
LOGICS SEMINAR LECTURE

GUY LANDO

Abstract. In this note I will present the material of ”ω Automata”,
chapter 1 in Automata, Logic and infinite games, edited by Gradel,
Thomas and Wilke, LNCS 2500.

(1) For an ω-automaton A, a run of A on an ω-word α = α1α2 . . . is an
infinite state sequence % = %(0)%(1) · · · ∈ Qω, in which the ω-word
passes through in the ω-automaton, which means that the following
conditions hold:
(a) %(0) = qI
(b) %(i) ∈ δ(qi−1, ai) for i ≥ 1 if A is nondeterministic, and %(i) =

δ(qi−1, ai) for i ≥ 1 if A is deterministic.
(2) We will denote ω-runs by %, σ.
(3) Inf(%) the set of symbols occurring infinite number of times in the

run %
(4) An ω-automaton is a Buchi automaton if the acceptance component

is Acc := F ⊂ Q and the Buchi acceptance condition is used which
states that an ω-word α is accepted if there exists a run % on A,
at least one state in F is visited infinitely many times which means
that: Inf(%) ∩ F 6= ∅.

(5) For a Buchi automaton A = (Q,Σ, δ, qI , F), we can look at it as a
finite automaton on finite words and if we start with state p and
finish with state q such that our new F ′ = {q} is the acceptance
states set, then we denote the regular language generated by this
automaton by W (p, q).

(6) Notice that by definition α is accepted in A if and only if some state
q in F occurs infinitely many times, so we can look at the part of
α until first occurrence of q and the rest of α which must go back
from q to q infinitely many times. So in conclusion we get that:
α ∈W (qI , q) ∗W (q, q)ω. From this we conclude Theorem 1.5 in the
book which states that the Buchi recognizable ω-languages are the
ω-languages of the form:

L =

k⋃
i=1

UiV
ω
i , k ∈ ω,Ui, Vi ∈ REG, i = 1, . . . , k

Date: March 4, 2016.

1

2 GUY LANDO

This family of -languages is also called the ω-Kleene closure of the
class of regular languages.

(7) We can conclude that each nonempty Buchi recognizable ω-language
contains an ultimately periodic word.

(8) Thus we can decide the emptyness problem for Buchi automatons
because a Buchi automaton A has an empty language if and only if
it does not have an eventually periodic accepted word if and only if
none of the reachable accepted states has a path to itself (a loop).
So we decide the problem by finding all reachable accepted states
and checking for each one if there is a path from it to itself.

(9) An ω-non-deterministic automaton is a Muller automaton if the ac-
ceptance component is Acc := F ⊂ 2Q and the Muller acceptance
condition is used which states that an ω-word α is accepted if there
exists a run % on A, such that Inf(%) ∈ F which means that the
set of states occurring infinitely many times is part of F , which
also means that the set of states in which the run moves from some
position onwards is a set in F .

(10) We now prove the opposite direction. Given a Muller automaton
A = (Q,Σ, δ, qI ,F), we build a Buchi automaton.

We first guess a group G ∈ F and for each group G we add copies
of G for each subset of G so that we can create a memory which
remembers which states of G we visited. Notice that if a word is
accepted then there is some G in F for which the run of the word in
the automaton is running inside G from some place.

Our new automaton will simulate the transitions of A on original
states Q but also each time there is a transition towards a state in G,
we will also add a transition towards the copy of G corresponding to
the empty set and from there the transitions will move only towards
other copies of G according to which states of G are visited. In case
that after moving to a copy of G, the original run in A goes back to
some state in Q \G then the non-deterministic run in the copies of
G dies. Otherwise, the accepting states are the states corresponding
to G in the empty set copy of G related to G and they will be visited
in the loop only after all states of G were visited by the word in the
original automaton and thus if those states will be visited infinitely
many times it means that G is on the one hand contained in the set
of states which are visited infinitely many times and since there is
no transitions from the copies to states of Q\G it also means that G
is exactly the set of states which are visited infinitely many times as
desired. If |Q| = m, |F| = m then you can notice we added m∗n∗2m
states.

