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Introduction

The integration of different types of networks over the same set of elements enables the identification of
motifs/modules supported by several data types, studying inter-relations between different networks and
predicting protein function and interaction. Network motifs are characteristic network patterns consisting
of both transcription-regulation and protein-protein interactions that recur significantly more often than in
random networks. Large-scale studies have revealed networks of various biological interaction types, such
as protein-protein interaction, genetic interaction and transcriptional regulation. A system-level understand-
ing can be achieved by providing models of both the molecular assemblies involved and of the functional
connections between them.

1 Network Motifs

Network motifs are patterns of interconnections occurring in real networks at numbers that are significantly
higher than those in randomized networks [2]. Network motifs help to uncover the structural design princi-
ples of networks, and in studying the relations and functions of genes and the proteins they encode.

Various processes within the cell are mediated by protein-protein interactions (PPIs) and transcriptional
interactions (TIs). Those interactions are modeled as interaction networks, and there are more than a dozen
methods to detect them. As a result, at present there is a number of different interaction networks available
for each sequenced organism. However, the networks generated by different methods are often not super-
posable in any obvious way. Moreover, analyzing transcriptional networks and PPIs networks separately
hides the full complexity of cellular processes, because many of them involve combination of these two
types of interactions. Integrating these different networks in order to arrive at a statistical summary of which
proteins work together within a single organism can help detect linkages that would have been missed if
only one kind of interaction was studied. It can also help strengthen the confidence of known linkages.

Searching for network motifs in an integrated network requires expanding the basic definition of network
motifs to patterns that consist of two (or more) interaction types.

1.1 Transcriptional-PPI Networks

The work of Yeger et al.[10] analyzes motifs in an integrated transcriptional and protein-protein interactions
network in yeast. The resulting network is described as a graph; each node represents both a protein and the
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gene that encodes it. A PPI is represented by a bidirected edge connecting the interacting proteins and is
colored in black; a TI represented by a directed edge pointing from the transcription factor to its target gene
and is colored in red (see Figure 1).

Figure 1: An example of an integrated PPI-TI network.

A motif is identified as pattern that occurs at least five times, and statistically significantly more than
in randomized networks. In order to generate randomized networks the approach of Shen-Orr et al. [6]
involving one type of connection was extended. To this end the following terms were defined:

1. Extended degree of a node - the number of edges per edge type that point to or from a node. Two
nodes have the same extended degree if they have the same number of ingoing and outgoing edges for
each edge type. This reflects the local connectivity of a node.

2. Edge profile of two nodes - the set of edges connecting the two nodes, each edge is described by its
type and direction. This provides a local measure of the relation between two nodes.

The randomization is done in a way that the extended in-degree and out-degree, and the edge profile of
every two nodes are preserved, as demonstrated in Figure 2.

Figure 2: Network randomization. Right: Before randomization. Left: After randomization. If edge profile
(s1, t1) = edge profile (s2, t2) and edge profile (s1,t2) = edge profile (s2, t1), then edges can be switched
as exemplified. For clarity, each edge color represents a type of edge profile. Note that if (s1, t1; s2, t2) are
switchable, then so are (s1, t2; s2, t1), (t1, s1; t2, s2), and (t2, s1; t1, s2). Switchability is considered only
for cases in which all four nodes are distinct and at least one edge profile is not empty.

Using the randomization technique described above, the resulting random network will preserve all two-
nodes motifs. Therefore, for detecting such motifs, randomization is applied separately to each network,
and then the two networks are merged. To overcome the noise of experimental interaction data collected
via high-throughput methods, a stringent data set containing 3,183 interactions between 1,863 proteins was
generated: PPIs were included if detected by at least two different experimental studies (different yeast two-
hybrid methods were considered as different studies). TIs were included if detected by methods other than
genome-wide experiments. The resulting network was denoted as the stringent network. The robustness
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of the results was confirmed by performing the same analysis on a network containing all 12,413 experi-
mentally identified interactions between 4,651 proteins (the non-stringent network). There are five possible
two-protein connected patterns (Fig. 3). The statistical significance of the five patterns was assessed by
comparing the number of their occurrences in the interaction network to that expected at random. Only one
of the patterns, the mixed-feedback loop comprising one PPI edge and one TI edge was found significant.
In this motif, protein P regulates gene g at the transcription level, and the product of gene g interacts with P
at the protein level.

Figure 3: All possible interaction patterns between two connected proteins. D - feedback loop is the only
two-nodes motif found.

