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RECONSTRUCTING CHAIN FUNCTIONS IN
GENETIC NETWORKS∗

IRIT GAT-VIKS† , RICHARD M. KARP‡ , RON SHAMIR† , AND RODED SHARAN†

Abstract. The following problems arise in the analysis of biological networks: We have a
boolean function of n variables, each of which has some default value. An experiment fixes the
values of any subset of the variables, the remaining variables assume their default values, and the
function value is the result of the experiment. How many experiments are needed to determine
(reconstruct) the function? How many experiments that involve fixing at most q values are needed?
What are the answers to these questions when an unknown subset of the variables are actually
involved in the function? In the biological context, the variables are genes and the values are gene
expression intensities. An experiment measures the gene levels under conditions that perturb the
values of a subset of the genes. The goal is to reconstruct the particular logic (regulation function)
by which a subset of the genes together regulate one target gene, using few experiments that involve
minor perturbations. We study these questions under the assumption that all functions belong to a
biologically motivated set of so-called chain functions. We give optimal reconstruction schemes for
several scenarios and show their application in reconstructing the regulation of galactose utilization
in yeast.
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1. Introduction. In this paper we study the problem of function reconstruction.
We have a set of N boolean variables. Each variable has a default value, and an
experiment can change (fix to 0 or 1) its value. The order of an experiment is the
number of variables fixed during the experiment. The value of one variable of interest
(the output) is determined by a boolean function of n other variables. The output
of an experiment is the value of the function, where all fixed variables attain their
respective values and the rest attain their default values. The problem of function
reconstruction is to determine this function using a minimum number of experiments
of the smallest possible order.

The motivation to studying the problem arises in molecular biology: The reg-
ulation of biological entities is key to cellular function. The genes are expressed
(transcribed) into mRNAs, which are translated into proteins. The regulatory fac-
tors which control (regulate) gene expression are themselves protein products of other
genes. The result is a complex network of regulatory relations among genes. A ge-
netic network consists of a set of variables that correspond to genes, attaining real
values, called states. The state of a gene indicates the discretized expression level of
the gene. A gene may be regulated by several other genes, implying that its state
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is a function of the states of its regulating genes, or its regulators. An experiment
involves perturbations such as knocking out certain genes (fixing their states to some
low value) or overexpressing them (fixing their states to some high value) and mea-
suring the expression levels of all other genes. The measurement of gene expression
levels is facilitated by high throughput technologies, such as DNA microarrays (e.g.,
[6]). The order of an experiment is the number of genes that are perturbed. In order
to reconstruct the regulatory relations among genes, we need to infer the set of genes
that cooperate in the regulation of a given gene and the particular logical function
by which this regulation is determined. This paper studies the number and order of
experiments that are needed in order to infer the regulatory function that governs a
specific gene.

A key obstacle in the inference of regulation relations is the large number of
possible solutions and, consequently, the unrealistically large amount of data needed
to identify the right one. A common and simple model for genetic networks is the
boolean model, in which the state of a gene is 0 (off) or 1 (on). The boolean assumption
is a drastic simplification of real biology, yet it captures important features of biological
systems and was frequently used in previous studies [16].

There is a large body of previous work on learning boolean functions from a
random sample of their output values (see [3] for a review). Those studies focus
on devising efficient probably approximately correct (PAC) learning algorithms for
subclasses of boolean functions using a polynomial-size sample. Another body of work
is devoted to exact learning of certain classes of boolean functions using a polynomial
number of queries (see, e.g., [4] and references thereof). For the specific problem of
exact boolean function reconstruction in a genetic network, Akutsu et al. [1] have
shown that the number of experiments (or queries) that are needed for reconstructing
a function of N genes is prohibitive: The lower and upper bounds on the number of
experiments of order N−1 that are needed are Ω(2N−1) and O(N ·2N−1), respectively.
When the function involves only d regulators, the number of required experiments of
order d is still Ω(Nd) and O(N2d), respectively [1].

The inherent complexity of this problem led researchers to seek ways around
this problem. Ideker, Thorson, and Karp [16] studied how to dynamically design
experiments so as to maximize the amount of information extracted. Friedman et al.
[8] used Bayesian networks to reveal parts of the genetic network that are strongly
supported by the data. Tanay and Shamir [24] suggested a method of expanding
a known network core using expression data. Several studies used prior knowledge
about the network structure, or restrictive models of the structure, in order to identify
relevant processes in gene expression data [12, 15, 23, 22].

Recently, a biologically motivated, boolean model of regulation relations based
on chain functions was suggested in order to cope with the problem of function re-
construction in biological context [9]. In a chain function, the state of the regulated
gene depends on the influence of its direct regulator, whose activity may in turn de-
pend on the influence of another regulator, and so on, in a chain of dependencies (we
defer formal definitions to the next section). The class of chain functions has sev-
eral important advantages [9]: These functions reflect common biological regulation
behavior, so many real biological regulatory relations can be elucidated using them
(examples include the SOS response mechanism in E. coli [21] and galactose utilization
in yeast [18]). Moreover, by restricting consideration to chain functions, the number
of candidate functions drops from double exponential to single exponential only.