(11) This concludes theorem 1.10 in the book which says that translation
from Buchi non deterministic of size n can be done explicitly to n
states Muller automaton, and translation from Muller n states and

LOGICS SEMINAR LECTURE 3

|F| = m can be done explicitly to Buchi of at most n ∗m ∗ 2m states
automaton.

(12) The transformation stated above transforms nondeterministic Buchi
automata into nondeterministic Muller automata and conversely.
For a given deterministic Buchi automaton the translation yields
a deterministic Muller automaton. On the other hand, a determin-
istic Muller automaton is converted into a nondeterminsitic Buchi
automaton. As we shall see later, this nondeterminism cannot in
general be avoided.

(13) An ω-non-deterministic automaton is a Rabin automaton if the ac-
ceptance component is Acc := Ω ⊂ 2Q × 2Q and the Rabin ac-
ceptance condition, also called Pairs condition, is used which states
that an ω-word α is accepted if there exists a run % on A, such that
∃(E,F) ∈ Ω, Inf(%) ∩ E = ∅ ∧ Inf(%) ∩ F 6= ∅ which means that
there is some accepting component pair such that the run visits the
negative set of states finitely many times while visiting some state
of the positive set of states infinitely many times.

(14) An ω-non-deterministic automaton is a Steett automaton if the ac-
ceptance component is Acc := Ω ⊂ 2Q×2Q and the Steett acceptance
condition, also called complemented Pair condition or fairness condi-
tion, is used which states that an ω-word α is accepted if there exists
a run % on A, such that ∀(E,F) ∈ Ω, Inf(%)∩E 6= ∅∨Inf(%)∩F = ∅
which means that for each accepting component pair if the run vis-
its some state of the right set of states infinitely many times then it
must visit some state of the left set of states infinitely many times.

(15) Notice that the condition for Streett is the negation of the Rabin con-
dition and thus a Rabin automaton looked at as a Streett automaton
with Streett condition will accept the complement language and vise
versa.

(16) Example: automate with states qI , p and arrow from p to itself with
a, from qI to p and back and qI to qI with a, b. To get the language
{a, b}∗aω with Buchi we define F = {p}, with Muller we define
F = {{p}}, with Rabin we define Ω = {{qI}, {p}}, with Streett we
define Ω = {{}, {qI}}.

(17) Notice that any Rabin automaton can be transfered to Muller au-
tomaton automaton by building acceptance component by taking all
sets such that for some pair the set intersects the right set of the pair
and does not intersect the left side of the pair. For Streett automa-
ton take sets which for each pair, do not intersect the right set of
the pair or if intersects it then must also interesect the left set of the
pair.

(18) Any Buchi automaton can be transformed to Rabin automaton with
acceptance component Ω = {{}, F}. Any Buchi automaton can
be transformed to Streett automaton with acceptance component
Ω = {F,Q}.

4 GUY LANDO

(19) As a conclusion we get that any Muller automaton can be transferred
to Rabin or street automaton by first transferring it to Buchi and
then to Rabin or Steett.

(20) An ω-non-deterministic automaton is a parity automaton if the ac-
ceptance component is a coloring Acc := c : Q→ {0, . . . , k} and the
parity acceptance condition is used which states that an ω-word α
is accepted if there exists a run % on A, such that min{c(q) : q ∈
Inf(%)} is even, which means that the minimal color of a state which
occurs infinitely many times in the run is even.

(21) Example: automate with states qI , p and arrow from p to itself with
a, from qI to p and back and qI to qI with a, b. To get the language
{a, b}∗aω with Buchi we define c(qI) = 1, c(p) = 2

(22) For a Rabin automaton with acceptance component Ω = {(Ei, Fi) :
1 ≤ i ≤ k} such that E1 ⊂ F1 ⊂ E2 ⊂ F2 ⊂ . . . we can define a
coloring c(Ei) = 2 ∗ i− 1, c(Fi \Ei) = 2 ∗ i and we get an equivalent
paring automaton.

