Non Deterministic Tree Automata

By: Or Kamara

From: Nondeterministic Tree Automata in Automata, Logic and infinite games, edited by Gradel, Thomas and Wilke (chapter 8)

So far

Word automata -

Consume infinite sequences of
alphabet symbols (ω-words)

Today

Tree automata -

Finite-state automata
which process infinite trees

Outline

- Motivation
- Infinite binary tree
- Finite-State Tree Automata
- Examples
- Buchi tree automata Vs. Muller tree automata
- The Complementation Problem for Automata on Infinite Trees
- Game theoretical approach
- Complementation proof

First of all - WHY?

- Tree automata are similar to logical theories \rightarrow

Reduce problems in logic to problems for automata.

- Tree automata are more suitable than words when non-determinism needs to be modeled.

Outline

- Motivation
- Infinite binary tree
- Finite-State Tree Automata
- Examples
- Buchi tree automata Vs. Muller tree automata
- The Complementation Problem for Automata on Infinite Trees
- Game theoretical approach
- Complementation proof

Definitions - infinite binary tree

- $T \omega=\{0,1\}^{*}$ of all finite words on $\{0,1\}$
- Elements $u \in T_{\omega}$ are the nodes of T_{ω} :
- ε - root
- u_{0}, u_{1} - immediate successors of node u
- Again:)
$\begin{array}{ll}- & \text { Left - U0 } \\ - & \text { Right - U1 }\end{array}$

Definitions - infinite binary tree

- Path - ω-word $\pi \in\{0,1\}^{\omega}$
- Set Pre $<(\pi) \subset\{0,1\}^{\star}$ of all prefixes of path π
- Describes the set of nodes which occur in π
- Example:
- The rightmost path in the tree is $\pi=1 \omega$
- All the prefixes of this path are:
- $\operatorname{Pre}<(\pi)=\{\epsilon, 1,11,111,1111, \ldots\}=\{1\}^{\star}$

Definitions - infinite binary tree

- Let $u, v \in T \omega$, then v is a successor of u, if there exists $w \in T \omega$ such that $v=u w$
- Denoted by $u<v$
- Example:
- 01 is successor of 0
- $\quad 101$ is successor of $1 \backslash 10$

Definitions - infinite binary tree

- Our tree can be labeled
- Σ is alphabet
- A mapping t: T $\omega \rightarrow \Sigma$
- Maps each node of T ω to a symbol in Σ

Example 8.1. Let $\Sigma=\{a, b\}, t(\varepsilon)=a, t(w 0)=a$ and $t(w 1)=b, w \in\{0,1\}^{*}$.

Outline

- Motivation
- Infinite binary tree
- Finite-State Tree Automata
- Examples
- Buchi tree automata Vs. Muller tree automata
- The Complementation Problem for Automata on Infinite Trees
- Game theoretical approach
- Complementation proof

Definitions - Finite-State Tree Automata

- Until now, automata consume one input symbol at a time
- Enter a successor state determined by a transition relation
- $\delta: Q \times \Sigma \rightarrow \mathrm{Q}$
- Now, we want to run automata on infinite trees
- The transition function:
- $\delta: \mathrm{Q} \times \Sigma \rightarrow \mathrm{Q} \times \mathrm{Q}$

Definitions - Finite-State Tree Automata

Tree automaton is of the form $\mathrm{A}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$, where:

- Q is finite set of states
- $\quad \Sigma$ is a finite alphabet
- $\delta \subseteq(\mathrm{Q} \times \Sigma) \times(\mathrm{Q} \times \mathrm{Q})$ is the transition function
- q_{0} is the initial state
- F is the acceptance component

Definitions - Finite-State Tree Automata

- Computations start at the root of an input tree and work through the input on each path in parallel
- A transition ($\mathrm{q}, \mathrm{a}_{,}, \mathrm{q}_{1}, \mathrm{q}_{2}$) allows to pass from state q at node u with label a i.e. $\mathrm{t}(\mathrm{u})=\mathrm{a}$, to the states $\mathrm{q}_{1}, \mathrm{q}_{2}$ at the successor nodes $\mathrm{u}_{0}, \mathrm{u}_{1}$