There are 13 possible three-protein connected patterns with a single type of directed interaction, where
only five of them were represented on the network. For two types of interactions, such as TI and PPI, the
number of possible patterns rises to 100. Of the 100 possible three-protein connected patterns, 29 different
patterns occurred in the stringent network. Only five of these occurred significantly more often than expected
in random networks (P-value < 0.001) and thus constitute three-nodes motifs. These five patterns were also
found to be significantly over-represented in the non-stringent network (Figure 4).

Figure 4: Significant three-nodes motifs

Conclusions

At the level of two-protein patterns, the mixed-feedback loop with one PPI edge and one TI edge (as shown
in Fig 3D)was found to be highly significant motif as an oppose to feedback loop with two TI edges (Fig
3C) that was as common as in randomized network. This might be a result of the response time - each
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transcriptional edge causes a delay of approximately one life time of the protein product. At the three-protein
level the clique configuration that represent three PPIs was the most common; it represents complexes of
interacting proteins that work together as a multi-component machine. When looking for a four-protein
motifs, almost all of them contained one or more of the three-protein motif with a dangling forth node or as
a combination of two or more three-protein motifs. This would have been resolved by factoring out motifs
of smaller sizes, however, the randomization technique only factors out two-nodes motifs, hence the results
may be too optimistic. Multiple testing issue was not treated at all, as the fact that there are 100 possible
three-gene connected patterns should be considered when setting the P-value threshold.

1.2 Motifs and Themes

The work of Zhang et al.[11] integrated 5 types of yeast networks in order to search network motifs and
themes. Nodes in the network represent genes or proteins, and differently colored links represent different
biological interaction types. The following networks have been integrated:

1. P - Stable protein interactions defined by shared membership in a protein complex.

2. S - Synthetic sick or lethal (SSL) interactions derived from synthetic genetic array (SGA) analysis.

3. H - Protein sequence homology relationships from a genome-wide BLAST search.

4. R - Transcriptional regulatory interactions from a genome-wide chromatin immuno-precipitation (ChIP)
study.

5. X - Correlated mRNA expression relationships derived from microarray data.

This collection of data resulted in a single integrated network involving 5,831 nodes and 154,759 links.

Network themes are classes of higher-order recurring interconnection patterns that encompass multiple
occurrences of network motifs [11]. Network themes can be tied to specific biological phenomena and may
represent more fundamental network design principles. Examples of network themes include a pair of pro-
tein complexes with many inter-complex genetic interactions which represent the ’compensatory complexes’
theme. Thematic maps are networks rendered in terms of such themes which can simplify an otherwise con-
fusing tangle of biological relationships.

Zhang et al. searched for 3-motifs defined by a single type of link between each pair of nodes. After
the 3-motifs were found the theme that was generated in the integrated network by each motif was observed
(Figure 5). Most motifs can be explained in terms of higher-order structures, or network themes, which
are representative of the underlying biological phenomena. These motifs were classified into seven sets, as
shown in Figure 5a-g.

The first motif set contains the transcriptional feed-forward motif (Figure 5a). Because transcriptional
regulation links often overlap co-expression links, another motif composed of two genes with correlated
expression that are also indirectly connected by transcriptional regulatory links through an intermediate gene
was added to this set. Most gene triads matching the feed-forward motif belong to such clusters, implying a
’feed-forward’ theme - a pair of transcription factors, one regulating the other, and both regulating a common
set of target genes that are often involved in the same biological process.

The next set contains ’co-pointing’ motifs, in which a target gene is regulated by two transcription
factors that interact physically or share sequence homology. These co-pointing motifs reflect the fact that
two transcription factors regulating the same target gene are often derived from the same ancestral gene,
or function as a protein complex. The authors found that these motifs also overlap extensively, forming a
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co-pointing theme, in which multiple transcription factors, connected to one another by physical interaction
or sequence homology, regulate a common set of target genes (Figure 5b).

A third set of motifs contains two targets of the same transcription factor bridged by a link of correlated
expression, protein-protein interaction, or sequence homology. These motifs indicate that transcriptional
co-regulation is often accompanied by co-expression, membership in the same protein complex, or descent
from a common ancestor, and suggest a ’regulonic complex’ theme in which co-regulated proteins are often
components of a complex or related by gene duplication and divergence (Figure 5c).

The fourth motif set consists of four three-node motifs each containing protein-protein interactions or
correlated expression links. Protein-protein interaction is known to correlate positively with co-expression,
and proteins corresponding to these motifs often reside in the same complex. Thus, motifs within this set
are likely to be signatures of a ’protein complex’ theme (Figure 5d).