(23) Notice also that a Rabin automaton with acceptance component
Ω = {(∅, F)} has the chain condition stated previously and thus it
is equivalent to a paring automaton. Any no-deterministic Muller,
Rabin, Steett automaton can be transferred to a non deterministic
Buchi automaton constructed before and then transferred to a Rabin
automaton with acceptance component Ω = {(∅, F)} which can be
transferred as stated, to a parity automaton.

(24) From previous statements we can now conclude theorem 1.19 in the
book which states that: Nondeterministic Buchi automata, Muller
automata, Rabin automata, Streett automata, and parity automata
are all equivalent in expressive power, i.e. they recognize the same ω-
languages. We call the class of those languages the class ω-KC(REG),i.e.
the ω-Kleene closure of the class of regular languages. The ω-
languages in this class are commonly referred to as the regular ω-
languages, denoted by ω-REG

(25) Two questions rise: 1)Is there a deterministic automatons class
which accepts exactly the ω-REG languages? because we like de-
terministic automatons more. 2)Is the ω-REG class closed under
complement? Both questions have positive answers. The comple-
ment problem can be dealt with by determinization and thus we
now deal with the deterministic versions of the automatons we dealt
with so far. In chapter 3 in the book it is proved that the Muller
deterministic automatons accept exactly the ω-REG class languages.
And also we will see that the deterministic Muller, Rabin, Parity,
Steett automatons are equivalent expressively, while the Buchi de-
terministic automaton is weaker.

(26) Here is a proof that Buchi deterministic automaton is weaker by
proving that some non-deterministic Buchi automaton can’t be con-
verted to a deterministic one. Look at the non-deterministic Buchi

LOGICS SEMINAR LECTURE 5

automaton which has the language {a, b}∗aω (state q has arrow with
a,b to itself and a,b (or just a) to state p, state p has only arrow a to
itself, F is the state p). Then there is this non-deterministic Buchi
automaton for the language but there is no deterministic Buchi au-
tomaton for the language because if there was one A then lets look
at the word aω. It is accepted by the language and thus by the au-
tomaton and thus there is some accepting state q1 of the automaton
which is entered by the run of aω on A at some position n1 which
means an1 ∗ aω is accepted by A and an1 runs into q1. Now, by the
definition of the language an1 ∗b∗aω is also accepted by the automa-
ton and thus there is some accepting state q2 of A and position n2
such that an1 ∗ b ∗ an2aω is the accepted word and an1 ∗ b ∗ an2 runs
into q2. Now, the important part is that since A is deterministic it
means that there is an accepting run which moves though both q1
and q2. Now by definition of the language an1 ∗ b ∗ an2 ∗ b ∗ aω is also
accepted and so on. By this construction we get a word with infin-
itely many b which visites states from F infinitely many times (and
by pidgeon hole principle there is a state in F visited infinitely many
times since F is finite and the run is infinite) and thus this word is
accepted by the automaton which is a contradiction to the language
of the automaton which does not accept words with infinitely many
b.

(27) Simulate deterministic Muller by deterministic Rabin: (record the
past is the technique used previously where you fill visited sets with-
out remembering the order), here we will use LAR (last appearance
record) which is a permutation on Q together with a pointer @ and it
allows to also know the which states were visited last. Given Muller
automaton with usual notations, we construct a new Rabin automa-
ton where the states are the collection of permutations on Q∪{@}. If
|Q| = n, we name the states of Q q, . . . , k where 1 is the initial state
and start from state (@, k, k − 1, . . . , 1) (probably it doesn’t really
matter where we start from as long as the initial state of original
automaton is at the right). If state m moves to state s in original
automaton and currently the rightmost state in the currently visited
permutation is m then we can transition to the permutation where
s moves to the rightmost position and the pointer @ moves to the
original position of s and all states which were on the right of s shift
one position left in the permutation.