In this paper we study several computational problems arising when wishing to
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reconstruct chain functions using a minimum number of experiments of the smallest
possible order. We address both the question of finding the set of regulators of a chain
function, which is typically much smaller than the entire set of genes, and the question
of reconstructing the function given its regulators. We give optimal reconstruction
schemes for several scenarios and show their application on real data. Our analysis
focuses on the theoretical complexity of reconstructing regulation relations (number
and order of experiments), assuming that experiments provide accurate results and
that the target function can be studied in isolation from the rest of the genetic network.

The paper is organized as follows: Section 2 contains basic definitions related
to chain functions. In section 3 we give worst-case and average-case analyses of the
number of experiments needed in order to reconstruct a chain function. Both low-
order and high-order experimental settings are considered. In section 4 we study the
reconstruction of composite regulation functions that combine several chains. Finally,
in section 5 we describe a biological application of our analysis to reconstruct the
regulation mechanism of galactose utilization in yeast.

2. Chain functions. Chain functions were introduced by Gat-Viks and Shamir
[9]. In the following we define these functions and describe their main properties.
Our presentation differs from the original one to allow succinct description of the
reconstruction schemes in later sections.

Variables, regulators and states. Let U denote the set of all variables in a
network, where |U | = N + 1. These variables correspond to genes, mRNAs, proteins,
or metabolites. Each variable may attain one of two states: 1 or 0. The state of
gene g, denoted by state(g), indicates the discretized expression level of the gene. A
variable normally attains its wild-type state, but perturbations such as gene knockouts
may change its state. We say that a variable g0 ∈ U is regulated by a set S =
{g1, . . . , gn} ⊂ U if state(g0) = fg0(state(gn), . . . , state(g1)) and S is a minimal set
with that property. In that case we say that S is the regulator set of g0, and g0 is
called the regulatee. Associated with each regulator gi is a binary constant yi which
dictates the control property of gi. If yi = 0 then gi is an activator; otherwise gi is a
repressor. This is an intrinsic property of the regulator and is not subject to change.
The control pattern of fg0 is the binary vector (yn, . . . , y1).

Given a certain order gn, . . . , g1 of the regulators, we call gi a predecessor of gj
for i > j and a successor of gk for i < k. We also say that gi is to the left of gj and
to the right of gk. Each regulator transmits a signal to its immediate successor, and
this chain of events enables a signal to propagate from gn to g0 in a manner defined
by a chain function (see Figure 1, top part).

Chain function definition. The chain function model assumes that the func-
tional relations are deterministic. The chain function fg0 on the regulators gn, . . . , g1

determines the state of the regulatee g0.

The function fg0 can be defined using two n-long boolean vectors attributing
activity and influence to each gi. Let a(gi) denote the activity of gi, and let infl(gi)
denote the influence signal from gi to gi−1. The definitions of activity and influence
on the other regulators are recursive: The influence on gn is always 1. gi is active
(a(gi) = 1) iff it exists (state(gi) = 1) and it receives a positive influence from its
predecessor (infl(gi+1) = 1). The influence infl(gi) transmitted from gi to gi−1 is a
xor (⊕) of a(gi) and yi: infl(gi) is 1 if gi is an activator and is itself activated or if
gi is a repressor and is not activated (so that it fails to repress gi−1). Formally,
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Fig. 1. The chain function model. Top: A chain function model. Bottom: An illustration of
a chain function with five regulators. g1, g2, g4 are repressors, and g3, g5 are activators. The state
of all regulators is 1. Influences are indicated on the horizontal arrows. Regulator types and blocks
are indicated below.

a(gi) = infl(gi+1) ∧ state(gi),(1)

infl(gi) = yi ⊕ a(gi).(2)

Finally, the state of the regulatee g0 is simply the influence of g1. We define the output
of fg0 to be state(g0).

A chain function is uniquely determined by its set of regulators, their order, and
the control pattern. For example, if g0 is regulated by (g3, g2, g1) via a chain function
with control pattern 010, then f(1, 1, 1) = 0 and f(0, 1, 1) = 1.

3. Reconstruction of chain functions. In this section we study the question
of uniquely determining the chain function which operates on a known regulatee, using
a minimum number of experiments. We assume throughout that all variable states
in wild type are known. We further assume that all regulator states in wild type are
1, except possibly gn. The latter assumption is motivated by the observation that in
many biological examples, all regulators are expressed in wild type, and the state of
the regulatee is determined by the presence or absence of a metabolite gn. (Examples
include the Trp, lac, and araBAD operons in E. coli [21], the regulation of galactose
utilization [18] in yeast, and human MAPK cascades [17]).