Definitions - RUN

Assignment of states to the tree nodes

- $\rho:\{0,1\}^{*}$-> Q with:
- $\rho(\varepsilon)=q_{0}$
- $\left(\rho(\mathrm{u}), \mathrm{t}(\mathrm{u}), \rho\left(\mathrm{u}_{0}\right), \rho\left(\mathrm{u}_{1}\right)\right) \in \delta$ for all $\mathrm{u} \in\{0,1\}^{*}$
- Example:

$$
\begin{array}{cc}
\circ & \left(q_{0},,_{,}, q_{0}, q_{0}\right) \\
\circ & \left(q_{0}, b, \mathrm{q}_{1}, \mathrm{q}_{0}\right) \\
\circ & \left(\mathrm{q}_{1}, \mathrm{a}, \mathrm{q}_{1}, \mathrm{q}_{1}\right) \\
\circ & \left(\mathrm{q}_{1}, \mathrm{~b}, \mathrm{q}_{1}, \mathrm{q}_{1}\right)
\end{array}
$$

Definitions - IIII

- Successful run
- Each path of the ρ is successful with respect to acceptance condition
- Acceptance conditions:
- Buchi
- Muller
- Rabin
- Parity
- Language of an automaton A with alphabet Σ, is the set of Σ-trees which are accepted by A
- Denoted L(A)

Buchi Tree Automaton

- Tree automaton $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ accepts tree t if there exists a run ρ of A on t, such that on EACH PATH of ρ, a state from F occurs infinitely times

What about Muller?

- For each path $\pi \in\{0,1\}^{\omega}$ the Muller acceptance condition is satisfied
- $\quad \operatorname{Inf}(\rho \mid \pi) \in F$

Outline

- Motivation
- Infinite binary tree
- Finite-State Tree Automata
- Examples
- Buchi tree automata Vs. Muller tree automata
- The Complementation Problem for Automata on Infinite Trees
- Game theoretical approach
- Complementation proof

Starting Windows

Examples (1)

$L(A)$ is the set of all Σ-trees having at least one b on every branch
Let's look on every path separately

- $F=\left\{q_{1}\right\}$
- Transition function

$$
\begin{aligned}
& \text { - }\left(q_{0}, \mathrm{a}, \mathrm{q}_{0}, q_{0}\right) \\
& \circ\left(q_{0}, q_{1}, q_{1} q_{1}\right) \\
& \text { - }\left(q_{r}, \mathrm{a}_{1}, \mathrm{q}_{\mathrm{q}}, \mathrm{q}_{\mathrm{q}}\right) \\
& \text { - }\left(q_{i p}, q_{1}, q_{1} q_{1}\right)
\end{aligned}
$$

Examples (1)

$L(A)$ is the set of all Σ-trees having at least one b on every branch
Let's look on every path separately

- $F=\left\{q_{1}\right\}$
- Transition function

$$
\begin{aligned}
& \text { - }\left(q_{0}, \mathrm{a}, \mathrm{q}_{0}, q_{0}\right) \\
& \text { - }\left(q_{0}, q_{1}, q_{1} q_{1}\right) \\
& \circ\left(q_{r}, q_{1}, q_{1}\right)
\end{aligned}
$$

Examples (2)

$L(A 2)$ is the set of all Σ-trees which have at least one branch with infinitely many b's

- $\mathrm{Q}=\left\{\mathrm{q}_{\mathrm{a}}, \mathrm{q}_{\mathrm{b}}, \mathrm{q}_{+}\right\}$
- $\mathrm{F}=\left\{\mathrm{q}_{\mathrm{b}}, \mathrm{q}_{+}\right\}$
- Transition relation:

Examples (2)

L(A2) is the set of all Σ-trees which have at least one branch with infinitely many b's

- Non deterministic
- $\mathrm{Q}=\left\{\mathrm{q}_{\mathrm{a}}, \mathrm{q}_{\mathrm{b}}, \mathrm{q}_{+}\right\}$
- $\mathrm{F}=\left\{\mathrm{q}_{\mathrm{b}}, \mathrm{q}_{+}\right\}$
- Transition relation:

Examples (3)

L(A3) is the set of all Σ-trees having infinitely many a's on every branch
Buchi tree automata A3:

- $Q=\left\{q_{a}, q_{b}\right\}$
- Initial state $-\mathrm{q}_{\mathrm{a}}$
- $\mathrm{F}=\left\{\mathrm{q}_{\mathrm{a}}\right\}$
- Transition function

$$
\circ \quad\left(q_{a^{2}}, a, q_{a^{2}}, q_{a}\right)
$$

- $\left(q_{b}, a, q_{a}, q_{a}\right)$
- $\left(q_{a}, b, q_{b}, q_{b}\right)$
- $\left(q_{b}, b, q_{b}, q_{b}\right)$