Notice (first statement) that by this construction we get that
states which are visited finitely often will eventually be placed on
the left part of the permutation, from the left of the pointer, so the
states on the right of the pointer infinitely many times are states
which are visited infinitely many times in the original automaton.
Also notice (second statement) that as long as the transitions in the
original automaton are between states which are at the right most k

6 GUY LANDO

places in the permutation, then the pointer will never go before the
first k+1 places and all the changes in the permutation will occur in
the last k+1 places and other states will be untouched. This means
that if there are k states in the original automaton which are visited
infinitely often by a run then first of all from the first statement it
means that from some move onwards the pointer will be always in
the right most k+1 places at most (maybe less places), and from the
last statement we get that it will visit infinitely many times the k+1
place (or otherwise the size of infinitely many times visited states in
original automaton would be smaller than k).

Thus we get as conclusion Lemma 1.21 in the book and if we
define the accepting pairs of the Rabin automaton to be pairs for each
1 ≤ i ≤ n such that the i pair consists of negative set of permutations
where the pointer only appears in the left most i places and the
positive set is the permutations where the pointer only appears in
the left most i places (this is a trick to turn this to easily convertible
to parity automaton) or appears exactly on the i+1 place from the
left and the states on the right of the pointer together create a set
which appears in the original automaton accepting component.

(28) Another, easier proof (not from the book): If F = {F1, . . . , Fm}
then Q′ = Q × 2F1 × · · · × 2Fk and the idea is to simulate original
automaton on Q while saving in memory (represented by the new
states) which states of the accepting sets are visited and when some
accepting set visited in full then empty it and start filling it again.
The accepting pairs are pairs where the positive pair is one in which
there is some accept set Fi is filled in full in memory and the ad-
ditional state of Q is also inside this accepting state, the negative
set is when the additional state of Q is not in the Fi of the positive
set (each pair deals exclusively with some unique i). The positive
condition makes sure that the states visited infinitely many times
in the original automaton include the states of Fi and the negative
condition makes sure that starting from some place no other state
except the states of Fi is visited and thus Fi is exactly all the states
visited infinitely many times and since Fi is in F it means that the
word is also accepted in the original automaton. Easy to see the
other direction.

(29) Lower bounds lemma 1 proof: assume the union run IS accepting,
then there is some pair of the automaton which have its positive
set intersect the Inf union and the negative set has no intersection
with the Inf union. Thus one of the Inf’s in the union intersects the
positive set while none of the Inf’s intersect the negative set and thus
the Inf which intersects the positive set allows the run to conform
to the rabin condition and thus be accepting in contradiction. Same
proof for the second lemma from duality between rabin and streett
conditions.

LOGICS SEMINAR LECTURE 7

(30) Non-determinitstic Buchi to Deterministic Rabin notes:
(a) An accepting word of An must visit q0 infinitely many time

and by the pidgeon hole principle we get that there eventually
is some loop of unique states moved through to visit q0 and
this loop together with the fact that the automaton is non-
deterministic, proved the characterization of the languages of
An.

(b) The symbols encoding is done because we work with automa-
tons over finite language and we want to use the infinite family
of automatons over the same finite language. The encoding re-
quires to add states corresponding to the encoding, yet this can
be done by adding at most O(n) states by adding n-1 states in-
stead of the arrow from qn to q0 and using those states to parse
the other arrows to q0 and similarly handle the other direction
of the arrows from q0.

(c) The statement can be proven for complement language using
Streett automaton because it is the complementary automaton
of the Rabin automaton.

(d) The hash symbol appearance fixes the location of the run in the
sense that without the hash, we can find a non-deterministic run
that could be at this stage either in q0 or not in q0 but if we
met a hash then we are surely not in q0.

(e) Any permutation of 1,..,n can visit q0 in An at most once and
it must return from q0 to a different state than the one it came
from to q0. Thus in the run of the word i1i2...in#i1i2...in#, if
the first permutation before the first hash return from q0 to state
ij1 then if the second permutation visits q0 then it must visit it
from state ij1 and thus if it returns to state ij2 then j2 > j1 and
from this, since the states set is finite, we can conclude that the
words (i1i2...in#)ω, (j1j2...jn#)ω are not accepted by An.

