}(s) \hat{f}(T) \mathrm{E}_{\mathrm{z}}\left[\chi_{s}(\mathrm{x}) \chi_{T}(\mathrm{x})\right]^{2}\right] \equiv \mathrm{S}$
To calculate the value of S, lets evaluate the expectation $\mathrm{E}_{\mathrm{z}}\left[\mathrm{f}\left(\mathrm{X}_{\mathrm{j}} \mathrm{Z}_{\tilde{j}}\right)\right]$
$\mathrm{E}_{\mathrm{z}}\left[\mathrm{f}\left(\mathrm{X}_{\mathrm{j}} \mathrm{Z}_{j}\right)\right]=\mathrm{E}_{\mathrm{z}}\left[\sum_{s} \hat{f}(s) \chi_{s}\left(\mathrm{X}_{\mathrm{j}} \mathrm{Z}_{j}\right)\right]=\sum_{s} \hat{f}(s) \mathrm{E}_{\mathrm{z}}\left[\chi_{s}\left(\mathrm{X}_{\mathrm{j}} \mathrm{Z}_{j}\right) \equiv \mathrm{T}\right.$

But $\chi_{s}\left(\mathrm{X}_{\mathrm{j}} \mathrm{Z}_{j}\right)=\left\{\begin{array}{c}\mathrm{X}_{\mathrm{s}}\left(\mathrm{X}_{\mathrm{j}}\right) \text { if } s \subseteq J \\ 0 \text { o.w }\end{array}\right.$ therefore, $\mathrm{T}=\sum_{\mathrm{s} \subseteq \jmath} \hat{f}(s) \mathrm{X}_{\mathrm{s}}(x) \quad$ therefore, $\mathrm{S}=1-\sum_{\mathrm{s} \subseteq\rfloor} \hat{f}(s)^{2}=\sum_{\mathrm{s} \subseteq[n]} \hat{f}(s)^{2}-\sum_{\mathrm{s} \subseteq \jmath} \hat{f}(s)^{2}=\sum_{\mathrm{s}: s \cap([n] \backslash) \neq \emptyset} \hat{f}(s)^{2}=$ (by home work \rightarrow) $=\operatorname{lnf}([n] \backslash i)$.

Continue in the next lesson .

