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So far

Consume infinite sequences of

alphabet symbols (®-words)




Today

Finite-state automata

which process infinite trees
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First of all - WHY?

® Tree automata are similar to logical theories —
Reduce problems in to problems for automata.

® Tree automata are more suitable than words when
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Definitions -

o Tw=]0, 1}>X< of all finite words on {0,1}

e Elementsu € TOJ are the nodes of Tm:
o) € - root

o u,u - immediate successors of node u

e Again:) / N\
o Left-U0 00 01
o Right-Ul i §




Definitions -

o -o-word T € {0,1}°
e Set Pre<(m) C [0,1}" of all prefixes of path «

o  Describes the set of nodes which occur in &t

e Example:
o  The rightmost path in the tree is 7 = 1o

o All the prefixes of this path are:
o  Pre<(m) =1{¢1,11,111,1111, ..} = {1}




Definitions -

o Jetuv E Tw,thenvisa of u, if there exists w € T such that v=uw
e Denotedbyu<v

e Example:
o 01 is successor of 0
o 101 is successor of 1\ 10




Definitions -

® OQur tree can be
e X isalphabet
e Amappingt: To — X
o  Maps each node of To to a symbol in

Ezample 8.1. Let X = {a,b}, t(¢) = a, t(w0) = a and t(wl) = b, w € {0,1}*.

01
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Definitions -

e Until now, automata consume one input symbol at a time

o  Enter a successor state determined by a transition relation

o &QxxXx—-Q

e Now, we want to run automata on infinite trees
e The
o &QxX—-QxQ



Definitions -
Tree automaton is of the form A = (Q,Z,S,qO,F ), where:

Q is finite set of states

X is a finite alphabet

§ & (Qx2X)x(QxQ)is the transition function
q, is the initial state

F is the acceptance component



Definitions -

e Computations start at the root of an input tree and work through the input on
each path in parallel

e A transition (q,a,q,,q,) allows to pass from state q at node u with label a

ie. t(u) = a, to the states q,,q, at the successor nodes ug,u,



Definitions -

Assignment of states to the tree nodes

e p:{0,1}* > Q with:

o pe)=q,
o (p(u),t(u),p(u,).p(u)) € o6 for allu € {0,1}*

e Example:

© (qpa,q,9,)
°  (qyb.q;,)
o (qpa9.9))
o (q;b.q..,)




Definitions -

e Successful run
o  Each path of the p is successful with respect to acceptance condition

® Acceptance conditions:

o Buchi
o  Muller
o Rabin
o Parity
° of an automaton A with alphabet X, is the set of X-trees which are
accepted by A

o Denoted L(A)



Buchi Tree Automaton

e Tree automaton A = (Q,Z,S,qO,F ) accepts tree t if there exists a run p of A on t,
such that on EACH PATH of p, a state from F occurs infinitely times

What about Muller?

e For each path n € {0,1]® the Muller acceptance condition is satisfied
o Inf(plnt) € F
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Starting Windows

Microsoft Corporation



Examples (1)

L(A) is the set of all Z-trees having at least one b on every branch

Let’s look on every path separately . m
F=1{q}
e Transition function m b m

o (qya.9,49,)

d
: ng:chch?>) b ntf |om
(@)

(q,,b.9,,9,)



Examples (1)

L(A) is the set of all Z-trees having at least one b on every branch

Let’s look on every path separately . m

F=1{q} m m

e Transition function
(q,:2,9,,9,)

b a
(@)
o (q,a,q.q,) b - e 6
o (q,b,q,q,)

a



Examples (2)

L(A2) is the set of all Z-trees which have at least one branch with infinitely many b’s

d

e Q={q,q,9,1

o F=iq,q,l m

e Transition relation: a b




Examples (2)

L(A2) is the set of all Z-trees which have at least one branch with infinitely many b’s

Non deterministic

[

e Q=iq,9,49.1l

e F={q,.q,1l m
o

Transition relation: a b




Examples (3)

L(A3) is the set of all X-trees having infinitely many a’s on every branch

Buchi tree automata A3:

e Q=iq,q,l

e Initial state - q_

e F={ql

e Transition function

° (9,24,49,)
° (9y29,9,)
° (q,b,qqy)
° (qyb,qy qy)



Examples (4)

L(A4%) is the set of Z-trees in which every branch contains only finitely many b’s

Muller tree automata A4:

e Q= {qa7qb}
e Initial state - q_
e F={qll
e Transition function (the same as Example 3)
° (q,29,q,)
o (q2q,q,
°© (q,b q,q,)
o (qyb,qq)

e Isit the same as Example 3?