(f) If some Streett automaton accepts the complement language
then it accepts α = (i1i2...in#)ω, β = (j1j2...jn#)ω (we choose
different permutations) and thus there accepting runs %α, %β. If
we show that Inf(%α) ∩ Inf(%β) = ∅ then since there are n!
permutations, we can conclude as desired that there are atleast
n! states (since the Inf sets are not empty and coprime).
By contradiction, if there is some q ∈ Inf(%α)∩ Inf(%β) then q
is visited infinitely often by %α which means that there is some
word v moving over states in %α from q back to q and word w
having same property for %β. Suppose that u is some word over
the run %α or %β which brings one of the runs from initial state
to q.
Look now at the word γ = u(vw)ω. By the definition of γ we
know that Inf(%γ) = Inf(%α) ∪ Inf(%β) and thus by lemma
states at (29) we get that %γ is an accepting run since %α, %β

8 GUY LANDO

are accepting runs. We showed that γ is in the complement
language.
Notice, once again that the characterization of the language of
An (in (a)) does not care of where the pairs, creating the loop,
appear. The only thing that matters is that those pairs will
appear in a loop somewhere and it does not matter if other
words appear between them.
Now look at the word γ = u(vw)ω and specifically at (vw)ω.
This is a loop so the only thing needed in order for An to accept
it is for vw to contain one loop of pairs. The only condition we
needed on v, w was that they would be paths in the runs from
q to q so we can choose to take them such that |v|, |w| > 2n+ 2
which means from the definition of α and β that i1i2...in is a sub-
string of v and j1, j2...n is a substring of w. Since α and β were
constructed using different permutations it means that starting
from some position, i1i2...in and j1, j2...n are different which
means that there is somem >= 1 such that for all s < m it holds
that is = js while im 6= jm. But those are two permutations con-
sisting of same elements thus there must be some k′, l′ > m such
that im = j′k, jm = i′l and this proves that the word vw consists
of the pairs loop: im, im+1, ..., il′−1, il′ , jm, jm+1, ..., jk′−1, jk′ sat-
isfying the charactarization of the language of An and thus
γ = u(vw)ω is in An, but we already proved it is in the com-
plement of An and this gives the desired contradiction showing
that Inf(%α) ∩ Inf(%β) = ∅ as desired.

(31) Determinitstic Street to Deterministic Rabin notes:
(a) Define the set of deterministic Street automatons: An such that
An has 4 states for each i¡=n: 1,-1,i,-i with transitions from i to
-j when receiving j and to j from -i when receiving j, with initial
state -1. Accepting pairs are with negative set i and positive
set -i.

(b) For a word α denote even(α) = Inf(α(0)α(2)α(4)...), odd(α) =
α(1)α(3)α(5)....

(c) Notice that on odd states in the run we are in a state named
by a positive number while in even states in the run we are in
a state named by a negative number and thus we can conclude
that a word is accepted if and only if odd(α) ⊆ even(α). From
this it follows that any move by a word of even length from the
initial position, will not change the accepting language of the
automaton.

(d) To get a finite language, encode the symbols similarly to the
encoding in previous proof.

(e) Proof by induction on n that any deterministic rabin automaton
accepting the language L(An) has atleast n! states.

LOGICS SEMINAR LECTURE 9

(f) For n=2, any automaton recognizing a proper non empty set of
words needs 2 states thus statement holds.

(g) Assume for n-1 and lets prove for n. Let A = (Q,Σn, q0, δ,Ω) be
a Rabin deterministic automaton accepting L(An). Let Qeven
be the states that can be reached from q0 by reading a prefix of
even length.
For every i ∈ {1, ..., n} and every q ∈ Qeven \ {i,−i} define
deterministic Rabin automaton Aqi over Σn \ {i} by removing
the two states i,−i and all arrows which had i,−i and setting
the initial state to q. Notice that this did not affect the other
states and up to states name changing we created an automaton
isomorphic to An−1 and the initial state change does not affect
the language as previously explained so by induction assump-
tion the created automaton Aqi has (n− 1)! states.
Since the initial state can be changed by moving with a word
of even length, we can take a strongly connected componet of
Aqi which doesn’t have any other strongly connected component
reachable from it, and move by an even word into this strongly
connected component and then the induction hypothesis holds
for this component because since we start in it and it doesn’t
reach any other component it means that the language of this
component is L(An−1) and thus this component has (n − 1)!
states. So we proved that Aqi has a strongly connected compo-
nent with (n− 1)! states.
The final step of the proof will be constructing a word αi for each
i with a run such that they have coprime Inf sets of size atleast
(n-1)! which proves the statement because |Q| ≥ Σn