An experiment is defined by a set of variables that are externally perturbed
(knocked-out or overexpressed). The states of the perturbed variables are thus fixed,
and the states of all nonperturbed regulators are assumed to remain at the wild-type
values. The state of the regulatee is determined by the chain function. The order of
an experiment is the number of externally perturbed variables in it.

Our reconstruction algorithms are based on performing various experiments and
observing their effect on the state of the regulatee. The algorithms implicitly assume
that the regulation function is indeed a chain function and do not explicitly test this
property.

We now devise a simple set of equations that characterize the output of a chain
function as a function of the control pattern and the states of the regulators, both
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in the wild-type state and in states produced by perturbing some regulators. These
equations are the foundation of all the subsequent reconstruction schemes:

Proposition 1. Let f be a chain function on gn, . . . , g1. If state(gi) = 1 for
1 ≤ i < n, then state(g0) = state(gn) ⊕ (⊕n

i=1yi). For any other state vector, if the

least index of a state-0 regulator is j ≤ n, then fg0(gn, . . . , g1) = ⊕j
i=1yi.

Proof. By definition, a(gn) = state(gn). For i < n, state(gi) = 1 implies that
a(gi) = a(gi+1)⊕ yi+1. It follows by induction that state(g0) = state(gn)⊕ (⊕n

i=1yi).
Similarly, if state(gj) = 0 and state(gi) = 1 for all i < j, it follows by induction that

fg0(gn, . . . , g1) = ⊕j
i=1yi.

Under the above assumptions on regulator states, a chain function can be viewed
as a series of inversion and identity gates, whose input is the state of gn. Each identity
gate corresponds to an activator, whose output is equal to its input. Each inversion
gate corresponds to a repressor, whose output is opposite to its input. The output of
the last gate in the chain is the state of the regulatee.

3.1. Types and blocks. A perturbation is an experiment that changes the state
of a variable to the opposite of its state in wild type. By our assumption on the
regulator states in wild type (all regulator states in wild type are 1, except possibly
gn), the perturbation of a regulator in {gn−1, . . . , g1} is a knockout. For S ⊆ U ,
an S-perturbation is an experiment in which the states of all the variables in S are
perturbed.

Let w be state(g0) in wild type. Let w̄ be the opposite state. For the recon-
struction, we first classify the variables in U into two types: W and W̄ (see Figure 1,
bottom part). A variable is in W (W̄ ) if its perturbation produces output w (w̄).
Typically, the majority of the genes have type W , since in particular all the genes
that are not part of the chain function are such. By Proposition 1 we have gn ∈ W̄ ,
and gn−1 ∈ W iff state(gn)⊕yn = 0. We call a gene that belongs to W (W̄ ) a W -gene
(W̄ -gene). Similarly, we call a regulator of type W (W̄ ) a W -regulator (W̄ -regulator).
For a given gene, we call a successor of type W (W̄ ) of that gene a W -successor
(W̄ -successor).

The type of a gene can be determined by a single perturbation of the gene. Such
an experiment will be referred to as a typing experiment throughout.

Corollary 2. Given an ordered set of regulators gn, . . . , g1, their control pattern
can be reconstructed using n− 1 typing experiments.

Proof. Perform typing experiments for g1, . . . , gn−1 (by definition gn ∈ W̄ ). By
Proposition 1, for every 1 < i < n, yi = 1 iff the types of gi and gi−1 differ. Also,
yn = 1 iff either state(gn) = 0 and the types of gn, gn−1 are equal, or state(gn) = 1
and the two types differ. Finally, we can use Proposition 1 to deduce y1.

Any control pattern (yn, . . . , y1) may be separated into blocks of consecutive reg-
ulators by truncating the control pattern after each 1. The first block (rightmost,
ending at g1) has two possible forms: 0 . . . 0 or 0 . . . 01. All other blocks are of the
form 0 . . . 01, so the right boundary of a block corresponds to a regulator gj with
yj = 1, and any other regulator gi in the block has yi = 0.

Lemma 3. Each block contains regulators of a single type, and two adjacent blocks
contain regulators of opposite types.

The proof follows from the fact that the type of gi, i < n differs from the type of
gi−1 iff yi = 1. Thus, we can refer to a block as either a W -block or a W̄ -block, and
the two types of blocks alternate. For convenience, we shall refer to gn as forming a
W̄ -block of its own.
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3.2. Reconstructing the regulator set and the function. Consider a chain
function with control pattern (yn, . . . , y1) and let gj , . . . , gi be a block. Then infl(gi) =

[infl(gj+1) ∧ (
∧j

h=i state(gh))] ⊕ yi. Thus, the effect of the block on the function is
determined by the boolean variable infl(gj+1), by the control pattern, and by the
conjunction of the states of its regulators. Since this conjunction is independent of
the order of occurrence of these genes, no experiment based on perturbing the states
of the genes can determine the order of the genes within the block. In view of this
limitation, we shall aim to find the equivalence class of chain functions as detectable
by perturbation experiments, i.e., our goal is to reconstruct the control pattern, the
set of genes within each block (but not their order), and the ordering of the blocks.
Correspondingly, in the following we will use the term successor of a gene to denote a
regulator that succeeds that gene in the chain and is not a member of its block. For
convenience, we shall refer to gene (in fact, W -genes) that are not regulators of g0 as
predecessors of gn.

