
Non Deterministic Tree
Automata

By: Or Kamara

From: Nondeterministic Tree Automata in Automata, Logic and infinite games, edited by Gradel, Thomas and Wilke

(chapter 8)

So far
Word automata -

Consume infinite sequences of

 alphabet symbols (ω-words)

Today
Tree automata -

Finite-state automata

which process infinite trees

Outline
● Motivation

● Infinite binary tree

● Finite-State Tree Automata

● Examples

● Buchi tree automata Vs. Muller tree automata

● The Complementation Problem for Automata on Infinite Trees

○ Game theoretical approach

○ Complementation proof

First of all - WHY?
● Tree automata are similar to logical theories →

Reduce problems in logic to problems for automata.

● Tree automata are more suitable than words when non-determinism needs to be

modeled.

Outline
● Motivation

● Infinite binary tree

● Finite-State Tree Automata

● Examples

● Buchi tree automata Vs. Muller tree automata

● The Complementation Problem for Automata on Infinite Trees

○ Game theoretical approach

○ Complementation proof

Definitions - infinite binary tree
● Tω = {0, 1}

∗
 of all finite words on {0,1}

● Elements u ∈ Tω are the nodes of Tω:

○ ε - root

○ u

0

, u

1

 - immediate successors of node u

● Again :)

○ Left - U0

○ Right - U1

Definitions - infinite binary tree
● Path - ω-word π ∈ {0,1}

ω

● Set Pre<(π) ⊂ {0,1}

⋆
 of all prefixes of path π

○ Describes the set of nodes which occur in π

● Example:

○ The rightmost path in the tree is π = 1ω
○ All the prefixes of this path are:

○ Pre<(π) = {ϵ,1,11,111,1111, ...} = {1}

⋆

Definitions - infinite binary tree
● Let u,v ∈ Tω, then v is a successor of u, if there exists w ∈ Tω such that v = uw

● Denoted by u < v

● Example:

○ 01 is successor of 0

○ 101 is successor of 1 \ 10

Definitions - infinite binary tree
● Our tree can be labeled

● Σ is alphabet

● A mapping t: Tω → Σ

○ Maps each node of Tω to a symbol in Σ

Outline
● Motivation

● Infinite binary tree

● Finite-State Tree Automata

● Examples

● Buchi tree automata Vs. Muller tree automata

● The Complementation Problem for Automata on Infinite Trees

○ Game theoretical approach

○ Complementation proof

Definitions - Finite-State Tree Automata
● Until now, automata consume one input symbol at a time

○ Enter a successor state determined by a transition relation

○ δ: Q × Σ → Q

● Now, we want to run automata on infinite trees

● The transition function:

○ δ: Q × Σ → Q x Q

Definitions - Finite-State Tree Automata
Tree automaton is of the form A = (Q,Σ,δ,q

0

,F), where:

● Q is finite set of states

● Σ is a finite alphabet

● δ ⊆ (Q × Σ) × (Q × Q) is the transition function

● q

0

 is the initial state

● F is the acceptance component

Definitions - Finite-State Tree Automata
● Computations start at the root of an input tree and work through the input on

each path in parallel

● A transition (q,a,q

1

,q

2

) allows to pass from state q at node u with label a

i.e. t(u) = a, to the states q

1

,q

2

 at the successor nodes u

0

,u

1

Definitions - RUN
Assignment of states to the tree nodes

● ρ: {0,1}* -> Q with:

○ ρ(ε) = q

0

○ (ρ(u),t(u),ρ(u

0

),ρ(u

1

)) ∈ δ for all u ∈ {0,1}*

● Example:

○ (q

0

,a,q

0

,q

0

)

○ (q

0

,b,q

1

,q

0

)

○ (q

1

,a,q

1

,q

1

)

○ (q

1

,b,q

1

,q

1

)

Definitions - run
● Successful run

○ Each path of the ρ is successful with respect to acceptance condition

● Acceptance conditions:

○ Buchi

○ Muller

○ Rabin

○ Parity

● Language of an automaton A with alphabet Σ, is the set of Σ-trees which are

accepted by A

○ Denoted L(A)

Buchi Tree Automaton
● Tree automaton A = (Q,Σ,δ,q

0

,F) accepts tree t if there exists a run ρ of A on t,

such that on EACH PATH of ρ, a state from F occurs infinitely times

What about Muller?