The fifth motif set contains three-node motifs linked by SSL interaction or by sequence homology. In the
SSL network, neighbors of the same gene often interact with one another. This translates into a triangle motif
of three SSL links. Furthermore, homology relationships are often transitive (that is, if gene A is homologous
to gene B, and gene B is homologous to gene C, then gene A is often homologous to gene C). These
phenomena, combined with the fact that genes sharing sequence homology have an increased tendency
to show SSL interaction, suggest an underlying theme of the neighborhood clustering in the integrated
SSL/homology network: SSL or homology neighbors of one node tend to be linked to one another by SSL
interaction or sequence homology (Figure 5e).

The sixth motif set describes network motifs containing two nodes linked either by SSL interaction or
by sequence homology, with a third node connected to each of them through protein-protein interaction
or through correlated expression. This can be generalized to a network theme of a protein complex with
partially redundant or compensatory members (Figure 5f).

The seventh motif set that was found was particularly interesting. Motifs in this set contain two nodes
linked by protein-protein interaction or correlated expression, with a third node connected to both either by
SSL interaction or by sequence homology. Considering previously observed correlations between protein-
protein interaction and co-expression and between SSL interaction and sequence homology, these motifs
indicate that members of a given protein complex or biological process often have common synthetic genetic
interaction partners (Figure 5g).

Thematic Maps

Themes were generated by collapsing protein complexes into nodes (see Figure 6). Between-pathway and
co-regulated complex themes were tested and found to be prevalent.

In order to identify additional pairs of protein complexes with overlapping or compensatory function, a
map of the network in terms of the ’compensatory complexes’ theme was made. This map can also serve as
a guide to ’redundant systems’ within the integrated network, wherein two complexes provide the organism
with robustness with respect to random mutation when each complex acts as a ’failsafe mechanism’ for the
other. To generate a thematic map of compensatory complexes, pairs of protein complexes with many inter-
complex SSL interactions were searched. For each pair of protein complexes, the number of links between
them was assessed and the significance of enrichment was calculated . Among the 72 complexes examined,
21 pairs of complexes showed significant enrichment (p ≤ 0.05) for inter-complex SSL interactions.

All possible pairings of a transcription factor with a particular protein complex (together, a ’TF-complex
pair’) were examined. The integrated network of stable protein-protein interactions and transcriptional in-
teractions was reduced to one in which nodes are either transcription factors or complexes and links indicate
transcriptional regulation (with multiple links allowed between a pair of nodes). For each TF-complex pair,
the number of links between them was calculated, and the significance (the probability of obtaining at least
the observed number of links if each transcription factor would choose its regulatory targets randomly) was
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Figure 5: three-Motifs and examples of the themes they generate. (a) Feed forward (b) Co-regulating (c)
Co-regulated complex (d) Protein Complex (e) Clustering (f) Complex with redundant or compensatory
members (g) Between-pathway GIs .
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assessed. A total of 91 TF-complex pairs showed significant enrichment (p ≤ 0.05) for transcriptional regu-
lation links. These significant TF-complexes relationships can also be viewed as a network whose nodes are
transcription factors or complexes and whose links represent TF-complex pairs with significantly enriched
transcription regulation (see Figure 6a). Many of the links connect transcription factors and protein com-
plexes involved in the same biological process, and complexes of related function are often connected to the
same transcription factor (Figure 6b).

2 Module Finding

A module is a set of proteins performing a distinct biological function in an autonomous manner. The
genes in a module are characterized by coherent biological behavior with respect to the data at hand. Data
integration allows overcoming noise and incomplete information problems and provides more complete
information on the module activity and regulation. There are two common techniques for data integration:
(1) Identical modeling of all data types, e.g., searching for a set of proteins that are dense with respect to
interactions within the complex itself. (2) Different models for different data types. The latter is illustrated
by the work of Kelley and Ideker [4]. They demonstrate that by combining genetic interaction data with
information on physical interactions, it is possible to uncover physical mechanisms behind many of the
observed genetic effects.

In the work of Tan et al. [7] PPI and TI data were integrated in a single model which simultaneously
detects protein complexes and their transcriptional regulators. Their approach is based on integrating the
protein protein and transcriptional interaction networks of a species, and searching for sets of proteins that
densely interact in the PPI network and whose gene promoters are targeted by the same transcriptional
factors in the TI network. Such protein sets are termed as coregulated protein clusters. A log likelihood
ratio score was defined and a search for protein clusters was done using a greedy approach that starts from
high scoring seeds and refine them by using local search. The resulting score would be compared to that of
random clusters.

At first, 72 significant co-regulated protein clusters were identified, as shown in Figure 7 and in Figure 8.
This results a bipartite graph, that has transcription factor on one side and protein cluster members on the
other. Comparison of co-regulated clusters that were tested for functional enrichment, expression coherency
and conservation coherency of their members.

