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1 Introduction

Until the year of 2000, most scientific efforts in the fields of genomics and proteomics were directed towards
achieving complete sequenced genomes. The recent availability of large-scale genomics and proteomics data
has shifted the focus towards understanding the functionality of genes and the mechanisms of their activity.
Known functional annotations such as the Gene Ontology [5] and genome-wide data such as whole genomes
sequences, gene expression patterns, protein-protein interactions and others may help us to infer functions
of the entire proteomes.

Gene ontology (GO) is a systematic scheme for function assignment. The functional annotations are
hierarchial, organized as a directed acyclic graph from general to more specific terms (Figure 1). GO an-
notations are divided into three categories: cellular component, molecular function and biological process.
The cellular component ontology describes location at the levels of subcellular structures and macromolec-
ular complexes. The molecular functions of a gene product describes the actions of the gene product at
the molecular level or the ”abilities” that it has. A biological process is a recognized series of events or
molecular functions. A higher level of GO is given by the reduced GO-slim annotation.

One way for evaluating a protein function is examining its interactions with other proteins assuming
that proteins involved in similar functions are more likely to interact. It was previously shown [9] that data
of protein-protein interactions has a large predictive value for protein function (Figure 2). In the following
sections we survey methods for inferring the function of proteins based on their physical interactions.

2 Local Methods

2.1 Neighborhood Counting

Neighborhood Counting is a method published by Schwikowski et al [11] which predicts the function of a
protein based on the functions of its neighbors. The annotated functions of all the protein’s neighbors are
ordered in a list, from the most frequent to the least frequent. The first three or fewer functions are stated as
predictors of the function of the protein. This method can be generalized to the k − neighborhood of the
predicted protein (i.e. the proteins of up to k edges from the source) rather than for its immediate neighbors.
This method is simple but has several disadvantages:

1. No significance value is associated with a prediction.
∗Based on a scribe by Inbar Cohen-Gihon and Mira Abraham.
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Figure 1: Source: [14]. Example of a Gene Onthology categorization.

Figure 2: Source: [9]. Predictive power of individual features illustrated by ROC curves. ROC (receiver
operating characteristic) curves graphically represent the performance of a classification method for different
costs. It consists of a set of points, where for each point the vertical coordinate is a true positive rate (TPR)
given by the ratio TP/[TP+FN]. The horizontal coordinate is a false positive rate (FPR) given by the ratio
FP/[FP+TN). MIP and GOF are very strongly correlated, this shows a correlation between function and
interaction.
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Figure 3: Source: [6]. Overview of the local prediction methods. White circles represent proteins and
the black circle represents a query protein for which function is predicted. (A) Physical interaction data
deposited in the public databases. (B) Construction of the protein interaction map by integrating all physical
interaction data. (C) Assignment of function to a query protein. This is done based on the functions of
neighboring proteins on the map.

2. This method gives an equal weight for distant neighbors and immediate ones, while in practice imme-
diate neighbors are more likely to share the same function with the predicted protein.

3. The method ignores the size of functional classes, tending to assign the more general functions to
nodes.

2.2 Chi Square

This method attempts to eliminate the third problem (assigning the more general class) from the neighbor -
counting method, by taking into account the expected appearance of each class (we expect to see the larges
classes more). In this method, suggested by Hishigaki et al [6], the function of each protein in the protein-
protein interaction graph (black circle in figure 3C) is predicted based on the functions of n−neighbors. For
each functional category j, a χ2-like score is calculated as follows. For each node i and it’s neighbors N(i),
define ni(j) as the number of neighboring proteins that have the function j. Let’s define the backround
frequency, i.e. the frequency of j among all proteins as f(j). Also let’s define the expected number of
proteins neighboring i with function j as ei(j) = |N(i)|f(j). We can now calculate Si(j) (the χ2 score):

Si(j) =
(ni(j)− ei(j))2

ei(j)
(1)

The protein of interest is assigned the function with the highest score among the functions of the n-
neighborhood. The method can also be extended to assigning more the one function by taking the k highest
scoring functions.