The above discussion implies that once we have typed each gene, it remains to
determine, for each pair consisting of a W -gene and a W̄ -gene, which one precedes
the other in the chain. Let kW and kW̄ denote the number of regulators of type W
and W̄ , respectively. Note that kW + kW̄ = n ≤ N , and in fact, typically, n � N as
kW � |W |.

Suppose we perform a {i, k}-perturbation with gi ∈ W and gk ∈ W̄ . If the
result is w, then gk precedes gi. Otherwise, gi precedes gk. A 2-order experiment for
determining the relative order of a W -gene and a W̄ -gene will be called a comparison
throughout.

Proposition 4. Given the set of regulators of a chain function and their types,
kW kW̄ comparisons are necessary and sufficient to reconstruct the function.

Proof. The upper bound follows by comparing every W -regulator with every W̄ -
regulator. The lower bound follows from the fact that, in the special case where every
W̄ -regulator precedes every W -regulator, no set of comparisons can determine the
relative order of a given pair consisting of a W -regulator and a W̄ -regulator, unless it
includes a direct comparison between the pair. Therefore, all such comparisons must
be performed.

Note that the problem of reconstructing a chain function by comparisons, once
the regulators have been typed, can be viewed as a sorting problem: The input is a
list of n elements of two types, such that the set of elements of each type consists
of several equivalence classes, and there is a linear order of all these classes. The
objective is to find the equivalence classes and their order, using only queries that
compare two elements of distinct types. In the special case that each equivalence
class consists of one element, the problem is related1 to the well-studied problem of
matching nuts and bolts [2] and has an optimal Θ(n log n) deterministic solution [19].

We now turn to the question of reconstructing a chain function without prior
knowledge of the identity of its regulators. The discussion above suggests a way to
solve the problem: First, we find the gene types using N typing experiments. Next,
we reconstruct the block structure by performing all possible comparisons between a
W -gene and a W̄ -gene.

A more efficient reconstruction is possible when gn is known. This is often the case
when the chain function models a signal transduction pathway, where gn represents

1The difference between the problem of matching nuts and bolts and our problem is that in our
case we have strict linear order among all the elements and there is no notion of matching between
W -regulators and W̄ -regulators.
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a known stimulator of the corresponding biological response. If gn is known, then
since gn ∈ W̄ , all W -regulators can be identified by comparing every W -gene with
gn, using a total of N − kW̄ comparisons. Since every W̄ -gene is a regulator, these
experiments are sufficient to identify all the regulators, and we can apply Proposition
4 to complete the reconstruction in N −kW̄ +kW (kW̄ − 1) comparisons. In summary,
we have the following proposition.

Proposition 5. A chain function can be reconstructed using at most N typing
experiments and kW̄ (N −kW̄ ) comparisons. Given gn, a chain function can be recon-
structed using at most N − 1 typing experiments and N − n + kW kW̄ comparisons.

We can prove a matching lower bound by generalizing the argument in Proposi-
tion 4.

Proposition 6. At least kW̄ (N − kW̄ ) comparisons are necessary to reconstruct
a chain function.

Proof. Consider the case where all W̄ -regulators precede the W -regulators. In this
case, no set of comparisons can determine the relative order of a given pair consisting
of a W -gene and a W̄ -gene unless it includes a direct comparison between the pair.
Therefore, all such comparisons must be performed.

Propositions 4 and 5 provide a worst-case analysis. Next, we describe another
reconstruction algorithm, whose expected number of required experiments is lower.
The analysis of the running time is similar to that of quick-sort (cf. [5]) and assumes
that the chain to be reconstructed has W̄ -blocks of bounded size. Denote by Dg the
set of W -successors of g ∈ W̄ in f .

Proposition 7. A chain function with W̄ -blocks of size bounded by d can be
reconstructed using N typing experiments and an expected number of O(Nd log kW̄ +
kW kW̄ ) comparisons.

Proof.
Algorithm: First, we perform N typing experiments. Next, we apply a random-

ized scheme to reconstruct the chain: Each time we pick a gene g ∈ W̄ at random,
find its successors and their order, and remove g and all its successors from further
consideration. We stop when no W̄ genes are left. In order to find the successors of
g, we first identify the members of Dg using at most N −kW̄ comparisons. Using Dg,
we then reconstruct the part of the chain that spans g and its successors by at most
|Dg|(kW̄ − 1) comparisons, as in Proposition 4.