The result was compared to that of a collection of 452 protein clusters inferred by using the PPIs data
only, ignoring the TI data. They also included in the comparison two collections of complexes derived
by co-IP experiments. They found that the coregulated clusters exhibited substantially higher expression
coherency and conservation coherency levels than the experimentally derived complexes and the baseline
clusters. Furthermore, 100% of the clusters were functionally enriched, slightly higher than the baseline
clusters (99%) and markedly higher than the experimentally derived complexes .

Comparing these results with previous work, it is clear that an integrated search of the PPIs and TIs
networks finds significant signal in the data, whereas a fixed search of TI interactions versus PPIs complexes
yields a much weaker association. Only 9 of the 78 PPIs complexes were found to have a significant
association to a transcription factor. Of the 72 coregulated clusters that were identified, 50 (69%) had no
overlap with any of these 9 PPIs complexes, emphasizing the usefulness of this approach in identifying
previously uncharacterized regulated complexes.(see Figure 9).

2.1 Interactions Prediction

A coregulated protein cluster, which involves direct transcriptional regulation of some cluster members by
a specific TF (or more than one), supports the prediction that the same TF directly regulates other members
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Figure 6: A thematic map of regulonic complexes. (a) Blue nodes represent transcription factors, red nodes
represent protein complexes, and a link is drawn between a transcription factor and a protein complex if the
promoters of a significantly large number of complex members are bound by the transcription factor. (b) An
enlarged region of the regulonic complex map in (a). Links between transcription factors and the complexes
they regulate are labeled with the numbers of supporting interactions in the transcription regulation network.
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Figure 7: A typical coregulated cluster and its scoring scheme.Orangeovals, protein cluster members;blue
octagons, TFs;orange lines, PPI; blue arrows, TI.
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Figure 8: Representative examples of coregulated protein clusters. Shown are enriched Gene Ontology (GO)
biological processes (P < 0.05) of clusters: cell cycle (a); budding (b); cytoplasmic transport (c); cell shape
and size regulation (d); mitochondrial membrane transport (e); histone deacetylation (f).

Figure 9: Validation of yeast clusters by functional enrichment, expression coherency, and conservation
coherency of their members
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of the cluster. To prioritize these predictions, the extent to which the predicted TF targets had correlated
expression and phylogenetic conservation with the respective TF was assessed, as well as the presence
of known TF-binding sites in their promoters. All the measures were combined within a logistic regression
classifier to assign a quantitative confidence score to each potential transcriptional interaction. This classifier
attained high sensitivity (82%) and specificity (91%) levels in 10-fold cross validation (Figure 10). Overall,
combining the classifier scores with the coregulated cluster information, 120 previously uncharacterized
transcriptional interactions involving 23 TFs and 99 protein cluster members were predicted. To evaluate
the accuracy of these predictions, 12 predicted transcriptional interactions for the TF Rpn4 were tested
experimentally. Previous studies have established that Rpn4 could be activated by multiple types of cellular
stresses, including heat shock. The expression profiles of wild type and rpn4 gene deletion strains under
heat-shock-induced stress were compared. Seven (RPN5, RPN12, CCT8, PRE5, RPT5, PRE10, PRE2) of
the 12 newly predicted Rpn4 targets exhibited differential expression (P < 0.05 ). This fraction (58%) was
significant when compared with the fraction of differentially expressed genes overall (11%); it was also
much higher than the one attained when predictions were made by the classifier alone (19%) (see Figure 11
and Figure 12).

Figure 10: Transcriptional interaction prediction in yeast. Receiver operating characteristics curve of the
logistic regression classifier. AUC, area under the curve; Sn, sensitivity; Sp, specificity.

2.2 Caenorhabditis Elagans Development

This section describes a work that identifies the cellular machines involved in the development process of
worm [3]. It focuses on 661 genes implicated in early embryogenesis (EE genes) and using phenotype
data: 45-long vectors of defects caused by silencing (RNAi). Integration is done over protein-protein, co-
expression, and phenotype similarity interactions.
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Figure 11: Fraction of differentially expressed genes in various gene sets. Green, genes bound by Rpn4 .
Orange - genes in cluster models but not bound by Rpn4.
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Figure 12: An example of a predicted cluster regulated by Rpn4. Orange arrows, known Rpn4 TIs. Purple -
newly predicted Rpn4 TIs. Shades of red represent P values (≤ 0.05) for differential gene expression.
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Phenotype Clustering

To group genes by phenotypic similarity hierarchical clustering was preformed, and the genes were orga-
nized into 23 phenotype clusters (PC) (Figure 13). It was shown that clusters tend to be significantly en-
riched for specific gene functions. These results suggest that phenotypes derived from RNAi data represents
a reasonable way to compare genes quantitatively.