Next , a self consistency test is performed. This test goal is to find the optimal n value , meaning the best
maximal distance the algorithm should scan nodes for their function. The predicted functions of all proteins
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Figure 4: Source: [6]. Results of self-consistency test: prediction of cellular role. The horizontal axis
represents the distance from a query protein (the n value) and the vertical axis represents the percentage pre-
diction accuracy (data shown in filled diamonds). For reference, prediction results with randomly-assigned
functions conserving the size distribution are also shown (in filled circles).

Figure 5: Source: [6]. Frequency of the number of binding partners and the dependency of prediction
accuracy on that number. The horizontal axis represents the number of binding partners. The bar chart shows
the distribution of the number of binding partners, with the right vertical axis showing their frequency. The
line graphs show the prediction accuracy (%) with the left vertical axis.
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Figure 6: Source: [6]. Size effects of function categories on prediction accuracy.

in the map are compared with their annotated functions for each distance n. In Figure 4, the prediction
accuracy of cellular role (one of the three functional categories used in the Yeast Proteome Database - YPD)
with various n values is shown. The optimal n value is determined by a self-consistency test. Results of
random predictions using the randomized function assignments are also shown for reference. Randomized
function assignments results are the average of 100 trials in which for each protein, the assignment of func-
tion was changed to another, conserving the size distribution of functional categories. The maximum value
was 63.6% with 1-neighboring proteins. Figure 5 shows both the distribution of the number of interaction
partners (the degree of the protein) and the dependence of the prediction accuracy on this number for three
kinds of functional categories. We see that the accuracy function is monotonically increasing only for de-
grees smaller than 7. This can be explained by the relatively small amount of proteins with a degree of at
least 7 leading to non-robust results.

Figure 6 shows the two largest and the two smallest categories from the predictions of cellular role. It
can be seen that this method is not effective for predicting small categories, and although the prediction
accuracy for larger categories is better, and there are 20.1%, 27.6% and 20% prediction accuracy for n=1,
n=2 and n=3, respectively, these values are not particularly high.

Disadvantages of the χ2 method:

1. As in Neighbor-Counting, the method does not take under consideration the topology of the network.
(i.e. a neighbor farther away has the same weight as a closer one).

2. Only one measure for annotation quality was used - the specificity (what part of the assignments we
found were true). However, sensitivity should be taken under consideration as well (i.e. what part of
the true assignments were found).

3. This method is not effective for predicting very small or very large categories: For small categories ,
the chance of a node to have a neighbor is small, and for very large categories, due to the very high
random score, the random graph gets very high scores(close to 80%).

2.3 Application for Reliability Estimation

Trying to estimate the accuracy of function prediction, Deng et al [3] considered two methods: the Neighborhood-
Counting method and the Chi-Square method for the prediction of protein function. Considering the func-
tional annotation based on the cellular role of proteins, they examined 6,416 proteins, among which 3,894
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Figure 7: Source: [3]. Specificity and sensitivity of functional predictions for different protein-protein
interaction data sets using the Neighborhood-Counting (left) and the Chi-Square (right) methods.

proteins have been assigned to one or more functions of 43 cellular roles, and the rest 2,522 proteins are
unknown. They used a leave-one-out method to estimate the accuracy of predictions, and compared the
results of different data sets.

Figures of Merit To test how successful a method is, we divide the results into 4 categories, TP - True
Positives, FP - false Positives, TN - True Negatives and FP - False Positives. These can then be combined
into two sets of measures:

1. precision and recall precision is the fraction of the true-positive predictions out of all the positive
predictions (TP/(TP+FP)). recall is the fraction of the true-positive predictions out of all the true
predictions (TP/(TP+FN)).

2. specificity and sensitivity: sensitivity is the same as recall (TP/(TP+FN)). specificity is the fraction of
the true negatives out of all the negatives (TN/(TN+FP)).

One of the methods used to evaluate methods is the leave one out method. In this method, one known node
is left out, and its function is calculated using all other nodes. The left out node’s real function is then
compared to the calculated function to check the correctness of the method.