● For each path π ∈ {0,1}

ω
 the Muller acceptance condition is satisfied

○ Inf (ρ|π) ∈ F

Outline
● Motivation

● Infinite binary tree

● Finite-State Tree Automata

● Examples

● Buchi tree automata Vs. Muller tree automata

● The Complementation Problem for Automata on Infinite Trees

○ Game theoretical approach

○ Complementation proof

Examples (1)
L(A) is the set of all Σ-trees having at least one b on every branch

Let’s look on every path separately

● F = {q

1

}

● Transition function

○ (q

0

,a,q

0

,q

0

)

○ (q

0

,b,q

1

,q

1

)

○ (q

1

,a,q

1

,q

1

)

○ (q

1

,b,q

1

,q

1

)

a

b

b b

a

… …

a b

q0

q0

q1 q1

q0

q0 q0

q1 q1

Examples (1)
L(A) is the set of all Σ-trees having at least one b on every branch

Let’s look on every path separately

● F = {q

1

}

● Transition function

○ (q

0

,a,q

0

,q

0

)

○ (q

0

,b,q

1

,q

1

)

○ (q

1

,a,q

1

,q

1

)

○ (q

1

,b,q

1

,q

1

)

a

b

b a

a

b a

a a

q0

q0

q1 q1

q0

q0 q0

q0 q0

Examples (2)
L(A2) is the set of all Σ-trees which have at least one branch with infinitely many b’s

● Q = {q

a

,q

b

,q

+

}

● F = {q

b

,q

+

}

● Transition relation:

qa
a

a

a b

b

… …

a a

qa +q

+q

+q +q

+q+qqa

Examples (2)
L(A2) is the set of all Σ-trees which have at least one branch with infinitely many b’s

● Non deterministic

● Q = {q

a

,q

b

,q

+

}

● F = {q

b

,q

+

}

● Transition relation:

qa
a

a

a b

b

… …

a a

qa+q

+q
qb

qb+q+q+q

Examples (3)

Buchi tree automata A3:

● Q = {q

a

,q

b

}

● Initial state - q

a

● F = {q

a

}

● Transition function

○ (q

a

, a, q

a

, q

a

)

○ (q

b

, a, q

a

, q

a

)

○ (q

a

, b, q

b

, q

b

)

○ (q

b

, b, q

b

, q

b

)

L(A3) is the set of all Σ-trees having infinitely many a’s on every branch

Examples (4)
L(A4) is the set of Σ-trees in which every branch contains only finitely many b’s

Muller tree automata A4:

● Q = {q

a

,q

b

}

● Initial state - q

a

● F = {{q

a

}}

● Transition function (the same as Example 3)

○ (q

a

, a, q

a

, q

a

)

○ (q

b

, a, q

a

, q

a

)

○ (q

a

, b, q

b

, q

b

)

○ (q

b

, b, q

b

, q

b

)

● Is it the same as Example 3?

Examples (5)
L(A5) is the set of all Σ-trees having at least one path π through t such that

t|π ∈ (a + b)

∗
(ab)

ω

● We will use muller

● A5 memorizes in its state the last read input symbol

● A5 switches back to the initial state q

I

 if he get unexpected symbol

● Infinite alternation between a state q

a

 memorizing input symbol a and a state q

b

memorizing b

● A will guess a path through t and checks, if the label of this path belongs to (a+b)

∗

(ab)