Examples (5)

L(A5) is the set of all X-trees having at least one path m through t such that
tlm € (a+b)*(ab)®

We will use muller

A5 memorizes in its state the last read input symbol

A5 switches back to the initial state g, if he get unexpected symbol

Infinite alternation between a state q_ memorizing input symbol a and a state q,
memorizing b

e A will guess a path through t and checks, if the label of this path belongs to (a+b)*
(ab)”



Examples (5)

o - decide whether the left or the right successor node of the input tree
belongs to the path
® q,signals that we are outside the guessed path

e A=(q.q,q,,q,l la bld, q,llq,q.l Iq,D

Initial - (q;, a, q,, 4,) \ (qp, a, 94, 9,)\ (q;, b, gy, 9) \ (q;, b, 4, )

For q, - (q 2, q4 qy) \ (qy b, g, q)

Change letter - (q, b, q.,q) \ (q,b,q, q.) \ (q,,a 9,99\ (q,,aq;q,)
Same letter - (q_, a, q,, q) \ (q_, a, 9, q) \ (q,, b, q,, q) \ (q,, b, 9., q)

O O o o -



Examples (5)

There is no situation where Inf (pn) =

o {iq,ll
e {iglt \ liqliql}
e fiqlt \ [liqlLiqH}
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Theorem 1

Buchi tree automata are strictly weaker than Muller tree automata

e In Hebrew: There exists a Muller tree automaton recognizable language which is
not Buchi tree automaton recognizable

Proof

e The language
o T=[t € Tlab}l | any path through t carries only finitely many b}

can obviously be recognized by a Muller tree automaton (example 4)



Theorem 1 (proof)

e Assume for contradiction that T is recognized by a Buchi tree automaton
B = (Q7298)q19F)
e Jetn=|F|+1
e Consider the following tree: T {h w € (1+0) for i € {1....,n}

a else




Theorem 1 (proof)

Because the automata accepts t:

Path 1° - a final state is visited say at 1™°
Path 1m°01° - a final state is visited say at 1™°01™

Proceeding in this way we obtain n + 1 positions -

V=170, V_=1m%01™, ..., V_=1m°01™'0..1™" that get to final state
For certain i <j, the same state appears at V. and V
Between V. and V at least one label b (by our constructlon)



Theorem 1 (proof)

We now construct another input tree t’ by infinite repetition of the path from V. to V.

(1)

e This tree contains an infinite path which carries infinitely many b’s, thus t” & T

e We can easily construct a successful run on t’ by copying the actions of m infinitely
often =t €T

e Contradiction



Theorem 2

Muller, parity, Rabin and Streett tree automata all recognize the same tree languages



Parity Tree Automaton

® Tree automaton A = (Q,Z,B,qO,C)

e Coloring C: Q -> {0,....k}

® Accepts tree t if there exists a run p of A on t such that on EACH PATH of p, the
maximal color assumed infinitely often is even

e Example:

o  Automata that recognize trees that each path of them has only finitely many b
o Useq_and q to signal the letters a,b

o C(q,)=0,C(q,)=1

o  The maximal color is even <> the letter b occurs finitely often on the path
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Parity Tree Automaton

® Tree automaton A = (Q,Z,B,qO,C)

e Coloring C: Q -> {0,....k}

® Accepts tree t if there exists a run p of A on t such that on EACH PATH of p, the
maximal color assumed infinitely often is even

e Example:

o  Automata that recognize trees that each path of them has only finitely many b
Use q, and q, to signal the letters a,b

C(qa) — (0]} C(qb) —

The maximal color is even <> the letter b occurs finitely often on the path

o O O



Closure under complementation

e \We will now show closure under complementation for tree languages acceptable

by parity tree automata
o and hence acceptable by Muller tree automata

e For every automata A=(S,T.7,,¥), there is an automata A'=(S",T',T,,,#’) such that:
VEL(A") @ veL(A)
e We identify a parity tree automaton A = (Q,2,0,9,,¢) and an input tree t with an

infinite GA,t



Rules

e The players move alternately

e Player O ( ): picking transition from A such that the alphabet symbol of
this transition equals that at the current node

e Player1 ( ): determines whether to proceed with the left or the right
successor

e Example



Run Example

A:

(qI c b, qb g qb) a . Pla}rer_ 0: Y 0 _ Pla}rer. 1:

(qp. 3, q;, qp) /
(qb> b, 9 qb) ”
439, 9) % 7L #
(q,3,9,9,)
(q, b, q,,qy)




Winning

° - single sequence of actions

o .717=So,d1,S1,d2,...
o In(r) =1{sES|s=s_forinfinitely many n}
e Player 0 if this infinite state sequence satisfies the acceptance

condition of A
o In(m) ed
e Otherwise Player 1 wins
e Game = set of plays




Winning strategy

° - all paths of the corresponding run meet the acceptance condition ->
A accepts the tree

° - if there exists a path which violates the acceptance condition for
every state sequence chosen by player 0 -> A rejects the tree

In other words:

e Automaton has winning strategy in G, & t € L(A)
e Pathfinder has winning strategy in G, < t & L(A)




Game Positions

e A play is an infinite sequence of game positions which alternately belong to player
0 or player 1

e A game can be considered as a which consists of all game positions as
vertices

e Edges between different positions indicate that the succeeding position is
reachable from the preceding one by a valid action



Definitions - Game Positions

e Player 0 (should decide on transition):

V, = l(wq)lw € {0.1}.q € Q]

e Player 1 (should decide on state):

V,=[(wd)lw € {0115 € A |



min-parity game

Game G, for a parity automata A = ( Q,%,6,9,,C) and o € X®is a graph (V, E,C) that
serves as an arena for the two players 0 and 1.

The graph (V, E,C) is defined as follows:

e The set of vertices V can be partitioned into the two sets VO and V1
o V,=Qxo
o V,=QxP(Q)xw
® The edge relation E & (VO x V1) U (V1 x VO0) is defined by
o ((q,i),(qM,j)) e E<j=i+1and M € Mod(d(q,a(i)))
o ((pM,i),(q,j)) e Ee=j=i,q€ M,andc(q) € C



Graph example

Game position u = (w,q) of player 0

Player 0 chooses a transition t = (q,t(w),qo,ql)
Game position v = (w,t) of player 1

Edge (u,v) then represents a valid move of player O
Player 1 chooses a direction i € {0,1}

Game position u’ = (w,,q’,) of player 0

Edge (v,u’) represents a valid move of player 1



Definition
We need to color the vertices (since it is a parity game):
The C.V, UV, —1{0],..k}

e V(wgq) €V, C({w,q))=c(q)
o V(w,(qtw)q,q)) €V,,Clw,(q,t(w),q,q,))) =c(q)

Why are we doing all of this?

e The game G, meet exactly the definition of min-parity game
e The notions of a strategy, a memoryless strategy and a winning strategy, as
defined last lecture apply to the games G,  as well



lemma

A tree automaton A accepts an input tree t <

There is a winning strategy for Player 0 from position (g, q;) in the game G, |



Proof - 1'st Direction

® A accepts the input tree t = there exists an accepted run p
e The run p keeps track of all transitions that have to be chosen in order to accept the
input tree t
e For any of the nodes (w,q) € Vi, where (w,.q,) and (w,.q,) are the immediate
successors, we can derive the corresponding transition
o 0= (q,t(w),qo,ql) e A
e Since p determines for each node and each path the correct transition,
, independently of Player 1’s decisions
e He will always win
e (Player I's decide on the direction, but A accepts all the paths of t)



Proof - 2'nd Direction

® We can use the winning strategy f for player 0 in G, , to construct a successful run
of Aont

e For each game position (w,q) € VO,
f0 determines the correct transition 6 = (q.t(w),q,,q,) € A

e Player 0 must be prepared to proceed from both (w,q,) and (w,,q,) since he cannot
predict player 1's decision

e Hence we label w by q, w, by q, and w, by q, => obtain the entire run p
® p is successful since it is determined by a winning strategy f,



Winning Strategy

Known facts about parity games:

e Parity games are determined

o  One of the players has a memoryless winning strategies

e Memoryless winning strategies are enough to win a game

From any game position in G
strategy

ap €ither Player 0 or Player 1 has a memoryless winning



The Complementation of Finite Tree Automata Languages

e Qutline:

e Given a parity tree automaton A, we have to specify a tree automaton B that accepts
all input trees rejected by A

o means that there is no winning strategy for player 0 from position (€,q,)
in the game G, |

e This guarantees the existence of a memoryless winning strategy starting at (¢,q.) for
player 1

e We will construct an automaton that checks exactly this



Memoryless Strategy of Player 1

e Function f1:]0,1}" X A — [0,1}] determining a direction 0 (left successor) or 1
(right successor)

e There is a natural isomorphism between such functions and functions of the type
f1:i0,1}" - (A — {0,1})

e flisa tree (with functions as labels)

e We call such trees

e [f the corresponding strategy is winning for player 1 in the game G, , we say itisa

Ayp



Fact

From the previous definitions:
Let A be a parity tree automaton and t be an input tree.