In [3] the leave-one-out method was repeated for k known proteins Pi, ..., Pk, where ni is the number
of functions of protein Pi in YPD, mi is the number of predicted functions for protein Pi and ki is the
overlap between known and predicted functions. The results can be seen in figure 7 which shows the
relationship between specificity and sensitivity for the Neighborhood-Counting method and the Chi-Square
method on different protein interaction data sets. One can see that the MIPS protein complex data have
the best performance (high specificity and high sensitivity) both in the Neighborhood-Counting and the
Chi-Square methods. The main advantage of this work is the use of a sensitivity score, where the previous
methods described only the specificity of their predictions.
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3 Global Methods

3.1 Graph Theoretic

3.1.1 Minimizing Inter-class Interactions

Similarly to local methods, global methods are based on the assumption that proteins involved in similar
functions are more likely to interact. However, global methods use different strategies for the prediction
of protein function, some of the works will be described hereinafter. Vazquez et al [13] aim at finding the
assignment of functional classes to proteins which, minimizes the number of protein interactions across
different functional categories. The scoring function is set to be the number of proteins with the same
functional annotation. This score is associated with any given assignment of functions for the whole set of
unclassified proteins. The contribution to the total score of a given functional assignment is computed from
the number of classified and unclassified neighbor proteins with that function. To calculate the energy func-
tion we define fi as function i assigned to protein i and Ji,j is 1 if i and j interact and areboth unclassified,
0 otherwise. hi(fi) is the number of classified partners of protein i with function fi. Where δ(i, j) is the
discrete δ function.
The above parameters are chosen to globally minimize the following energy function:

E = −
∑
ij

Jijδ(fi, fj)−
∑

i

hi(fi) (2)

This energy function is an entropy function , containing the information about a node’s neighbors and the
interaction data between pairs of nodes. By minimizing the energy function , we minimize the functional
difference between interacting nodes. This problem bears similarity to the Min. Multiway k-Cut [2], defined
in the following way: Given a weighted graph and a set of k terminal vertices, find a set of minimal weight
edges whose removal disconnects all terminals from one another. This is a polynomially solvable problem
when k = 2 (max-flow-min-cut) and is NP-hard for k = 3. This problem has a trivial 2-approximation
by the ”isolation” algorithm: for a given terminal si, an isolating cut is any set of edges that cuts all paths
between si and all the other terminals. Finding such cut ( Êi), whose weight is minimal is done by merging
all the terminals other than si into a special vertex s0, and then finding the minimum si − s0 cut in the
resulting graph by a standard max-flow-min-cut.

Let E∗ be the optimal group of edges disconnecting all terminals and let Vi be the set of vertices left
connected to i by E∗. Let E∗

i be the group of edges out of E∗ having exactly one endpoint in Vi (The
importance of E∗

i is that it isolates i). Hence, W(Êi) ≤ W (E∗
i ). On the other hand, each edge in E∗ is

found exactly in two different subsets of E∗ (i.e. in E∗
i and in E∗

j ), thus the sum of weights of E∗
i is exactly

twice the optimal weight: ∑
W (E∗

i ) = 2W (E∗) (3)

Thus:
W(Ê) ≤

∑
W(Êi) ≤

∑
W(E∗

i ) = 2W (E∗) (4)

Vazquez et al [13] used simulated annealing to minimize the energy function. Starting with an initial random
configuration fi, at each step, a random protein is selected and its state is changed from fi to f ′i , where f ′i
is selected at random among the possible states of protein i. The energy difference (the change in energy) is
∆E = E′ − E between the two configurations. If ∆E ≤ 0, the new configuration is accepted. If ∆E > 0,
they accept the new configuration with probability r = exp(−∆E/T ).

This functional prediction method was applied to the analysis of the yeast S. cerevisiae protein-protein
interaction network consisting of 1826 proteins and 2238 interactions. The functional classification was
obtained from the MIPS database containing 424 functional categories.
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Figure 8: Source: [13]. Self-connectivity test. Each point represents the probability that the functional
classification of proteins with k interacting partners. The success rate is reported here for the values of
fn=0.4 and fn=0.7 in the upper and lower curve, respectively. In the inset the fn → 0 is reported, that is,
when only a single protein is set unclassified.

Figure 8 shows the rate of successful predictions as a function of the degree of the proteins for different
values of fn, using the most detailed functional classification scheme available (424 functional classes). The
success rate is estimated by hiding 40% or 70% (fn=0.4 or 0.7) of the protein annotations and predicting
their functions. The prediction quality of poorly connected nodes (degree 1 and 2) decreases to 30%. When
only a single protein is hidden, very high rate of successful predictions (up to 80% success) is observed.