Examples (4)

$L(A 4)$ is the set of Σ-trees in which every branch contains only finitely many b's Muller tree automata A4:

- $\mathrm{Q}=\left\{\mathrm{q}_{\mathrm{a}}, \mathrm{q}_{b}\right\}$
- Initial state $-\mathrm{q}_{\mathrm{a}}$
- $\mathrm{F}=\left\{\left\{\mathrm{q}_{\mathrm{a}}\right\}\right\}$
- Transition function (the same as Example 3)
- $\left(\mathrm{q}_{a^{2}}, \mathrm{a}_{\mathrm{a}}, \mathrm{q}_{\mathrm{a}}, \mathrm{q}_{\mathrm{a}}\right)$
- $\left(q_{b}, a, q_{a}, q_{a}\right)$
- $\left(q_{a}, b, q_{b}, q_{b}\right)$
- $\left(q_{b}, b, q_{b}, q_{b}\right)$
- Is it the same as Example 3?

Examples (5)

$L(A 5)$ is the set of all Σ-trees having at least one path π through t such that $\mathrm{t} \mid \pi \in(\mathrm{a}+\mathrm{b})^{*}(\mathrm{ab})^{\omega}$

- We will use muller
- A5 memorizes in its state the last read input symbol
- A5 switches back to the initial state q_{I} if he get unexpected symbol
- Infinite alternation between a state q_{a} memorizing input symbol a and a state q_{b} memorizing b
- A will guess a path through t and checks, if the label of this path belongs to (a+b)* (ab) ${ }^{\omega}$

Examples (5)

- Guess - decide whether the left or the right successor node of the input tree belongs to the path
- q_{d} signals that we are outside the guessed path
- $A=\left(\left\{q_{1}, q_{a}, q_{b}, q_{d}\right\},\{a, b\}, \delta, q_{j},\left\{\left\{q_{a}, q_{b}\right\},\left\{q_{d}\right\}\right\}\right)$
- δ :

$$
\begin{aligned}
& \text { - Initial - }\left(\mathrm{q}_{\mathrm{P}}, \mathrm{a}, \mathrm{q}_{\mathrm{a}}, \mathrm{q}_{\mathrm{d}}\right) \backslash\left(\mathrm{q}_{\mathrm{r}}, \mathrm{a}, \mathrm{q}_{\mathrm{d}^{\prime}} \mathrm{q}_{\mathrm{a}}\right) \backslash\left(\mathrm{q}_{\mathrm{P}}, \mathrm{~b}, \mathrm{q}_{\mathrm{b}}, \mathrm{q}_{\mathrm{d}}\right) \backslash\left(\mathrm{q}_{\mathrm{I}}, \mathrm{~b}, \mathrm{q}_{\mathrm{d}^{\prime}}, \mathrm{q}_{\mathrm{b}}\right) \\
& \text { - For } q_{d}-\left(q_{d^{\prime}}, a, q_{d^{\prime}} q_{d}\right) \backslash\left(q_{d^{\prime}}, b, q_{d^{\prime}}, q_{d}\right) \\
& \text { - Change letter }-\left(q_{a}, b, q_{b^{\prime}}, q_{d}\right) \backslash\left(q_{a^{\prime}}, b, q_{d^{\prime}}, q_{b}\right) \backslash\left(q_{b^{\prime}}, a, q_{a^{\prime}}, q_{d}\right) \backslash\left(q_{b^{\prime}}, a, q_{d^{\prime}}, q_{a}\right) \\
& \text { - Same letter - }\left(q_{a}, a, q_{\mathrm{I}}, q_{d}\right) \backslash\left(q_{a}, a, q_{d}, q_{I}\right) \backslash\left(q_{b}, b, q_{\mathrm{I}}, q_{d}\right) \backslash\left(q_{b}, b, q_{d}, q_{I}\right)
\end{aligned}
$$

Examples (5)