There exists a winning tree s for player 1 <=> if A does not accept t



First step -

e o-automaton /! will decide if each path of t, using the strategy for player 1
defined by s (tree), will be accepted by A. If yes it accepts.

e M will need to check all the possible strategies for player 0

e Aswe saw -

o  Atleast once A’s acceptance condition is met < s cannot be a winning tree for t

e M needs to handle all ®-words of the form
u = (s(e), t(e), m ) (s(m)), t(m), 7,)...



Example

e Pathnt=0110...0ont

fo110

t(0110)
0

o f:A—10,1} (froms)
® a & X
o i< |01}



M - definitions

M= (Q,E’,A,ql,c)
X ={(f,a,i)|f:A—{0,1},a € X,i € {0, 1}}
A and M have the same acceptance conditions
A (transitions):
For (f,aji) € ¥

o map, denotes the set of all mappings from A_ to {0, 1}

o f & map,andt=(qa,q,q,) € A_such thatf(r) =i
© M has a transition (q, (f, a,1), q)



M - informally

® The automaton M has to check for each possible move of Player 0 if the outcome
is winning for Player 0
e M uses the same acceptance condition as A
o Itwill if the run on a path is consistent with s and will be accepted by A

e [f M won't accept an o-word u it means that
o  Since M checked all the options for player 0 and non of them worked



lemma

The tree s is a winning tree for t & L(s,t) N L(M) = @

o - all the possible paths that player 1 can choose, while using

strategy s
° - all the paths which are good for player 0 and consistent with

player 1's strategy

o IfL(s,t) N L(M) = O then all the paths in t which are consistent with s will make
player 1 win

o le,sisawinning strategy for player 1



Why is M usefull?

e The word automaton M accepts all sequences over X which satisfy A's acceptance
condition

e In order to construct B, we first of all generate a such that
L(S) =2\ L(M)
e We’ll use Safra’s construction (chapter 3)



Building S

We can transform M to a Buchi-automaton
By Safra, we can build deterministic Rabin automaton that accepts L(M)
The Streett condition is the negation of the Rabin condition

Finally
o  Word automaton S = (Q’,%’, 9, qp<2)
o L(S)=2\L(M)



Building B from S

e B will run S in parallel along each path of an input tree
e The transition relation of B is defined by
° (q,a,qo,ql) € A’ & there exist transitions in S

o 04(q,(fa,0))= d
o d(q,(fal))= q,

The class of languages recognized by finite-state tree automata is closed under
complementation

It remains to be shown that indeed T(B) = T, \ T(A)



Proof - 1'st Direction

e Weassumet € T (B)

e There exists an accepting run p of Bon t

e For each path n=mnm,.. € {0,1}” the corresponding state sequence satisfies B's
acceptance condition

e There are transitions of S
o 3(q, (s(w), t(w), 0)) = q,
o 8(q, (s(w), t(w), 1)) =q,
And the corresponding transition of B (g, t(w), dp 9,)
Player 1 is the winner = all words u & L(s, t) are accepted by S
Since L(S) =¥\ L(M) = L(s,t) N L(M) =2
By the previous lemma - s is a winning tree for Player 1



Proof - 2'st Direction

We assume t GfE T (A)
There exists a winning tree s for tree t of player 1
L(s,t) NL(M) =9
L(s,t) & L(S) (since L(S) =¥\ L(M))
For each path t = nm, - € 10,11° there exists a run on the ®-word
u = (s(e), t(e), m )(s(ml), t(nl), n2) - - - € L(s, t) that satisfies Q (of automata

S)
e By construction of B there exists an accepting run of B on t



So0?

1. From A (tree automaton) we built M (words automaton)
2. From M we built S such that L(S) =X\ L(M)
3. From S we built B
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