Figure 9 describes a comparison of the success rate of the global optimization (GO) method proposed
here and the Neighborhood Counting. The success rate is shown as a function of the number of interacting
partners k. Nk is the number of proteins having k interacting partners. The columns GO1 and GO2 are two
different levels of functional classification that have been used. In GO1, the most stringent classifications,
containing 424 functional categories were taken. In GO2, the less detailed classifications were taken, con-
taining 20 functional categories. One can see that GO2 has a higher percentage of prediction accuracy. The
comparison of the values in Figure 9 clearly indicates that the global optimization method is more effective,
with a higher percentage of correct predictions.

Disadvantages of the ”minimize inter-class interactions” method:

3.1.2 Maximize intra-class interactions

Similarly to the previous method, Karaoz et al. [8] sought to maximize the weight of consistent edges minus
the weight of inconsistent ones. The energy function in this case is:

E = −
∑
i,j

wijsisj (5)

Where si = 1 if i is assigned the function and si = −1 otherwise. The goal of this procedure is to
assign a state of -1 or +1 to the nodes whose initial state is equal to 0. An important difference between this
method and the previous one is that each function is considered separately, resulting with separate max-cut
problems. The optimization is done by local search using applications of the following rule, which defines
the dynamic behavior of the network, interactively to each node of the network until convergence (i.e. when
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Figure 9: Source: [13]. Success rates for global optimization (GO) versus Neighborhood counting (MR).
See text for explanations about each column.

further application of this rule does not change the state of any node).

si = sgn(
∑

1≤j≤ni

wijsj −Θ) (6)

Here, ni is the number of neighbors of protein i and Θ is an ”activation threshold”. The right side of this
equation computes the weighted sum of the states of the neighbors of node i and compares this sum with
Θ: if the sum is > Θ , then the state of node i is set to +1, otherwise it is set to -1. This rule is a variant of
the local guilt-by-association rule used in earlier studies. Iterative application of this rule achieves a more
globally consistent functional annotation to all of the proteins in the network than a single application of this
rule.

The evaluation of the quality of the predictions was done by the leave one out method (described above).
F-measure is an harmonic mean of precision and recall, where higher F-measures correspond to a better
quality. Their data set included protein-protein interactions that were supported by at least two experiments.
They obtained 94% precision and 64% recall for 828 GO functions with F-measures> 0. However, there is
no comparison to previous work, so it is hard to evaluate the quality of the results.

3.1.3 Functional-network flow

All the above local methods do not consider the global topology of the protein interaction graphs. Therefore,
considering the two instances shown in Figure 10, all non-topological methods will produce the same result
for protein a in both instances. These methods ignore information on the number of independent paths
between protein a and the annotated proteins, in addition, these methods treat all distances equally. In the
left figure, all paths to a from the known proteins are dependent on b, where in the right figure, all paths are
independent. The method described in Nabieva et al [10] is a network flow where every protein with known
function is a source of flow to the other proteins, and the edges are weighted according to their reliability.
The functional flow algorithm generalizes the principle of guilt by association to groups of proteins that may
or may not interact with each other physically. The algorithm is as follows:
Each protein with a known function is treated as a source of flow for that function. For each function, flow
spread is simulated by an iterative algorithm using discrete time steps. The capacity of an edge is defined
as its weight and will represent its reliability. The reservoir of a node is the amount of flow the node can
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Figure 10: Source: [10]. Two protein interaction graphs that are treated identically by Neighborhood-
Counting with radius 2 when annotating protein a. Dark colored nodes correspond to proteins that are
known to take part in the same process.

pass to its neighbors. Source nodes have infinite reservoir; for all others it is initially zero. The algorithm
is run for several iterations, typically six, enough to let the flow reach all the nodes in the network. In each
iteration a node pushes flow residing in its reservoir such that flow is proportional to edge capacities of the
node, capacity constraints are satisfied and flow only spreads from more filled to less filled reservoirs. A
protein’s Functional score the amount of flow that entered the it’s reservoir throughout the algorithm.
The formal algorithm: R(u) - reservoir of u. Infinite for sources; initially 0 otherwise.
g(u, v) flow from u to v. Initially (in time 0), there is no flow on all edges.
At each subsequent time step, the reservoir of each protein is recomputed by considering the amount of flow
that has entered the node and the amount that has left:

Ra
t (u) = Ra

t−1(u) +
∑

v:(u,v)∈E

(ga
t (v, u)− ga

t (u, v)) (7)

At each subsequent time step, the flow proceeding downhill and satisfying the capacity constraints:

ga
t (v, u) =

{
0 if Ra

t−1(u) < Ra
t−1(v),

min(wu,v,
wu,vP

(u,y)∈E wu,y
) otherwise

(8)

The algorithm is run for d = 6 iterations (enough to propagate flow from the source to all recipients).
The final functional score for u is the sum of all flows which entered into the vertex during the whole
algorithm run:

fa(u) =
d∑

t=1

∑
v:(u,v)∈E

ga
t (v, u) (9)

Comparison to previous approaches: Since the functional flow method deals with weighted
protein interaction graphs, in order to compare it to the other local methods described above, one has to
generalize those to the weighted case. Here we describe for each relevant method, how this conversion can
be achieved.
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Figure 11: Source: [10]. ROC analysis of Neighborhood Counting (herein Majority), Chi-square (herein
Neighborhood), GenMultiCut and FunctionalFlow on the yeast UNWEIGHTED physical interaction map

1. Neighborhood-counting is easily generalized to weighted data by taking a weighted sum (instead of
simply summing up) the number of times each annotation occurs for each protein, as described in the
original algorithm. For each protein, the score of a particular function is the corresponding sum.

2. The chi-square method does not extend naturally to the case of weighted interaction graphs.

3. The k-cut approach is solved optimally using integer linear programming (ILP), generalizing it to the
weighted case, via the following formulation: Let xu,a be a node variable, indicating if u is assigned
function a. If a protein u has known functional annotation, the variable xu,a is fixed as 1, and 0
otherwise. xu,v,a is an edge variable, indicating if both u, v are annotated with a. Minimizing the
weighted number of neighboring proteins with different annotations is equivalent to maximizing the
number with the same annotations, and the corresponding ILP is shown here:

Maximize
∑

(u,v)∈E,a∈FUNC xu,v,awu,v

Subject to∑
a xu,a = 1 if annot(u) = ∅

xu,a = 1 if a ∈ annot(u)
xu,a = 0 if a /∈ annot(u), annot(u) 6= ∅
xu,v,a ≤ xu,a for (u, v) ∈ E and a ∈ FUNC
xu,v,a ≤ xv,a for (u, v) ∈ E and a ∈ FUNC
xu,v,a, xu,a ∈ {0, 1} for all u,v and a.

In this ILP solution, annot(u) is the set of known annotations for protein u , and FUNC=
⋃

u annot(u) is
the set of all functional annotations. The first constraints specifies that exactly one functional annotation is
made for any protein. The second and third constraints ensure that if protein u is annotated with function a,
xu,a is set as a constant to 1, and if protein u is annotated but not with function a, xu,a is set as a constant
to 0. The third and fourth constraints ensure that a particular function is picked for an edge only if it is also
chosen for the corresponding proteins.

11



Figure 12: Source: [10]. Performance of Neighborhood-counting (here Majority), GenMultiCut and Func-
tionalFlow on the yeast physical interaction map where experimental reliabilities (weights) are incorporated.
The performance of Neighborhood-counting (Majority) on the unweighted graph is also given as a reference.

Figure 13: Illustration of the basic idea of probabilistic methods. The function of the red node is independent
of all the nodes in the graph given the function of its direct neighbors (yellow)

Figure 11 shows that the Functional Flow algorithm identifies more true-positives (TPs) over the entire
range of false positives (FPs) than either GenMultiCut or Chi-square, using radius 1,2 and 3. Functional
Flow performs better than neighborhood-counting when proteins are not directly interacting with with at
least three proteins of the same function.

Figure 12 shows a substantial improvement in predictions using all three methods when incorporating
reliable estimations via edges weights.