There is no situation where $\operatorname{Inf}(\rho \mid \pi)=$

- $\left\{\left\{q_{d}\right]\right\}$
- $\left\{\left\{q_{a}\right\}\right\} \mid\left\{\left\{q_{a}\right\},\left\{q_{d}\right\}\right\}$
- $\left\{\left\{q_{b}\right\}\right\} \mid\left\{\left\{q_{b}\right\},\left\{q_{d}\right\}\right\}$

Outline

- Motivation
- Infinite binary tree
- Finite-State Tree Automata
- Examples
- Buchi tree automata Vs. Muller tree automata
- The Complementation Problem for Automata on Infinite Trees
- Game theoretical approach
- Complementation proof

Theorem 1

Buchi tree automata are strictly weaker than Muller tree automata

- In Hebrew: There exists a Muller tree automaton recognizable language which is not Buchi tree automaton recognizable

Proof

- The language
- $\mathrm{T}=\{\mathrm{t} \in \mathrm{T}\{\mathrm{a}, \mathrm{b}\} \mid$ any path through t carries only finitely many b$\}$
can obviously be recognized by a Muller tree automaton (example 4)

Theorem 1 (proof)

- Assume for contradiction that T is recognized by a Buchi tree automaton $\mathrm{B}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{\mathrm{r}}, \mathrm{F}\right)$
- Let $\mathrm{n}=|\mathrm{F}|+1$
- Consider the following tree:

Theorem 1 (proof)

- Because the automata accepts t:
- Path 1^{∞} - a final state is visited say at $1^{m 0}$
- Path $1^{\mathrm{m} 0} 01^{\Phi}$ - a final state is visited say at $1^{\mathrm{m} 0} 01^{\mathrm{ml}}$
- Proceeding in this way we obtain $\mathrm{n}+1$ positions -
- $\mathrm{V}_{0}=1^{\mathrm{m} 0}, \mathrm{~V}_{2}=1^{\mathrm{m} 0} 01^{\mathrm{ml}}, \ldots, \mathrm{V}_{\mathrm{n}}=1^{\mathrm{m} 0} 01^{\mathrm{ml}} 0 \ldots 1^{\mathrm{mn}}$ that get to final state
- For certain $\mathrm{i}<\mathrm{j}$, the same state appears at V_{i} and V_{j}
- Between V_{i} and V_{j} - at least one label b (by our construction)

Theorem 1 (proof)

We now construct another input tree t^{\prime} by infinite repetition of the path from V_{i} to V_{j} (π)

- This tree contains an infinite path which carries infinitely many b's, thus $\mathrm{t}^{\prime} \notin \mathrm{T}$
- We can easily construct a successful run on t' by copying the actions of π infinitely often $\Rightarrow t^{\prime} \in \mathrm{T}$
- Contradiction

Theorem 2

Muller, parity, Rabin and Streett tree automata all recognize the same tree languages

Parity Tree Automaton

- Tree automaton $\mathrm{A}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{C}\right)$
- Coloring C: Q -> \{0,...,k $\}$
- Accepts tree t if there exists a run ρ of A on t such that on EACH PATH of ρ, the maximal color assumed infinitely often is even
- Example:
- Automata that recognize trees that each path of them has only finitely many b
- Use q_{a} and q_{b} to signal the letters a, b
- $C\left(q_{A}\right)=0, C\left(q_{b}\right)=1$
- The maximal color is even $\Leftrightarrow>$ the letter b occurs finitely often on the path

Time for a break!

Outline

- Motivation
- Infinite binary tree
- Finite-State Tree Automata
- Examples
- Buchi tree automata Vs. Muller tree automata
- The Complementation Problem for Automata on Infinite Trees
- Game theoretical approach
- Complementation proof

Parity Tree Automaton

- Tree automaton $\mathrm{A}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{C}\right)$
- Coloring C: Q -> $\{0, \ldots, ., k\}$
- Accepts tree t if there exists a run ρ of A on t such that on EACH PATH of ρ, the maximal color assumed infinitely often is even
- Example:
- Automata that recognize trees that each path of them has only finitely many b
- Use q_{a} and q_{b} to signal the letters a, b
- $\quad C\left(q_{a}\right)=0, C\left(q_{b}\right)=1$
- The maximal color is even $\Leftrightarrow>$ the letter b occurs finitely often on the path