ω

Examples (5)
● Guess - decide whether the left or the right successor node of the input tree

belongs to the path

● q

d

 signals that we are outside the guessed path

● A = ({q

I

, q

a

, q

b

, q

d

}, {a, b},δ, q

I

, {{q

a

, q

b

}, {q

d

}})

● δ:

○ Initial - (q

I

, a, q

a

, q

d

) \ (q

I

, a, q

d

, q

a

) \ (q

I

, b, q

b

, q

d

) \ (q

I

, b, q

d

, q

b

)

○ For q

d

 - (q

d

, a, q

d

, q

d

) \ (q

d

, b, q

d

, q

d

)

○ Change letter - (q

a

, b, q

b

, q

d

) \ (q

a

, b, q

d

, q

b

) \ (q

b

, a, q

a

, q

d

) \ (q

b

, a, q

d

, q

a

)

○ Same letter - (q

a

, a, q

I

, q

d

) \ (q

a

, a, q

d

, q

I

) \ (q

b

, b, q

I

, q

d

) \ (q

b

, b, q

d

, q

I

)

Examples (5)
There is no situation where Inf (ρ|π) =

● {{q

d

}}

● {{q

a

}} \ {{q

a

},{q

d

}}

● {{q

b

}} \ {{q

b

},{q

d

}}

Outline
● Motivation

● Infinite binary tree

● Finite-State Tree Automata

● Examples

● Buchi tree automata Vs. Muller tree automata

● The Complementation Problem for Automata on Infinite Trees

○ Game theoretical approach

○ Complementation proof

Theorem 1
Buchi tree automata are strictly weaker than Muller tree automata

● In Hebrew: There exists a Muller tree automaton recognizable language which is

not Buchi tree automaton recognizable

Proof

● The language

○ T = {t ∈ T{a,b} | any path through t carries only finitely many b}

can obviously be recognized by a Muller tree automaton (example 4)

Theorem 1 (proof)
● Assume for contradiction that T is recognized by a Buchi tree automaton

B = (Q,Σ,δ,q

I

,F)

● Let n = |F| + 1

● Consider the following tree:

Theorem 1 (proof)
● Because the automata accepts t:

● Path 1

ω
 - a final state is visited say at 1

m0

● Path 1

m0

01

ω
 - a final state is visited say at 1

m0

01

m1

●

● Proceeding in this way we obtain n + 1 positions -

● V

0

=1

m0

, V

2

=1

m0

01

m1

, … , V

n

=1

m0

01

m1

0…1

mn

 that get to final state

● For certain i < j, the same state appears at V

i

 and V

j

● Between V

i

 and V

j

 - at least one label b (by our construction)

Theorem 1 (proof)
We now construct another input tree t’ by infinite repetition of the path from V

i

 to V

j

(π)

● This tree contains an infinite path which carries infinitely many b’s, thus t’ ∈ T

● We can easily construct a successful run on t’ by copying the actions of π infinitely

often ⇒ t’ ∈ T

● Contradiction

Theorem 2
Muller, parity, Rabin and Streett tree automata all recognize the same tree languages

Parity Tree Automaton
● Tree automaton A = (Q,Σ,δ,q

0

,C)

● Coloring C: Q -> {0,....,k}

● Accepts tree t if there exists a run ρ of A on t such that on EACH PATH of ρ, the

maximal color assumed infinitely often is even

● Example:

○ Automata that recognize trees that each path of them has only finitely many b

○ Use q

a

 and q

b

 to signal the letters a,b

○ C(q

a

) = 0, C(q

b

) = 1

○ The maximal color is even ⇐> the letter b occurs finitely often on the path

Outline
● Motivation

● Infinite binary tree

● Finite-State Tree Automata

● Examples

● Buchi tree automata Vs. Muller tree automata

● The Complementation Problem for Automata on Infinite Trees

○ Game theoretical approach

○ Complementation proof

Parity Tree Automaton
● Tree automaton A = (Q,Σ,δ,q

0

,C)