3.2 Probabilistic Methods

A protein’s function depends on its neighbors’ function, the neighbors’ functions depend on their neighbors
and so on. The basic idea of the probabilistic methods is that a node’s function is independent of non-
direct neighbors functions given it’s direct neighbors. This means that if we label a node in a particular
function - it is conditionally independent of all other nodes given its neighbors (see illustration in Figure
13). Conditional independence of all other nodes given a node’s neighbors is called Markovian property. In
a simpler model, a Markov chain is a sequence x1, x2, x3, ... of random variables in which the conditional
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probability distribution of xn+1 on past states (values of previous variables, x1, ..., xn) is a function of xn

alone, i.e:

P (xn+1 = an+1|x1 = a1, x2 = a2, ..., xn = an) = P (xn+1 = an+1|xn = an) (10)

In other words, the chain satisfies the Markovian property, in any state it ”remembers” only the previous
state. Similarly we can define Markov Random Field (MRF) as an undirected graph in which the vertices
represent the random variables and the edges reflect the relation between these random variables. The graph
will also maintain the short memory property (Markovian property). The state of a given vertex xt given its
immediate neighbors states is independent of all the other vertices states, i.e:

P (xt = at|xs = as, s 6= t) = P (xt = at|xs = as, sεN(t)) (11)

Now we will define a probability function and we will show that it is the probability function of an MRF.
Let C be the group of all cliques in graph G. Let Ac represent an assignment to a clique cεC. Let us
define ψc(Ac) , cεC, a positive potential function (which upon receivingAc, a legal assignment to the clique
vertices evaluates to a positive real number). Now we can define the probability of assigning all the random
variables x1, ..., xn and A = (a1, a2, ..., an) is a legal assignment to x1, x2, ..., xn

p(x1 = a1, x2 = a2, ..., xn = an) =
1
Z

∏
cεC

ψc(Ac) (12)

Z is the normalizing constant which evaluates to:

Z =
∑
AεA∗

∏
cεC

ψc(Ac) (13)

Where A∗ is defined as the group of all legal assignments.
A probability distribution is called Gibbs if it can be expressed as a product over |C| positive potential

functions (each applied on a different clique) whose value depends only on the random variables within that
clique (see Equation 12).

The relation between MRF and Gibbs distribution is described by the Hammersley-Clifford Theorem.
Hammersley-Clifford Theorem: If Xt has a positive joint probability distribution (∀AεA∗ : p(A) > 0)
then they form a MRF on graph G iff G admits a Gibbs distribution.
Proof: A simple proof can be found in [1].
The computation of (12) is problematic because of the following reasons:

1. Finding all cliques is computationally difficult.

2. Evaluating Z requires summing over all possible assignments to x1,..., xn which in most cases is not
feasible.

To tackle the first problem, one commonly assigns zero potential for all cliques of size greater than 2. In
order to further increase the computational efficiency, potential functions are made homogeneous, i.e. the
potential functions of cliques of the same size are equal and depend only on the assignment to the cliques’s
vertices. After homogenizing the potential functions the expression describing the probability of a legal
assignment A is described by: p(A) = 1

Z e
−H(A)

H(A) =
n∑

i=1

H1(ai) +
∑

(i,j)εE

H2(ai, aj) (14)
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Where H1 and H2 are the potential functions for all cliques of size 1 and 2, respectively. The second
difficulty , the evaluation of Z, is eliminated through using conditional probability. According to this theory
the conditional probabilities satisfies the Markovian property (11). Therefore we can write the conditional
probability using the homogeneous potential function:

P (xt = at|As 6=t) =
e−H(at,As 6=t)∑

αεAt
e−H(at,As 6=t)

(15)

Where As 6=t is a legal assignment to all vertices other than xt and At is all the possible legal assignments to
vertex t. In a 2− order, homogeneous MRF:

P (xt = at|As 6=t) =
e−H1(at)−

P
sεNei(t) H2A(at,as)∑

αεAt
e−H1(at)−

P
sεNei(t) H2A(α,as)

(16)

The evaluation is done by using Gibbs Sampling which is discussed later.

3.2.1 An MRF for protein function prediction

The aim of this research, published by Deng et al [4], was given a protein P, function F ,protein-protein
interaction data and the functional annotation of protein’s interaction to predict the probability that P bares
function F. This was done by applying Bayesian approaches and by employing the theory of Markov Random
Fields on the protein interaction network. The usage of probabilistic model has two benefits which cannot
be disregarded. First, in contrast to none-probabilistic methods the work described here is not limited in
the number of functions which can be assigned to a single protein. Second, none-probabilistic methods are
incapable of providing an estimation of the significance of their assignments.