Closure under complementation

- We will now show closure under complementation for tree languages acceptable by parity tree automata
- and hence acceptable by Muller tree automata
- For every automata $\mathrm{A}=\left(S, T, T_{0}, \mathscr{Y}^{\prime \prime}\right)$, there is an automata $\mathrm{A}^{\prime}=\left(S^{\prime}, T^{\prime}, T_{0}^{\prime}, \mathscr{F}^{\prime \prime}\right)$ such that: $\nu \in L\left(A^{\prime}\right) \Leftrightarrow \nu \notin L(A)$
- We identify a parity tree automaton $A=\left(Q, \Sigma, \bar{\delta}, \mathrm{q}_{1}, \mathrm{C}\right)$ and an input tree t with an infinite two-person game $G_{A, t}$

Rules

- The players move alternately
- Player 0 (Automaton): picking transition from Δ such that the alphabet symbol of this transition equals that at the current node
- Player 1 (Pathfinder): determines whether to proceed with the left or the right successor
- Example

Run Example

Δ :

- $\left(q_{\mathrm{I}}, \mathrm{b}, \mathrm{q}_{\mathrm{b}}, \mathrm{q}_{\mathrm{b}}\right)$
- $\left(\mathrm{q}_{\mathrm{I}}, \mathrm{a}, \mathrm{q}_{\mathrm{I}}, \mathrm{q}_{\mathrm{I}}\right)$
- $\left(q_{b}, b, q_{b}, q_{b}\right)$
- $\left(q_{b}, a, q_{a}, q_{a}\right)$
- $\left(q_{a}, a, q_{a}, q_{a}\right)$
- $\left(q_{a}, b, q_{b}, q_{b}\right)$

Winning

- Play - single sequence of actions
- $\pi=s_{0}, d_{1}, s_{1}, d_{2}, \ldots$
- $\operatorname{In}(\pi)=\left\{s \in S \mid s=s_{n}\right.$ for infinitely many $\left.n\right\}$
- Player 0 wins the play if this infinite state sequence satisfies the acceptance condition of A
- $\operatorname{In}(\pi) \in \mathscr{F}$
- Otherwise Player 1 wins
- Game = set of plays

Winning strategy

- Automaton - all paths of the corresponding run meet the acceptance condition -> A accepts the tree
- Pathfinder - if there exists a path which violates the acceptance condition for every state sequence chosen by player 0 -> A rejects the tree

In other words:

- Automaton has winning strategy in $\mathrm{G}_{\mathrm{A}, \mathrm{t}} \Leftrightarrow \mathrm{t} \in L(A)$
- Pathfinder has winning strategy in $\mathrm{G}_{\mathrm{A}, \mathrm{t}} \Leftrightarrow \mathrm{t} \ddagger L(A)$

Game Positions

- A play is an infinite sequence of game positions which alternately belong to player 0 or player 1
- A game can be considered as a graph which consists of all game positions as vertices
- Edges between different positions indicate that the succeeding position is reachable from the preceding one by a valid action

Definitions - Game Positions

- Player 0 (should decide on transition):

$$
\mathrm{V}_{0}=\left\{(\mathrm{w}, \mathrm{q}) \mid \mathrm{w} \in\{0,1\}^{\star}, \mathrm{q} \in \mathrm{Q}\right\}
$$

- Player 1 (should decide on state):

$$
\mathrm{V}_{1}=\left\{(\mathrm{w}, \delta) \mid \mathrm{w} \in\{0,1\}^{\star}, \delta \in \Delta_{\mathrm{t}(\mathrm{w})}\right\}
$$

min-parity game

Game $\mathrm{G}_{\mathrm{A}, \alpha}$ for a parity automata $\mathrm{A}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{\mathrm{I}}, \mathrm{c}\right)$ and $\alpha \in \Sigma^{\omega}$ is a graph (V, E,C) that serves as an arena for the two players 0 and 1 .