● Coloring C: Q -> {0,....,k}

● Accepts tree t if there exists a run ρ of A on t such that on EACH PATH of ρ, the

maximal color assumed infinitely often is even

● Example:

○ Automata that recognize trees that each path of them has only finitely many b

○ Use q

a

 and q

b

 to signal the letters a,b

○ C(q

a

) = 0, C(q

b

) = 1

○ The maximal color is even ⇐> the letter b occurs finitely often on the path

Closure under complementation
● We will now show closure under complementation for tree languages acceptable

by parity tree automata
○ and hence acceptable by Muller tree automata

● For every automata A=(, , 0,ℱ), there is an automata A′=(′, ′, 0′,ℱ′) such that:

∈ (′) ⇔ ∉ ()

● We identify a parity tree automaton A = (Q,Σ,δ,qI,c) and an input tree t with an
infinite two-person game GA,t

Rules
● The players move alternately

● Player 0 (Automaton): picking transition from Δ such that the alphabet symbol of

this transition equals that at the current node

● Player 1 (Pathfinder): determines whether to proceed with the left or the right

successor

● Example

Run Example
Δ:

● (q

I

, b, q

b

, q

b

)

● (q

I

, a, q

I

, q

I

)

● (q

b

, b, q

b

, q

b

)

● (q

b

, a, q

a

, q

a

)

● (q

a

, a, q

a

, q

a

)

● (q

a

, b, q

b

, q

b

)

Winning
● Play - single sequence of actions

○ =s

0

,

1

,

1

,

2

,…

● () = { ∈ | = }

● Player 0 wins the play if this infinite state sequence satisfies the acceptance

condition of A

○ () ∈ ℱ

● Otherwise Player 1 wins

● Game = set of plays

Winning strategy
● Automaton - all paths of the corresponding run meet the acceptance condition ->

A accepts the tree

● Pathfinder - if there exists a path which violates the acceptance condition for

every state sequence chosen by player 0 -> A rejects the tree

In other words:

● Automaton has winning strategy in G

A,t

⇔ t ∈ ()

● Pathfinder has winning strategy in G

A,t

⇔ t ∉ ()

Game Positions
● A play is an infinite sequence of game positions which alternately belong to player

0 or player 1

● A game can be considered as a graph which consists of all game positions as

vertices

● Edges between different positions indicate that the succeeding position is

reachable from the preceding one by a valid action

Definitions - Game Positions
● Player 0 (should decide on transition):

V

0

 = {(w,q)|w ∈ {0,1}

⋆
,q ∈ Q}

● Player 1 (should decide on state):

V

1

 = {(w,δ)|w ∈ {0,1}

⋆
,δ ∈ Δ

t(w)

}

min-parity game
Game G

A,α for a parity automata A = (Q,Σ,δ,q

I

,c) and α ∈ Σω is a graph (V, E,C) that

serves as an arena for the two players 0 and 1.

The graph (V, E,C) is defined as follows:

● The set of vertices V can be partitioned into the two sets V0 and V1

○ V

0

 = Q × ω
○ V

1

 = Q ×P(Q) × ω

● The edge relation E ⊆ (V0 × V1) ∪ (V1 × V0) is defined by

○ ((q, i), (q,M, j)) ∈ E ⇔ j = i + 1 and M ∈ Mod(δ(q,α(i)))

○ ((p,M, i), (q, j)) ∈ E ⇔ j = i, q ∈ M, and c(q) ∈ C

Graph example
● Game position u = (w,q) of player 0

● Player 0 chooses a transition τ = (q,t(w),q

0

,q

1

)

● Game position v = (w,τ) of player 1

● Edge (u,v) then represents a valid move of player 0

● Player 1 chooses a direction i ∈ {0,1}

● Game position u’ = (w

i

,q’

i

) of player 0

● Edge (v,u’) represents a valid move of player 1

Definition
We need to color the vertices (since it is a parity game):

The coloring function C: V

0

 ∪ V

1

 → {0,1, ...,k}

● ∀(w,q) ∈ V

0

, C((w,q)) = c(q)

● ∀(w,(q,t(w),q

0

,q

1

)) ∈ V

1

 , C((w,(q,t(w),q

0

,q

1

))) = c(q)

Why are we doing all of this?