MIPS database was used (∼ 2400 interactions) in order to determine the interacting protein pairs. The
functional annotation was retrieved from the Yeast Proteome Database, YPD [7], according to the following
criteria: biochemical function(∼ 3400 annotated proteins), subcellular location (∼ 3200 annotated proteins)
and cellular role (∼ 3900 annotated proteins).

The problem is formulated as follows: For a given function fi let us assign 1 to vertices which are
annotated and have that function, and assign 0 to vertices which are annotated and do not have that function.

Let X = (x1, ..., xn, xn+1, ..., xn+m) denute the functional annotation of all proteins where
x1 = λ1, ..., xn = λn are unannotated, xn+1 = µn+1, ..., xn+m = µn+m are annotated ( ∀i, xiε{0, 1}).
Considering a function of interest we wish to infer the function of the unannotated proteins using the protein
interaction network.

Defining Gibbs distribution for protein-protein interaction network is done as follows: Let π be the
probability that a protein should bare fi. If we consider only cliques of size one (ignoring the edges or any
other information embedded in the whole graph) then the probability of an assignment X is proportional to:

p(X) =
N∏

i=1

πxi(1− π)1−xi = (
π

1− π
)Ni(1− π)N (17)

where N is the total number of vertices (N = n + m) and Ni is the number of vertices which were
assigned with 1. Now we wish to handle cliques of size 2. For that purpose we need to define the following:

• N11 the number of edges in which both the edges vertices got assignment 1.
N11 =

∑
(i,j)εE xixj .

• N10 the number of edges in which the edges vertices have different assignments.
N10 =

∑
(i,j)εE(1− xi)xj + (1− xj)xi.

14



• N00 the number of edges in which both the edges vertices got assignment 0.
N00 =

∑
(i,j)εE(1− xi)(1− xj).

The definition of H1(X) and H2(X) is now straightforward:

H1(X) = −αN1

H2(X) = −βN10 − γN11 −N00
(18)

where α = log π
1−π . α, β and γ define the model parameter set, θ, and require parameter estimation 1.

The Gibbs distribution can be written:

P (X|θ) =
1

Z(θ)
e−H1(X)−H2(X) (19)

where θ = (α, β, γ). Notice that since Z, the normalization constant, is equal to the sum of potentials
over all assignments it is now dependent on θ.

Gibbs sampling: In order to evaluate the unknown {xi} sampling was used. In this method multiple
changes were applies to a set of starting values. After enough iterations it should converge to the requested
distribution.

In Gibbs sampling , we start with a set of p known initial values

ψ(0) = (ψ(0)
1 , ψ

(0)
2 , .., ψ(0)

p ) (20)

For each iteration i+ 1 . for each vertex ψj , we calculate it’s value using conditional distribution:

ψ
(i+1)
j = P (ψj |ψ(i)

1 , ..., ψj − 1(i), ψj + 1(i), .., ψ(i)
p ) (21)

I.e. : in each iteration we recalculate all the values of ψ. After enough iterations, there will not be any
more changes (”burn in”), And the Gibbs sampling will return

ψ = (ψ1, ψ2, .., ψp) (22)

Claim: Gibbs sampling satisfies detailed balance. Proof: It is enough to show that

p(x1, .., xn)P (x∗i |x1, .., xi−1, xi+1, .., xn) = P (x1, .., xi−1, x
∗
i , xi+1, .., xn)P (xi|x1, .., xi−1, xi+1, .., xn)

(23)
By Bayes theorem

P (x∗i |x1, .., xi−1, xi+1, .., xn) = P (x1, .., xi−1, x
∗
i , xi+1, .., xn)/P (x1, .., xi−1, xi+1, .., xn) (24)

P (xi|x1, .., xi−1, xi+1, .., xn) = P (x1, .., xi−1, xi, xi+1, .., xn)/P (x1, .., xi−1, xi+1, .., xn) (25)

Thus,
1Even though the calculation of α given π is straightforward (α = log π

1−π
) the careful reader will probably notice that we still

need to evaluate α. We wish α to reflect some of the dependency of a vertex in its neighbors, however, when we estimated π we
did not consider the networks topology.