The graph (V, E, C) is defined as follows:

- The set of vertices V can be partitioned into the two sets V0 and V1
- $\mathrm{V}_{0}=\mathrm{Q} \times \omega$
- $\mathrm{V}_{1}=\mathrm{Q} \times \mathrm{P}(\mathrm{Q}) \times \omega$
- The edge relation $\mathrm{E} \subseteq(\mathrm{V} 0 \times \mathrm{V} 1) \cup(\mathrm{V} 1 \times \mathrm{V} 0)$ is defined by
- $((q, i),(q, M, j)) \in E \Leftrightarrow j=i+1$ and $M \in \operatorname{Mod}(\delta(q, \alpha(i)))$
- $((\mathrm{p}, \mathrm{M}, \mathrm{i}),(\mathrm{q}, \mathrm{j})) \in \mathrm{E} \Leftrightarrow \mathrm{j}=\mathrm{i}, \mathrm{q} \in \mathrm{M}$, and $\mathrm{c}(\mathrm{q}) \in \mathrm{C}$

Graph example

- Game position $\mathrm{u}=(\mathrm{w}, \mathrm{q})$ of player 0
- Player 0 chooses a transition $\tau=\left(\mathrm{q}, \mathrm{t}(\mathrm{w}), \mathrm{q}_{0}, \mathrm{q}_{1}\right)$
- Game position $\mathrm{v}=(\mathrm{w}, \tau)$ of player 1
- Edge (u, v) then represents a valid move of player 0
- Player 1 chooses a direction $i \in\{0,1\}$
- Game position $\mathrm{u}^{\prime}=\left(\mathrm{w}_{\mathrm{i}} \mathrm{q}_{\mathrm{i}}^{\prime}\right)$ of player 0
- Edge (v, u') represents a valid move of player 1

Definition

We need to color the vertices (since it is a parity game):
The coloring function $\mathrm{C}: \mathrm{V}_{0} \cup \mathrm{~V}_{1} \rightarrow\{0,1, \ldots, \mathrm{k}\}$

- $\quad \forall(\mathrm{w}, \mathrm{q}) \in \mathrm{V}_{0}, \mathrm{C}((\mathrm{w}, \mathrm{q}))=\mathrm{c}(\mathrm{q})$
- $\quad \forall\left(w,\left(q, t(w), q_{0}, q_{1}\right)\right) \in V_{1}, C\left(\left(w,\left(q, t(w), q_{0}, q_{1}\right)\right)\right)=c(q)$

Why are we doing all of this?

- The game $G_{A, t}$ meet exactly the definition of min-parity game
- The notions of a strategy, a memoryless strategy and a winning strategy, as defined last lecture apply to the games $G_{A, t}$ as well

Lemma

A tree automaton A accepts an input tree $\mathrm{t} \Leftrightarrow$
There is a winning strategy for Player 0 from position $\left(\varepsilon, \mathrm{q}_{\mathrm{I}}\right)$ in the game $\mathrm{G}_{\mathrm{A}, \mathrm{t}}$

Proof - 1'st Direction

- A accepts the input tree $t \Rightarrow$ there exists an accepted run ρ
- The run ρ keeps track of all transitions that have to be chosen in order to accept the input tree t
- For any of the nodes $(\mathrm{w}, \mathrm{q}) \in \mathrm{V}_{0}$, where $\left(\mathrm{w}_{0}, \mathrm{q}_{0}\right)$ and $\left(\mathrm{w}_{1}, \mathrm{q}_{1}\right)$ are the immediate successors, we can derive the corresponding transition
- $\delta=\left(\mathrm{q}, \mathrm{t}(\mathrm{w}), \mathrm{q}_{0}, \mathrm{q}_{1}\right) \in \Delta$
- Since ρ determines for each node and each path the correct transition, Player 0 can always choose the right transition, independently of Player l's decisions
- He will always win
- (Player l's decide on the direction, but A accepts all the paths of t)

Proof - 2'nd Direction

- We can use the winning strategy f_{0} for player 0 in $G_{A, t}$ to construct a successful run of A on t
- For each game position $(\mathrm{w}, \mathrm{q}) \in \mathrm{V}_{0}$,
f_{0} determines the correct transition $\delta=\left(\mathrm{q}, \mathrm{t}(\mathrm{w}), \mathrm{q}_{0}, \mathrm{q}_{1}\right) \in \Delta$
- Player 0 must be prepared to proceed from both $\left(\mathrm{w}_{0}, \mathrm{q}_{0}\right)$ and ($\left.\mathrm{w}_{1}, \mathrm{q}_{1}\right)$ since he cannot predict player l's decision
- However, for both positions the winning strategy can determine correct transitions
- Hence we label w by $\mathrm{q}, \mathrm{w}_{0}$ by q_{0} and w_{1} by $\mathrm{q}_{1} \Rightarrow$ obtain the entire run ρ
- $\quad \rho$ is successful since it is determined by a winning strategy f_{0}

Winning Strategy

Known facts about parity games:

- Parity games are determined
- One of the players has a memoryless winning strategies
- Memoryless winning strategies are enough to win a game

In other words .