● The game G

A,t

 meet exactly the definition of min-parity game

● The notions of a strategy, a memoryless strategy and a winning strategy, as

defined last lecture apply to the games G

A,t

 as well

Lemma
A tree automaton A accepts an input tree t ⇔

There is a winning strategy for Player 0 from position (ε, q
I

) in the game G

A,t

Proof - 1'st Direction
● A accepts the input tree t ⇒ there exists an accepted run ρ
● The run ρ keeps track of all transitions that have to be chosen in order to accept the

input tree t

● For any of the nodes (w,q) ∈ V

0

, where (w

0

,q

0

) and (w

1

,q

1

) are the immediate

successors, we can derive the corresponding transition

○ δ = (q,t(w),q

0

,q

1

) ∈ Δ

● Since ρ determines for each node and each path the correct transition, Player 0 can

always choose the right transition, independently of Player 1’s decisions

● He will always win

● (Player 1’s decide on the direction, but A accepts all the paths of t)

Proof - 2'nd Direction
● We can use the winning strategy f

0

 for player 0 in G

A,t

 to construct a successful run

of A on t

● For each game position (w,q) ∈ V

0

,

f

0

 determines the correct transition δ = (q,t(w),q

0

,q

1

) ∈ Δ
● Player 0 must be prepared to proceed from both (w

0

,q

0

) and (w

1

,q

1

) since he cannot

predict player 1's decision

● However, for both positions the winning strategy can determine correct transitions

● Hence we label w by q, w

0

 by q

0

 and w

1

 by q

1

 => obtain the entire run ρ
● ρ is successful since it is determined by a winning strategy f

0

Winning Strategy
Known facts about parity games:

● Parity games are determined

○ One of the players has a memoryless winning strategies

● Memoryless winning strategies are enough to win a game

In other words -

From any game position in G

A,t

, either Player 0 or Player 1 has a memoryless winning

strategy

The Complementation of Finite Tree Automata Languages

● Outline:

● Given a parity tree automaton A, we have to specify a tree automaton B that accepts

all input trees rejected by A

● Rejecting means that there is no winning strategy for player 0 from position (ϵ,q
i

)

in the game G

A,t

● This guarantees the existence of a memoryless winning strategy starting at (ϵ,q
i

) for

player 1

● We will construct an automaton that checks exactly this

Memoryless Strategy of Player 1
● Function f1 : {0,1}

⋆
 X Δ → {0,1} determining a direction 0 (left successor) or 1

(right successor)

● There is a natural isomorphism between such functions and functions of the type

f1 : {0,1}

⋆
 → (Δ → {0,1})

● f1 is a tree (with functions as labels)

● We call such trees strategy trees

● If the corresponding strategy is winning for player 1 in the game G

A,t

, we say it is a

winning tree for t

Fact
From the previous definitions:

Let A be a parity tree automaton and t be an input tree.

There exists a winning tree s for player 1 <=> if A does not accept t

First step -
● ω-automaton M will decide if each path of t, using the strategy for player 1

defined by s (tree), will be accepted by A. If yes it accepts.

● M will need to check all the possible strategies for player 0

● As we saw -

○ At least once A’s acceptance condition is met ⇔ s cannot be a winning tree for t

● M needs to handle all ω-words of the form

u = (s(ε), t(ε), π

1

)(s(π

1

), t(π

1

), π

2

)....