Complexity: The set of comparisons can be divided into two parts: those that
are required to identify the sets Dg and those required to reconstruct the chain parts
induced by these sets. For the latter, at most kW kW̄ comparisons are needed in total,
since every pair consisting of a W -regulator and a W̄ -regulator is compared at most
once. Thus, it suffices to compute the expectation of the first part. Let T (x) be
this expectation, given that the current W̄ set (i.e., the set of W̄ -genes that were not
removed in previous iterations) contains x elements, where T (0) = 0. For x ≥ 1, with
probability 1

x the qth rightmost element of W̄ is chosen in the current iteration. Hence,
T (x) ≤ 1

x

∑x
q=1(d(N − kW̄ ) + T (x− q)). By induction, T (x) ≤ d(N − kW̄ )(log x+ 1).

Substituting x = kW̄ , we obtain the required bound.
The expected number of experiments improves over the upper bound of Propo-

sition 5 for d < kW̄ , which is the case in many real biological regulations, e.g., the
filamentous-invasion pathway (n = 9, kW̄ = 2, and d = 1, illustrated in [11, Figure
3]), and the HOG signaling pathway (n = 6, kW̄ = 3, and d = 2 [13]) in yeast.

3.3. Using high-order experiments. In this section we show how to improve
the above results when using experiments of order q > 2. The results in this section
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are mainly of theoretical interest, since high-order experiments may not be practical.
Proposition 8. Given the set of n regulators of a chain function, the function

can be reconstructed using O(n
2

q log q) experiments of order at most q ≤ n. This is

optimal up to constant factors for q = Θ(n).
Proof. The number of possible chain functions with n regulators is Θ((log2 e)

n+1n!)
[9]. Since each experiment provides one bit of information, the information lower
bound is Ω(n log n) experiments.

Suppose at first that q = n. Let ni be the number of regulators in block i, where
blocks are indexed in right-to-left order. Our reconstruction algorithm is as follows:
First, we perform n typing experiments. Next, we identify the type of the first block
using one experiment of order n, in which all regulators are perturbed (this way we
perturb also the genes in the first block, and thus its type is identical to the output).
We proceed to reconstruct the blocks one by one, according to their order along the
chain. Note that the type of each block is now known, since the two types alternate.
Suppose we have already reconstructed blocks 1, . . . , i−1. For reconstructing the ith
block we only consider the set of regulators that do not belong to the first i−1 blocks.
Out of this set, let A be the subset of regulators that have the same type as block i,
and let B be the subset of regulators of the opposite type. In order to identify the
members of the ith block we use a binary-search-like procedure: We divide A into
two halves. For each half we perform a perturbation that includes that half and all
regulators in B. If the result is the type of block i, we continue recursively with that
half. Otherwise, we discard it. The search requires O(ni log n) experiments. Thus,
altogether we perform O(n log n) experiments.

When q < n, we use the above algorithm as a component in our reconstruction
scheme, allowing us to reconstruct a subchain of size q within a chain of size n using
O(q log q) experiments of order at most q. Our reconstruction scheme is based on
Proposition 4, which shows that for reconstruction it suffices to compare every W -

regulator with every W̄ -regulator. To this end we form O(n
2

q2 ) regulator subsets, each

of size at most q, such that every pair consisting of a W -regulator and a W̄ -regulator
appears in one of the subsets. To compute these subsets we form a kW × kW̄ matrix,
whose entries are in 1-1 correspondence with (W, W̄ )-regulator pairs. We then cover

this matrix using O(kW kW̄

q2 ) disjoint submatrices of dimension at most 
q/2� × �q/2
,
each identifying a regulator subset of the required size.

Next, we reconstruct the subchain of size q associated with each subset using
O(q log q) experiments of order at most q. After this process, each (W, W̄ )-regulator
pair appears in one of the subchains, and thus its relative order has been determined.
This is sufficient in order to computationally reconstruct the chain (as in Proposition

4). Altogether we use O(kW kW̄

q log q) = O(n
2

q log q) experiments for reconstructing
the chain from its regulators.

We now provide a reconstruction scheme for the case that the set of regulators is
not known. Let f be a chain function. For a gene g ∈ W̄ , denote as before by Dg its
set of W -successors in f . A building block in our reconstruction scheme is a method to
efficiently identify the members of Dg using O(|Dg| log q +N/q) experiments of order
at most q. The process is as follows: We partition the W -genes into � N

q−1
 subsets of
size at most q− 1. For each subset R we test whether it contains some successor of g
using an (R ∪ {g})-perturbation, in which g and the subset members are perturbed.
If as a result of the perturbation the output changes to w, then at least one of the
members in R succeeds g. In this case we use standard binary search to identify all
the m successors in R by performing additional O(m log q) experiments of order at
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most (
q/2� + 1). Otherwise, all the subset members precede g and we discard R.
Each of the successors of g is discovered exactly once, which gives the required bound.

Proposition 9. For q ≤ n, a chain function can be reconstructed using O(nN/q+
n2 log q/q) experiments of order at most q. For q > n, O(N + n log q) experiments of
order at most q are sufficient.