i=1|Inf(%αi | ≥
n ∗ (n− 1)! = n!.
For i ∈ {1, . . . , n}, we construct the word αi as follows. First
take a u0 ∈ (Σn\{i})∗ such that u0 has even length and contains
every letter from Σn \ {i} on an even and on an odd position.
Also Aq0i should visit at least (n-1)! states while reading u0 and
this is possible since we shown thatAq0i has a strongly connected
component of size at least (n-1)!. Let q1 be the state reached
by Aq0i after having read the word u0ij, where j is different
from i. Then we choose a word u1 ∈ (Σn \ {i})∗ with the same
properties as u0, using Aq1i instead of Aq0i . This means u1 has
even length, contains every letter from Σn \ {i} on an even and
on an odd position and Aq1i visits at least (n-1)! states while
reading u1.
Repeating this gets us a word αi = u0iju1iju2ij.... From
the construction it follows that even(αi) = {1, ..., n} \ {i} and
odd(αi) = {1, ..., n} and therefore by characterization of L(An)
we have that αi 6∈ L(An). We also get by the construction that
the specified run of αi in A has |Inf(αi)| ≥ (n− 1)!.

10 GUY LANDO

We are only left to show that the Inf for different αi are co-
prime. By contradiction, if there is some value in the Inf inter-
section of Inf of αi, αj then by using the intersection state we
can create loops going through all the states such that the even
set and odd set of the new word will be {1, .., n}, which means
by cheractarization of L(An) that this word will be accepted,
while the Inf of this word uses the Inf’s of the two original words
and thus is their union and this is a contradiction because in a
Rabin automaton by previous lemma a word which has an Inf
set which is a Union of Infs of rejecting words should reject.
The proof doesn’t appear in chapter 1 in the book. It can be
found on page 48 in http://www.automata.rwth-aachen.de/

~loeding/diploma_loeding.pdf

(32) Simulate Staiger and Wagner condition automaton by Buchi au-
tomaton (similarly to how the Muller was simulated) by remember-
ing which states were visited and once all of F was visited, can turn
into accepting hole state. The memory requires exponential blowup
of states (Q′ = Q ∪ 2Q).

(33) Weak condition 1 can be simulated by Buchi automaton without an
exponential blowup by turning the set F into accepting holes.

(34) Weak condition 1’ can be simulated by Buchi automaton without
an exponential blowup by turning the set Q \ F into non-accepting
holes and making the states of F accepting states.

(35) Even the strongest Staiger and Wagner weak acceptance condition
can’t create automatons equivalent to some Buchi automaton. For
example there is a Buchi automaton accepting only words with in-
finitely many b’s where the language is a,b (states q, p with arrow
from q to p with b on arrow and arrow p to q with a on arrow and
arrow from q to q with a on it and from p to p with b on it, F
contains p). If there was a weak condition automaton accepting this
language, we will show contradiction. Suppose it has n states. Then
it would accept (an+1b)ω so by the weak condition there is some k
when after (an+1b)k, the run already visited all the states it will ever
visit. Since there is a total of n states then by pidgeon hole principle
the run assumes a loop in the run on the following an+1 and thus
we can have a run on (an+1b)k ∗ aω which covers same states as the
original run on (an+1b)ω and thus it would be accepted by the weak
condition which is a contradiction since it does not have infinitely
many b’s.

Raymond and Beverly Sackler School of Mathematical Sciences, Tel Aviv
University, Tel Aviv 69978, Israel

E-mail address: guylando@post.tau.ac.il

http://www.automata.rwth-aachen.de/~loeding/diploma_loeding.pdf
http://www.automata.rwth-aachen.de/~loeding/diploma_loeding.pdf