Figure 13: Phenotype hierarchial clustering. Observation shows that phenotype correlation implies GO
enrichment in a cluster. On the left - the resulting gene expression of 661 genes under different conditions.
The same intensity of red mark implies on similar expression level.

Data Correlations

EE genes were found to be significantly PPI connected (Figure 14). There are 513 interactions compare with
about 120 in random. Genes within the same phenotype cluster were found to be significantly PPI connected
as well. Phenotypic and expression similarity are correlated, particularly for interacting pairs, both increase
with network proximity.

Global correlations between transcriptome profiling and interactome data sets have been used to derive
network graphs that combine similarity relationships from transcription profiling with physical interactions
between proteins. Suggestive correlations between interactome or transcriptome data and phenotypic data
sets support the notion that these three types of data might complement one another in predicting functional
relationships.

• Figure 15 shows that genes within the same phenotype cluster are significantly PPI connected.

• Figure 16 shows that proportion of PPI rises with phenotype and expression correlation.
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Figure 14: EE network VS. Random network. (a) EE Network 513 edges cc=0.53 (b) Random Network
120±20 edges cc=0.05.

• Figure 17 show that phenotypic and expression similarity are correlated, particularly for interacting
pairs. The average correlation is decreasing significantly after a network distance of 2.

Figure 15: Data Correlation. (a) The early embryogenesis interactome subnetwork is enriched for interac-
tions within the same phenocluster (A-A and A-x-A) relative to interactions between phenoclusters (A-B
and A-x-B) (b) Interacting proteins (WI7), random early embryogenesis (EE) pairs, intra-phenocluster early
embryogenesis pairs (PC), pairs of interacting early embryogenesis proteins (WI7 EE) and interacting early
embryogenesis proteins from common phenoclusters (WI7 PC) all show higher expression correlation than
random pairs.

Integrated Network

The integrated early embryogenesis network-joining all 661 early embryogenesis proteins by the union of
all three types of relationship (See Figure 18) contains a main component with 31,173 edges characterized
by an average of 0.9, 5.0 and 44 edges per node for protein interaction (Int), expression similarity (Tr) and
phenotypic similarity (Ph), respectively. In this network, the number of protein pairs with doubly supported
edges is significantly higher than expected by chance (P = 10−34, 10−61 and 10−109 for Int-Tr, Ph-Tr and
Int-Ph associations, respectively).
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Figure 16: The proportion of physical interactions increases with phenotypic(a) and expression correla-
tion(b)

Figure 17: (a) Early embryogenesis genes with similar expression profiles are more likely to share similar
RNAi phenotypes. All early embryogenesis gene pairs (open bars) and interacting early embryogenesis pro-
teins (filled bars) were binned by expression correlation and plotted against average phenotypic correlation.
(b) Phenotype and expression correlation increase with interactome proximity. Average phenotype (black)
and expression (grey) correlation decrease for early embryogenesis protein pairs as their distance (shortest
path) increases.
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Figure 18: Entire early embryogenesis network graph. A Venn diagram (inset) shows the color system for
labeling edges based on available evidence: phenotypic profiling similarity (Ph; green), expression profiling
similarity (Tr; red), physical interaction (Int; blue) and overlapping combinations of data types (intersecting
regions)

Function Sharing

Functional analysis of early embryonic networks was used to generate predictive models. To assess the
predictive value of the early embryogenesis network on a global scale, they analyzed the individual and
combined networks for their ability to predict a specific shared function between two linked gene pairs us-
ing GO annotations. The table below is an analysis of shared GO functional annotations within EE networks,
considering only gene pairs for which both members have some GO annotation, where: TSN and MSN re-
spectively refer to triply-supported and multiply-supported-networks. USN refers to the union of supported
networks. Int, Tr, Ph refer to the Interactome, Transcriptome and Phenome networks respectively. Accuracy
is the fraction of pairs gene linked in the network of interest, that is, gene pairs that share a specific GO
term. Sensitivity is the fraction of gene pairs that share a specific GO term, which are linked in the network
of interest.

# of same function linked pairs # linked pairs accuracy(%) sensitivity(%) P-value
TSN 34 37 92 0.24 5e-37
MSN 595 680 88 4.1 <1e-300
USN 3945 11819 33 27 <1e-300
Int 272 353 78 1.9 7e-249
Tr 800 1382 58 5.6 <1e-300
Ph 3499 10801 32 24 <1e-300

Multiply-Supported Network

A portion of this integrated early embryogenesis network containing only links with two or more types of
functional support was examined (Figure 19). In contrast to the full network, the topology of MSN con-
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tains about half (305) of the early embryogenesis proteins-reveals distinct groups of highly interconnected
genes/proteins and few or no links between the groups. Clusters were found using the greedy method of [1].