Proof. The reconstruction is done in three stages. First, we perform N typing
experiments. Second, we discover all W -regulators as follows: For each regulator
b ∈ W̄ we use the scheme described above to identify its successors in W , and re-
move them from further consideration. Each W -regulator is discovered exactly once
and, thus, we need O(kW̄N/q + kW log q) experiments of order at most q altogether.
Last, we reconstruct the chain, given the regulators and their types, in O(n2 log t/t)
experiments, using the method given in Proposition 8, where t = min{q, n}. In total
O(N + kW̄N/q + kW log q + n2 log t/t) experiments are used.

A lower bound on the number of experiments that are required is given in the
following proposition.

Proposition 10. Ω(max{N/q, nN/q2, n logN}) experiments of order at most q
are necessary to reconstruct a chain function.

Proof. We give three different lower bounds, whose union yields the required
result. First, Ω(N/q) experiments are required to identify at least one W̄ -regulator.
Second, Ω(nN/q2) experiments are required to cover every pair of a W - and a W̄ -gene.
Third, the number of possible chain functions is Θ(

(
N
n

)
(log2 e)

n+1n!) [9]. Hence, the
information theoretic lower bound on the reconstruction is Ω(n logN).

Finally, we give an optimal reconstruction scheme when gn is known and q =
�N/2
 + 1.

Proposition 11. In case gn is known, there is an optimal reconstruction scheme
that uses Θ(n logN) experiments of order at most �N/2
 + 1.

Proof. We perform the reconstruction in two stages. In the first stage we discover
the set of regulators and their types. In the second stage we apply Proposition 8
to reconstruct the chain function. To discover the set of regulators we perform a
binary-search-like process as follows: We partition all variables excluding gn and g0

into two halves, H1 and H2. For i = 1, 2 we apply an Hi ∪ {gn}-perturbation. Since
gn is perturbed, all nonregulator effects are masked, and we get the result w iff Hi

contains some W -regulators. Therefore, for each set that gives the results w, we
continue recursively until we reach single genes. In this way we have identified a
subset T of the W -regulators, including all those in the first (rightmost) block. We
now repeat the recursive process on U \ (T ∪ gn ∪ g0), but this time do not include
gn in the perturbations. This process identifies a subset T ′ of the W̄ regulators,
including the first W̄ -block. By repeating these two recursive processes (with and
without including gn in the perturbations) we eventually identify all regulators. The
total effort is O(n logN) since each path that identifies one of the n regulators is a
binary search in N variables and thus takes O(logN) experiments.

4. Combining several chains. In this section we extend the notion of a chain
function to cover common biological examples in which the regulatee state is a boolean
function of several chains. Frequently, a combination of several signals influences the
transcription of a single regulatee via several pathways that carry these signals to the
nucleus, and a regulation function that combines them together. Here, we formalize
this situation by modeling each signal transduction pathway by a chain function, and
letting the outputs of these paths enter a boolean gate.

Define a k-chain function f as a boolean function which is composed of k chain
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functions over disjoint sets of regulators that enter a boolean gate G(f). Let f i be
the ith chain function and let gij denote the jth regulator in f i. The output of the

function is G(infl(g1
1), . . . , infl(gk1 )).

In the following we present several biological examples for k-chain functions that
arise in transcriptional regulation in different organisms: The lac operon [21] codes
for lactose utilization enzymes in E. coli. It is under both negative and positive
transcriptional control. In the absence of lactose, lac-repressor protein binds to the
promoter of the lac operon and inhibits transcription. In the absence of glucose,
the level of cAMP in the cell rises, which leads to the activation of CAP, which in
turn promotes transcription of the lac operon. In our formalism, the lac operon is
controlled by a 2-chain function with an AND gate. The chains are f1(g1

2 , g
1
1) =

f1(lactose, lac-repressor), with control pattern 11, and f2(g2
3 , g

2
2 , g

2
1) = f2(glucose,

cAMP, CAP), with control pattern 100. Other examples of 2-chains with AND gates
are the regulation of arginine metabolism and galactose utilization in yeast [18]. A
2-chain with an OR gate regulates lysine biosynthesis pathway enzymes in yeast [18].

These examples motivate us to restrict attention to gates that are either OR or
AND. We first show that we can distinguish between OR and AND gates. We then
show how to reconstruct k-chain functions in the case of OR and later extend our
method to handle AND gates.

Denote the output of f i by Oi. If Oi = 1 in wild type, we call f i a 1-chain
and, otherwise, a 0-chain. A regulator gij is called a 0-regulator (1-regulator) if its
perturbation produces Oi = 0 (Oi = 1). Let k0 (k1) be the number of 0-regulators
(1-regulators) in f . A block is called a 0-block (1-block), if it consists of 0-regulators
(1-regulators).