15



P (x1, .., xi−1, xi+1, .., xn) = P (x1, .., xi−1, x
∗
i , xi+1, .., xn)/P (x∗i |x1, .., xi−1, xi+1, .., xn) (26)

P (x1, .., xi−1, xi+1, .., xn) = P (x1, .., xi−1, xi, xi+1, .., xn)/P (xi|x1, .., xi−1, xi+1, .., xn) (27)

Comparing 26 and 27 we get:

P (x1, .., xi−1, x
∗
i , xi+1, .., xn)/P (x∗i |x1, .., xi−1, xi+1, .., xn) = (28)

P (x1, .., xi−1, xi, xi+1, .., xn)/P (xi|x1, .., xi−1, xi+1, .., xn) (29)

Conclusion: Gibbs distribution will converge to the requested distribution.
As it is evident from Figure 14 by using a low threshold of the predicator achieves at least 45%

sensitivity and specificity.
In order to compare the MRF method with other methods, the authors implemented Neighborhood

Counting [11] and Chi-square [6]. In both methods the top n = 1, ..5 functions were assigned to each
unannotated protein. For every n the sensitivity and specificity values were calculated in both methods. As
can be seen in Figure 15 for any given specificity, the sensitivity of the Bayesian method is higher than
those of Neighborhood Counting or Chi-square. It is worth mentioning, that even though the Neighborhood
Counting method is much simpler than the Bayesian, the difference between the performances of the two is
not so pronounced.

The relationship between quality of prediction and network’s information was estimated by applying the
leave-one-out method was applied to proteins which have at least one, two or six interacting partners. As it
is evident in figure 16 as the amount of information increases (higher number of interactions) the quality of
the prediction increases too.

3.3 Module Based Annotation

A trivial usage of modules in order to predict gene function will be ’guilt by association’. In other words,
given a module that a significant number of its proteins are known to have a certain function we can predict
that the other proteins of the module also have this function.

The SAMBA algorithm [12] is designed for identifying significant modules. It was applied to a data set
compiled from various sources as was described in [12], whose annotation was determined according to the
GO database [5]. The specificity of this method was evaluated by performing a five-way cross validation:
repeatedly applying SAMBA to data sets in which one-fifth of the known gene annotations were hidden
and tested the specificity of predicting the function of these genes. The obtained specificity is ranged from
40% to 100% for a variety of classes (for example: mating (GO:0007322) 65%, amino acid metabolism
(GO:0006520) 40%, glucose metabolism (GO:0006006) 100%.) In many cases, the classification errors
result from ambiguous annotation terms or too general categories and may represent missing information
rather than misclassification.

4 Summary

In this lecture, we described diverse approaches for predicting protein functions based on its physical inter-
actions. Local approaches included Neighborhood-Counting and Chi-Square, while global approaches that
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Figure 14: Source: [4]. Sensitivity and specificity values of the predicator as a function of the threshold.
The upper and lower graphs represents predicator values for biochemical function and subcellular location
respectively. Predicatory values for cellular role are similar to those of biochemical function (data not
shown).

17



Figure 15: Source: [4]. The relationship between sensitivity and specificity in the prediction of all three
models. upper graph and lower graph describe this relationship for biochemical function (fig a.) and sub-
cellular location (fig b.) respectively. the relationships for cellular role are similar to those of biochemical
function (data not shown).
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Figure 16: Source: [4]. The relationship between sensitivity and specificity in the prediction on proteins
which have at least one, two or six interacting partners upper graph and lower graph describe this relationship
for biochemical function (fig a.) and subcellular location (fig b.) respectively.
The relationships for cellular role are essentially similar to those of biochemical function and subcellular
location(data not shown).
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were mentioned here are based on either graph theoretic approaches or probabilistic models. The graph the-
oretic methods include minimizing inter-class interactions, maximizing intra-class interactions and a func-
tional network flow algorithm. The probabilistic methods deal with Gibbs distribution and Markov Random
Field and are able to accompany their function prediction with a level of confidence in their prediction.
Finally, we mentioned in a nutshell a module-based approach. The survey shows that global approaches
dominate the local ones, though they are not significantly better.
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