Example
● Path π = 0110… on t

● f : Δ → {0, 1} (from s)

● a ∈ Σ
● i ∈ {0, 1} (f(τ) = i)

M - definitions
● M = (Q,Σ’,Λ,q

I

,c)

● Σ’ = {(f, a, i) | f : Δ → {0, 1}, a ∈ Σ, i ∈ {0, 1}}

● A and M have the same acceptance conditions

● Λ (transitions):

● For (f,a,i) ∈ Σ’

○ map

a

 denotes the set of all mappings from Δ
a

 to {0, 1}

○ f ∈ map

a

, and τ = (q,a,q’

0

,q’

1

) ∈ Δ
a

 such that f(τ) = i

○ M has a transition (q, (f, a, i), q’

i

)

M - informally
● The automaton M has to check for each possible move of Player 0 if the outcome

is winning for Player 0

● M uses the same acceptance condition as A

○ It will accept if the run on a path is consistent with s and will be accepted by A

● If M won't accept an ω-word u it means that player 1 win

○ Since M checked all the options for player 0 and non of them worked

Lemma
The tree s is a winning tree for t ⇔ L(s,t) ∩ L(M) = Ø

● Language of L(s,t) - all the possible paths that player 1 can choose, while using

strategy s

● Language of L(M) - all the paths which are good for player 0 and consistent with

player 1's strategy

● If L(s,t) ∩ L(M) = Ø then all the paths in t which are consistent with s will make

player 1 win

○ i.e., s is a winning strategy for player 1

Why is M usefull?
● The word automaton M accepts all sequences over Σ which satisfy A's acceptance

condition

● In order to construct B, we first of all generate a word automaton S such that

L(S) = Σ’ \ L(M)

● We’ll use Safra’s construction (chapter 3)

Building S
● We can transform M to a Buchi-automaton

● By Safra, we can build deterministic Rabin automaton that accepts L(M)

● The Streett condition is the negation of the Rabin condition

● Finally

○ Word automaton S = (Q’,Σ’, δ, q’

I

,Ω)

○ L(S) = Σ’ \ L(M)

Building B from S
● B will run S in parallel along each path of an input tree

● The transition relation of B is defined by

● (q,a,q

0

,q

1

) ∈ Δ’ ⇔ there exist transitions in S

○ δ(q,(f,a,0)) = q

0

○ δ(q,(f,a,1)) = q

1

Final Theorem:

The class of languages recognized by finite-state tree automata is closed under

complementation

It remains to be shown that indeed T(B) = T

ω
Σ’

 \ T(A)

Proof - 1'st Direction
● We assume t ∈ T (B)

● There exists an accepting run ρ of B on t

● For each path π = π

1

π

2

... ∈ {0,1}

ω
 the corresponding state sequence satisfies B's

acceptance condition

● There are transitions of S

○ δ(q, (s(w), t(w), 0)) = q

1

○ δ(q, (s(w), t(w), 1)) = q

2

● And the corresponding transition of B (q, t(w), q

1

, q

2

)

● Player 1 is the winner ⇒ all words u ∈ L(s, t) are accepted by S

● Since L(S) = Σ’ \ L(M) ⇒ L(s, t) ∩ L(M) = ∅

● By the previous lemma - s is a winning tree for Player 1

● A does not accept t

Proof - 2'st Direction
● We assume t ∈ T (A)

● There exists a winning tree s for tree t of player 1

● L(s, t) ∩ L(M) = ∅

● L(s,t) ⊆ L(S) (since L(S) = Σ’ \ L(M))

● For each path π = π

1

π

2

 · · · ∈ {0, 1}

ω
 there exists a run on the ω-word

u = (s(ε), t(ε), π

1

)(s(π1), t(π1), π2) · · · ∈ L(s, t) that satisfies Ω (of automata

S)

● By construction of B there exists an accepting run of B on t

● t ∈ T (B)

So?
1. From A (tree automaton) we built M (words automaton)

2. From M we built S such that L(S) = Σ’ \ L(M)

3. From S we built B

Outline
● Motivation

● Infinite binary tree

● Finite-State Tree Automata

● Examples

● Buchi tree automata Vs. Muller tree automata

● The Complementation Problem for Automata on Infinite Trees

○ Game theoretical approach

○ Complementation proof