From any game position in $G_{A, t}$ either Player 0 or Player 1 has a memoryless winning strategy

The Complementation of Finite Tree Automata Languages

- Outline:
- Given a parity tree automaton A, we have to specify a tree automaton B that accepts all input trees rejected by A
- Rejecting means that there is no winning strategy for player 0 from position $\left(\epsilon, \mathrm{q}_{\mathrm{i}}\right)$ in the game $G_{A, t}$
- This guarantees the existence of a memoryless winning strategy starting at $\left(\mathrm{\epsilon}, \mathrm{q}_{\mathrm{i}}\right)$ for player 1
- We will construct an automaton that checks exactly this

Memoryless Strategy of Player 1

- Function $\mathrm{fl}:\{0,1\}^{\star} \mathrm{X} \Delta \rightarrow\{0,1\}$ determining a direction 0 (left successor) or 1 (right successor)
- There is a natural isomorphism between such functions and functions of the type $\mathrm{fl}:\{0,1\}^{\star} \rightarrow(\Delta \rightarrow\{0,1\})$
- fl is a tree (with functions as labels)
- We call such trees strategy trees
- If the corresponding strategy is winning for player 1 in the game $G_{A, t^{2}}$ we say it is a winning tree for t

Fact

From the previous definitions:
Let A be a parity tree automaton and t be an input tree.
There exists a winning tree s for player $1 \Leftrightarrow$ if A does not accept t

First step-

- $\quad \omega$-automaton M will decide if each path of t , using the strategy for player 1 defined by s (tree), will be accepted by A. If yes it accepts.
- M will need to check all the possible strategies for player 0
- As we saw -
- At least once A's acceptance condition is met $\Leftrightarrow s$ cannot be a winning tree for t
- M needs to handle all ω-words of the form

$$
u=\left(s(\varepsilon), t(\varepsilon), \pi_{1}\right)\left(s\left(\pi_{1}\right), t\left(\pi_{1}\right), \pi_{2}\right) \ldots
$$

Example

- Path $\pi=0110$... on t

- $\mathrm{f}: \Delta \rightarrow\{0,1\}$ (from s)
- $a \in \Sigma$
- $\mathrm{i} \in\{0,1\}(\mathrm{f}(\tau)=\mathrm{i})$

M - definitions

- $\mathrm{M}=\left(\mathrm{Q}, \Sigma^{\prime}, \Lambda, \mathrm{q}_{\mathrm{I}}, \mathrm{c}\right)$
- $\quad \Sigma^{\prime}=\{(\mathrm{f}, \mathrm{a}, \mathrm{i}) \mid \mathrm{f}: \Delta \rightarrow\{0,1\}, \mathrm{a} \in \Sigma, \mathrm{i} \in\{0,1\}\}$
- A and M have the same acceptance conditions
- Λ (transitions):
- For $(f, a, i) \in \Sigma$
- map ${ }_{\mathrm{a}}$ denotes the set of all mappings from Δ_{a} to $\{0,1\}$
- $\mathrm{f} \in$ map $_{\mathrm{a}^{\prime}}$, and $\tau=\left(\mathrm{q}, \mathrm{a}, \mathrm{q}^{\prime}, \mathrm{q}_{\mathrm{i}}^{\prime}\right) \in \Delta_{\mathrm{a}}$ such that $\mathrm{f}(\tau)=\mathrm{i}$
- M has a transition ($\mathrm{q},(\mathrm{f}, \mathrm{a}, \mathrm{i}), \mathrm{q}_{\mathrm{i}}$)

M - informally

- The automaton M has to check for each possible move of Player 0 if the outcome is winning for Player 0
- M uses the same acceptance condition as A
- It will accept if the run on a path is consistent with s and will be accepted by A
- If M won't accept an ω-word u it means that player 1 win
- Since M checked all the options for player 0 and non of them worked

Lemma

The tree s is a winning tree for $\mathrm{t} \Leftrightarrow \mathrm{L}(\mathrm{s}, \mathrm{t}) \cap \mathrm{L}(\mathrm{M})=\varnothing$

- Language of $\mathrm{L}(\mathrm{s}, \mathrm{t})$ - all the possible paths that player 1 can choose, while using strategy s
- Language of $\mathrm{L}(\mathrm{M})$ - all the paths which are good for player 0 and consistent with player l's strategy
- If $L(s, t) \cap L(M)=\varnothing$ then all the paths in t which are consistent with s will make player 1 win
- i.e., s is a winning strategy for player 1

Why is M usefull?