Figure 19: MSN containing 305 nodes joined by 1,036 edges, each supported by two or three types of
functional evidence. Predicted molecular machines are encircled. Nodes are color-coded by function.

Results

Two types of highly interconnected regions were identified:

1. Modules containing a high density of links supported by both protein interactions and phenotypic
correlations. These modules represent known molecular complexes that constitute discrete molecular
machines within the cell. Virtually all of the edges in the graph that are supported by all three types
of evidence (TSN) (41 out of 43 edges between 50 nodes) fall into such complexes. Proteins within
such complexes function together as one physical unit, and depletion of any single member is likely
to result in a very similar phenotypic profile.

2. Modules dominated by edges supported by both phenotypic and expression correlations, containing
few physical interactions. These modules harbor genes that participate in distinct yet functionally in-
terdependent cellular processes. Examples include messenger mRNA vs. protein metabolism. Within
these models smaller molecular machines were found, supported by physical interactions and phe-
notypic similarity. Because current interactome maps have sampled only a small fraction of true
interactions, such coordinated process modules may serve to predict undiscovered protein interac-
tions. Alternatively, these modules may represent a qualitatively different type of functional unit, in
which the phenotypic and expression profiling links reflect functional interdependencies dictated by
the logical structure of the network, while the few protein interactions represent the physical path of
information flow.

18



3 Pathway reconstruction

In this section we will describe two studies [9] [8] that aim at explaining knockout experiments.

3.1 Regulatory Pathway Reconstruction

In order to estimate which genes and proteins are regulated by a certain gene, the knockout method can
be used. In this method the gene is inactivated. As a result, one can assess the differences in expression
levels of other genes. For example, if a certain gene or protein was down- regulated by the knockout gene,
its expression levels in the knockout sample should be higher than the one in the wild type sample, and
vice-versa.The method presented in the works, tries to find the way in which a gene knockout affects other
genes. The method looks at several knockouts and tries to explain the affects on genes along the path such
that the path effects remain consistent to all knockouts. (Figure 20)

Figure 20: Effects of knockout of genes. The orange arrows show regulations and the blue arrows shows
activation. If one of the regulators is inactivated it will cause the regulated gene to change its expression
level.

3.2 Simplifying assumptions

Due to the high complexity of the regulatory system some simplifying assumptions need to be taken:

1. The effect is mediated by a linear PPI/TI pathway that is directed from the knockout to the affected
gene and ends with a transcriptional edge. The pathway is assumed to have bounded length is neces-
sary for computational reasons.

2. The effect propagates through the pathway (no combinatorial regulation involved).

3. Each edge has a sign: activation/repression. These should be consistent with the knockout effect
(aggregate of signs should be opposite to the knockout effect). The sign is not known and our goal is
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to assign each edge with a sign. We would like to find paths that are consistent with the assignments of
signs to the edges. Note that there may be more than one way of assigning signs to edges (Figure 21)

4. Knockouts do not affect regulatory circuitry (the interaction data comes from wild-type conditions).

5. Assume physical interactions (PPI & TI) and effects are known (otherwise their noisy observations
has to be modeled). This assumption should be dismissed when dealing with the same problem in
research.

Figure 21: An example of different ways of explaining the same knockout effect from swi4 to msn4.

3.3 Probabilistic model

A probabilistic model is used to model the effect of knockout i on gene j via a product of potential functions.
Let πi,jbe the set of paths from i to j that end with a transcriptional edge and obey the length constraint. For
path a in πi,jdefine a potential function

ψi,j,a(Sa, Da, ki,j , σi,j,a) = ε1 + (1− ε1) · I(σi,j,a = 1) · I(
∏

e∈Ea
se = −ki,j) ·

∏
e∈Ea

I(de = d̄e)

where,

• ε1- allow other causes for explanation, like inaccuracy in our models

• I(σi,j,a = 1)- path a explains the effect

• I(
∏

e∈Ea
se = −ki,j)- signs on the path are consistent with effect

• I(de = d̄e) - directions are consistent with the path

The probability function is a normalized product of the potential functions.
Forcing at least one explanatory path implies:
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ψ
OR
i, j

(σi,j,1...σi,j,|
Q

i,j |)= ε+ (1− ε) · (1−
∏

a I(σi,j,a = 0))

The complete potential function for (i,j) effect is:

ψi,j(Si,j , Di,j ,Σi,j , ki,j) = ψ
OR
i, j

(σi,j,1...σi,j,|
Q

i,j |) ·
∏

a ψi,j,a(Sa, Da, ki,j , σi,j,a)

3.4 Experimental Validation

Mating response pathways were analyzed. For 149 effects, under 13 deletion experiments, 106 were con-
nected via candidate paths in the network, all of which were explained by the model. In order to validate the
results, cross validation was used.