Lemma 12. Given a k-chain function f with gate G(f) which is either AND or
OR, k ≥ 2, we can determine, using O(N2) experiments of order at most 2, whether
G(f) is an AND gate or an OR gate.

Proof. We perform N typing experiments. If w = 0 and W̄ = ∅, then G(f) is an
AND gate. If w = 1 and W̄ = ∅, then G(f) is an OR gate. Otherwise, W̄ �= ∅. In
this situation the cases of w = 0 and w = 1 are similarly analyzed. We describe only
the former.

If w = 0, we have to differentiate between the case of an OR gate, whose inputs
are all 0-chains, and the case of an AND gate, whose inputs are one 0-chain and (k−1)
1-chains. To this end we perform all comparisons of a W -gene and a W̄ -gene. Let
T be the set of genes g such that the result of a {g, g′}-perturbation is w for every
g′ ∈ W̄ . Then T �= ∅ iff G(f) is an AND gate.

We now study the reconstruction of an OR gate. Let S be the (possibly empty)
set of regulators that reside in one of the first blocks (i.e., the blocks containing
gi1), that are also 1-blocks. We observe that a perturbation of any regulator in S
results in state(g0) = 1 regardless of any other simultaneous perturbations we may
perform. Hence, determining the specific chain to which an element from S belongs is
not possible. Therefore, our reconstruction will be unique up to the ordering within
blocks and up to the assignment of the regulators in S to their chains. The next
lemma handles the case w = 0. The subsequent lemma treats the case w = 1.

Lemma 13. Given a k-chain function f with an OR gate and assuming that
w = 0, we can reconstruct f using N typing experiments and (N−k1)k1 comparisons.

Proof. We perform N typing experiments. Then, for each 1-regulator b, we
perform all possible comparisons, thereby identifying all 0-regulators that succeed b
in its chain. This completes the reconstruction.
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Lemma 14. Let f be a k-chain function with an OR gate. Assume that w = 1,
and let r be the number of 1-chains entering the OR gate. Then f can be reconstructed
using O(Nr + Nn) experiments of order at most r + 2.

Proof. First, we determine r, the minimum order of an experiment that will
produce output 0 for f . For i = 1, 2, . . . we perform all possible i-order experiments;
r is determined as the smallest i for which we obtain output 0. In total we perform
O(Nr) experiments. We call the set of perturbed genes in an r-order experiment
which results in output 0, a reset combination.

Next, we reconstruct the 1-chains. Fix an arbitrary reset combination R. For
every a ∈ R we perform a set of experiments of order r+1 as follows: For every reset
combination R′ ⊃ R \ {a} with a /∈ R′, we perturb R′ and in addition each other
gene, one at a time, recording those that produce output 1 as 1-regulators. For every
a, the sets of 1-regulators discovered in these experiments form a linear order under
set inclusion. The 1-regulators that are not common to all these sets are exactly the
1-regulators (that are not in S) of the chain that includes a. For each 0-regulator in
R′ \R our experiments determine the 1-regulators that succeed it in this chain. Thus,
we can infer all the 1-chains. The total number of experiments performed is O(Nk0).

Finally, we reconstruct the 0-chains. To this end we perturb the 1-regulators
in R, thereby deactivating the 1-chains and reducing the problem of reconstructing
the 0-chains to that of reconstructing a (k − r)-chain function with an OR gate and
w = 0 (removing the already discovered regulators of the 1-chains from consideration).
This is done by applying the reconstruction method of Lemma 13 using O(Nk1)
experiments of order at most r + 2. The assignment of 1-regulators in S will remain
uncertain.

Note that for k = 1 the above algorithms will reconstruct a single chain. Indeed,
for w = 0 the algorithm of Lemma 13 coincides with that of section 3, and for w = 1,
applying the algorithm of Lemma 14 we shall discover that r = k = 1. Further note
that for every reconstructed chain we can identify whether its first block is a 1-block
(i.e., contains genes in S). This is simply done by computing for that chain the value
of state(gn) ⊕ (⊕iyi) on its known members and comparing it to the chain’s output.
Last, note that if k is known and r = k, then the order of the experiments that are
required to reconstruct the k-chain is at most r + 1, since f contains no 0-chains.

The reconstruction method for the case of an OR gate can be used for the recon-
struction of an AND gate as well, by exchanging the roles of 0 and 1 in the above
description. This gives rise to the following result:

Theorem 15. A k-chain function with an OR or an AND gate can be recon-
structed using O(Nk) experiments of order at most k+1. The reconstruction requires
Ω(

(
N
k

)
/k) experiments of this order.

Proof. The upper bound follows from Lemmas 12, 13, and 14 and the duality
of AND and OR gates. For the lower bound consider a k-chain function with an
OR gate consisting of k 1-chains, each of which contains a single 0-regulator. Such
a function has a single reset combination, which must be identified in the process of
reconstructing the chain. Since each experiment of order k + 1 can test at most k
combinations, Ω(

(
N
k

)
/k) experiments are required for the reconstruction.