- The word automaton M accepts all sequences over Σ which satisfy A's acceptance condition
- In order to construct B, we first of all generate a word automaton S such that $L(S)=\Sigma^{\prime} \backslash L(M)$
- We'll use Safra's construction (chapter 3)

Building S

- We can transform M to a Buchi-automaton
- By Safra, we can build deterministic Rabin automaton that accepts L(M)
- The Streett condition is the negation of the Rabin condition
- Finally
- Word automaton $S=\left(Q^{\prime}, \Sigma^{\prime}, \delta, q_{r}^{\prime}, \Omega\right)$
- $\quad \mathrm{L}(\mathrm{S})=\Sigma^{\prime} \backslash \mathrm{L}(\mathrm{M})$

Building B from S

- B will run S in parallel along each path of an input tree
- The transition relation of B is defined by
- $\left(\mathrm{q}, \mathrm{a}, \mathrm{q}_{0}, \mathrm{q}_{1}\right) \in \Delta^{\prime} \Leftrightarrow$ there exist transitions in S
- $\delta\left(q_{,}(f, a, 0)\right)=q_{0}$
- $\quad \delta\left(q_{,}(f, a, l)\right)=q_{1}$

Final Theorem:

The class of languages recognized by finite-state tree automata is closed under complementation

It remains to be shown that indeed $T(B)=T_{\Sigma^{\prime}}^{\oplus} \backslash T(A)$

Proof - 1'st Direction

- We assume $t \in T(B)$
- There exists an accepting run ρ of B on t
- For each path $\pi=\pi_{1} \pi_{2} . . \in\{0,1\}^{\omega}$ the corresponding state sequence satisfies B's acceptance condition
- There are transitions of S
- $\delta\left(q_{q},(s(w), t(w), 0)\right)=q_{1}$
- $\delta\left(q_{q},(s(w), t(w), 1)\right)=q_{2}$
- And the corresponding transition of $\mathrm{B}\left(\mathrm{q}, \mathrm{t}(\mathrm{w}), \mathrm{q}_{1}, \mathrm{q}_{2}\right)$
- Player 1 is the winner \Rightarrow all words $u \in L(s, t)$ are accepted by S
- Since $L(S)=\Sigma^{\prime} \backslash L(M) \Rightarrow L(s, t) \cap L(M)=\varnothing$
- By the previous lemma -s is a winning tree for Player 1
- A does not accept t

Proof-2'st Direction

- We assume $t \notin \mathrm{~T}$ (A)
- There exists a winning tree s for tree t of player 1
- $\mathrm{L}(\mathrm{s}, \mathrm{t}) \cap \mathrm{L}(\mathrm{M})=\varnothing$
- $\mathrm{L}(\mathrm{s}, \mathrm{t}) \subseteq \mathrm{L}(\mathrm{S})\left(\right.$ since $\left.\mathrm{L}(\mathrm{S})=\Sigma^{\prime} \backslash \mathrm{L}(\mathrm{M})\right)$
- For each path $\pi=\pi_{1} \pi_{2} \ldots \in\{0,1\}^{\omega}$ there exists a run on the ω-word $\mathrm{u}=\left(\mathrm{s}(\varepsilon), \mathrm{t}(\varepsilon), \pi_{1}\right)(\mathrm{s}(\pi 1), \mathrm{t}(\pi 1), \pi 2) \cdots \in \mathrm{L}(\mathrm{s}, \mathrm{t})$ that satisfies Ω (of automata S)
- By construction of B there exists an accepting run of B on t
- $t \in T(B)$

So?

1. From A (tree automaton) we built M (words automaton)
2. From M we built S such that $\mathrm{L}(\mathrm{S})=\Sigma^{\prime} \backslash \mathrm{L}(\mathrm{M})$
3. From S we built B

Outline

- Motivation
- Infinite binary tree
- Finite-State Tree Automata
- Examples
- Buchi tree automata Vs. Muller tree automata
- The Complementation Problem for Automata on Infinite Trees
- Game theoretical approach
- Complementation proof

elete

670