Cross-validation is the statistical practice of partitioning a sample of data into subsets such that the
analysis is initially performed on a single subset, while the other subsets are retained for subsequent use in
confirming and validating the initial analysis. The initial subset of data is called the training set; the other
subsets are called validation or testing sets. Holdout validation is not cross-validation in common sense,
because the data never are crossed over. Observations are chosen randomly from the initial sample to form
the validation data, and the remaining observations are retained as the training data. Normally, less than a
third of the initial sample is used for validation data. In this case, assuming a path with assigned signs, when
trying to knockout a gene in the middle of the path, it confirms the effect as predicted. The following table
shows the error rate as for different held-outs:

#hold-outs #trials %error
1 106 2.83%
5 200 3.5%
20 200 5.9%

The authors also provided a sensitivity analysis to exclude the possibility that the results may have been
artifacts of a particular setting of the model parameters/thresholds. They considered the following adjustable
parameters: the maximum length of candidate paths, thresholds on p-values of selecting candidate protein-
DNA and knock-out pairs, and the error probabilities used as soft constraints in the potential functions.
Figure 22 examines the sensitivity of the model for various thresholds.

3.5 Genome-wide Application

The method was tested globally on genome-wide including data of yeast, 5500 TIs, 15000 PPIs and 273
deletion profiles. Regulatory effects were uniquely determined for a small fraction of the participating
interactions: 194/771 (part of it can be seen in Figure 23).

After applying the method there are still about 500 cases that cannot be uniquely explained well enough.
An attempt was done to use the method to decide what kind of experiments should be done. Next the data
was fragmented and 37 distinct regions remained ambiguous. 20 of these regions correspond to known
pathways or are functionally enriched. Figure 18 shows one region of the 37 where the paths remained am-
biguous. The goal is to design new experiments that will resolve maximum number of ambiguities in order
to model the network. Achieving this goal will allow to solve the ambiguities in minimum number of exper-
iments. The design used the following method: Rank deletion experiments by their expected information
gain. The expected information was calculated using

I(M ;Y e) = H(M)−H(M |Y e) = H(M) + Σm,yP (M = m,Y e = y) log2 P (M = m|Y e = y)
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Figure 22: The accuracy as a function of different thresholds.

Figure 23: Fraction of the network where the regulatory effects were uniquely determined.
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where M is set of possible model configurations, and Y e is the predicted effects for experiment e.
The four top-scoring experiments were performed (deletions for sok2, yap6, hap4, msn4). As a result

from these experiments 60 TIs were disambiguated.

4 Network dynamics

All the works that were described in previous chapters considered a static model of a network, examining
all the connections in those networks. A question that needs to be asked is what if the connections in the
network are related to different conditions? The work of [5] considers a dynamic network model in which
the connections depend on the condition the system is currently in.

4.1 Condition-Specific Networks

Physical network provides a static picture. However, not all interactions are active in a given condition/time
point. Dynamic information can be obtained by combining condition-specific data such as gene expression.
Here TIs are combined with gene expression profiles in five conditions: cell cycle, sporulation, diauxic
shift, DNA damage and stress response. Figure 24 shows the static network. Figure 25 shows the activation
of genes under different conditions. Half of targets are uniquely expressed in one condition. Half of the
interactions change between conditions (between every two situations). 66 interactions are active over ≥ 4
conditions, mainly regulating house-keeping genes, that are necessary for the cell.

Figure 24: Graphs of the static and condition-specific networks. Transcription factors and target genes are
shown as nodes in the upper and lower sections of each graph respectively, and regulatory interactions are
drawn as edges; they are colored by the number of conditions in which they are active. Different conditions
use distinct sections of the network.

4.2 Trace back Algorithm

In order to decide if a gene is active under a certain condition the trace back algorithm was used. It is
a naive algorithm which determines when a gene is active. The algorithm works as follows: It identifies
transcription factors as being ’present’ in a condition if they have sufficiently high expression levels. It
then marks as ’active’ the regulatory links between present transcription factors and differentially expressed
genes; finally it searches for any other present transcription factors that are linked to a transcription factor
with an already active link and makes this connection active. The last step is repeated until no more links
become active.
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Figure 25: The network in different stages. Again, transcription factors and target genes are shown as nodes
in the upper and lower sections of each graph respectively, and regulatory interactions are drawn as edges.

4.3 Endogenous vs. Exogenous Systems

The conditions that the network was examined under could be categorized into two groups with different
biological traits: endogenous and exogenous. This allows to rationalize the different sub network structures
discovered in terms of the biological requirements of each condition.