5. A biological application. The methods we presented above can be applied
to reconstruct chain functions from biological data. We describe one such application
to the reconstruction of the yeast galactose regulation function, for which some of the
required perturbations have been performed. We show that one additional experiment
suffices to fully reconstruct the regulation function.
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The galactose utilization in the yeast Saccharomyces cerevisiae [18] occurs in a
biochemical pathway that converts galactose into glucose-6-phosphate. The trans-
porter gene gal2 encodes a protein that transports galactose into the cell. A group of
enzymatic genes, gal1, gal7, gal10, gal5, and gal6, encode the proteins responsible for
galactose conversion. The regulators gal4p, gal3p, and gal80p control the transporter,
the enzymes, and to some extent each other (Xp denotes the protein product of gene
X). In the following, we describe the regulatory mechanism. gal4p is a DNA binding
factor that activates transcription. In the absence of galactose, gal80p binds gal4p and
inhibits its activity. In the presence of galactose in the cell, gal80p binds gal3p. This
association releases gal4p, promoting transcription. This mechanism can be viewed
as a chain function, where f1(g1

4 , g
1
3 , g

1
2 , g

1
1) = f1(galactose, gal3, gal80, gal4), and the

corresponding control pattern is 0110 (see also [9]). The gal7, gal10, and gal1 regu-
latees are also negatively controlled by another chain f2(g2

2 , g
2
1) = f2(glucose,mig1)

with control pattern 01. The two chains are combined by an AND gate (see Fig-
ure 2(A)).

Ideker et al. [14] performed several experiments to interrogate the galactose uti-
lization mechanism. In these experiments glucose was absent from the media. Conse-
quently, the output of f2 was always 1, and hence we shall focus on the reconstruction
of f1 using the experimental data of [14]. Using the discretization procedure employed
by Ideker et al. [14], the measured wild-type levels of gal3, gal80, and gal4 were 1, in
accordance with our model assumption. The wild-type level of galactose was also 1.

Assuming we know the group of four regulators, we need, according to Propo-
sition 4, a total of 4 typing experiments and 3 comparisons (since only gal80 is
of type W ) to reconstruct the chain. Notably, all 4 typings and 2 of the 3 com-
parisons2 were performed by Ideker et al. [14] (see Figure 2(B)). Using the same
discretization procedure, the experiments yielded the correct results for all three
regulatees. The results suggest two possible chain functions: f1(g1

4 , g
1
3 , g

1
2 , g

1
1) =

f1(galactose, gal3, gal80, gal4) or f1(g1
4 , g

1
3 , g

1
2 , g

1
1) = f1(galactose, gal80, gal3, gal4),

both with control pattern 0110. The missing experiment is a comparison of gal80 and
gal3. A correct result of this experiment will lead to full and unique reconstruction
of the chain function.

6. Concluding remarks. In this paper we studied the computational problems
arising when wishing to reconstruct regulation relations using a minimum number
of experiments, assuming that the experiments’ results are noiseless. We restricted
attention to common biological relations, called chain functions, and exploited their
special structure in the reconstruction. We also suggested an extension of that model,
which combines several chain functions, and studied some of the same reconstruction
questions for the extended model. On the practical side, we have shown an application
of our reconstruction scheme for inferring the regulation of galactose utilization in
yeast.

The task of designing optimal experimental settings is fundamental in meeting
the great challenge of regulatory network reconstruction. While this task entails
coping with complex interacting regulation functions and noisy biological data, we
chose here to focus on the reconstruction of a single regulation relation of a single
regulatee and assume that the function can be studied in isolation. Hence, upon
any perturbation, none of the other regulators change their states. Another major

2In fact, the gal80Δgal4Δ-gal experiment was of order 3 but allowed the comparison of gal80
and gal4.
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Fig. 2. Galactose pathway regulation. (A) The 2-chain function regulating gal1, gal7, and
gal10 transcription. (B) Typing and comparison experiments performed by Ideker et al. [14].

assumption is that the wild-type state of all regulators (except possibly gn) is 1. This
assumption, which is necessary for the analysis (e.g., Lemma 3) is commonly held in
undelayed biological systems, where all the regulators exist in a certain basal level
and the signal can propagate fast (e.g., MAPK systems in unicellular organisms such
as yeast and multicellular organisms including humans, reviewed in [17]). Regulations
that involve production of absent regulators are typically (slow) temporal processes.
Our analysis should be extended in order to deal with such complex regulations and
temporal processes.

This analysis focuses on theoretical complexity of regulation reconstruction, as-
suming perturbation experiments that measure (accurately) only gene states. It is
clear, however, that other experimental techniques (e.g., interaction measurements [7,
20]) might help to constrain the reconstruction and reduce the solution space. In a
practical approach, diverse data sources should be incorporated, and the experiments
should be designed dynamically and take into consideration the experimental noise.
The theoretical analysis here could hopefully serve as a component in such a practical
experimental design.
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