• Endogenous Networks are multi-stage processes, operating with an internal transcription program.
These are coordinated processes with long paths (intermediate phases), high clustering (inter-regulation
between TFs) and large in-degree (complex multiple-TF regulation).

• Exogenous Networks constitute binary events that react to external stimuli with a rapid turnover of
expressed genes. The rapid response are along short paths (faster signal propagation) and large out-
degrees (each TF regulates many genes).

Figure 26 shows the info that was hidden in static networks and could be found only when looking an
the dynamic network. The shadowed values in purple represent significant values.

4.4 Permanent vs. Transient Hubs

In response to diverse stimuli, transcription factors alter their interactions to varying degrees, thereby
rewiring the network. A few transcription factors serve as permanent hubs, whereas most act transiently
only during certain conditions [5]. Hubs are of general interest as they represent the most influential com-
ponents of a network and, accordingly, tend to be essential. They are thought to target a broad spectrum of
gene functions and are commonly located upstream in the network to expand their influence via secondary
transcription factors. These observations suggest that hubs would be invariant features of the network across
conditions, and this expectation is supported by the random simulations that converge on similar sets of
transcription factor hubs.

When checking the hubs under different conditions it was found that 78% of the hubs were influential
in only one condition. That means that most of the hubs in the network are condition specific (as can
be seen in Figure 27). Exogenous conditions have fewer hubs, suggesting a more centralized command
structure. About half of the transient hubs are known to be important for their respective conditions. For the
remainder with sparse annotations, their transient-hub status in a particular condition considerably augments
their functional annotation. The defining feature of transient hubs is their capacity to change interactions
between conditions.
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Figure 26: Network statistics across different conditions. Standard statistics (global topological measures
and local network motifs) describing network structures. These vary between endogenous and exogenous
conditions; those that are high compared with other conditions are shaded. (Note, the graph for the static
state displays only sections that are active in at least one condition, but the table provides statistics for the
entire network including inactive regions.)

Figure 27: Hubs active in different situations.
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4.5 Phase-specific TFs

The article [5] also tries to observe the dynamics within a process, that is, to see how the gene corresponds
to different phases in the same process. The motivation of examining this comes because some of the
conditions change across time (like the cell cycle). Testing the different phases of the cell cycle will allow
better understanding of them. When looking at the cell cycle it is apparent that most of the TFs are phase
specific (as can be seen in Figure 28). The TFs regulate each other in a serial manner, where every TF
regulates the TFs in the next phase.

4.6 Interaction Interchange

Figure 29 shows that most hubs change 10-90% of their interactions between conditions. The authors of
the article described above attempted to quantify this rewiring more broadly for every transcription factor in
the network with the interchange index, I. This is defined so that higher values associate with transcription
factors replacing a larger fraction of their interactions. At one extreme (I ≤ 10%), 12 transcription factors
retain all interactions across multiple states. At the other end (I ≥ 90%), 27 transcription factors replace all
interactions in switching conditions. Many of these are so extreme that they only regulate genes in a single
condition and are inactive otherwise. Most transcription factors interchange only part of their interactions
(10% < I < 90%). This group comprises most of the hubs; surprisingly, permanent hubs interchange
interactions as often as transient ones, but over a larger number of conditions. Furthermore, transcription
factors in this group often regulate genes of distinct functions in different conditions, thus shifting regulatory
roles.

Figure 28: Interaction interchange (I)of transcription factors between conditions. A histogram of I for all
active transcription factors shows a uni-modal distribution with two extremes. Pie charts show five example
transcription factors with different proportions of interchanged interactions. The main functions of the
distinct target genes regulated by each example transcription factor were listed. Note how the transcription
factors regulatory functions change between conditions.
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Figure 29: Transcription factor inter-regulation during the cell cycle time-course. a, The 70 transcription
factors active in the cell cycle. The diagram shades each cell by the normalized number of genes targeted
by each transcription factor in a phase. Five clusters represent phase-specific transcription factors and one
cluster is for ubiquitously active transcription factors. Note, both hub and non-hub transcription factors are
included. Transcription factor names are given in the Supplementary Information. b, Serial inter-regulation
between phase-specific transcription factors. Network diagrams show transcription factors that are active
in one phase regulate transcription factors in subsequent phases. In the late phases, transcription factors
apparently regulate those in the next cycle.
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5 Summary

We could see many advantages for integrating networks: Different networks provide different views of
cellular processes and are inter-related. Data integration reinforces functional modules supported by several
data sources. It allows more accurate models of biological processes and their reconstruction, and also
allows elucidation of network dynamics. Finally, it improves predictions of protein function and interaction.
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