Non Deterministic Tree Automata

 $\bullet \bullet \bullet$

By: Or Kamara

From: Nondeterministic Tree Automata in Automata, Logic and infinite games, edited by Gradel, Thomas and Wilke (chapter 8)

Word automata -

Consume infinite sequences of alphabet symbols (ω-words)

Today

Tree automata -

Finite-state automata

which process infinite trees

Outline

- Motivation
- Infinite binary tree
- Finite-State Tree Automata
- Examples
- Buchi tree automata Vs. Muller tree automata
- The Complementation Problem for Automata on Infinite Trees
 - Game theoretical approach
 - Complementation proof

First of all - WHY?

• Tree automata are similar to logical theories \rightarrow

Reduce problems in logic to problems for automata.

• Tree automata are more suitable than words when non-determinism needs to be modeled.

Outline

- Motivation
- Infinite binary tree
- Finite-State Tree Automata
- Examples
- Buchi tree automata Vs. Muller tree automata
- The Complementation Problem for Automata on Infinite Trees
 - Game theoretical approach
 - Complementation proof

- $T\omega = \{0, 1\}^*$ of all finite words on $\{0, 1\}$
- Elements $u \in T_{\omega}$ are the nodes of T_{ω} :
 - ο ε root
 - \circ u₀, u₁ immediate successors of node u

- Again :)
 - \circ Left U0
 - Right U1

- Path ω -word $\pi \in \{0,1\}^{\omega}$
- Set $Pre < (\pi) \subseteq \{0,1\}^*$ of all prefixes of path π
 - Describes the set of nodes which occur in π

- Example:
 - The rightmost path in the tree is $\pi = 1\omega$
 - All the prefixes of this path are:
 - $\circ \quad \operatorname{Pre}_{(\pi)} = \{\epsilon, 1, 11, 111, 1111, ...\} = \{1\}^{*}$

- Let $u,v \in T\omega$, then v is a **successor** of u, if there exists $w \in T\omega$ such that v = uw
- Denoted by u < v

- Example:
 - 01 is successor of 0
 - \circ 101 is successor of 1 \ 10

- Our tree can be **labeled**
- Σ is alphabet
- A mapping t: $T\omega \rightarrow \Sigma$
 - Maps each node of $T\omega$ to a symbol in Σ

Example 8.1. Let $\Sigma = \{a, b\}, t(\varepsilon) = a, t(w0) = a$ and $t(w1) = b, w \in \{0, 1\}^*$.

Outline

- Motivation
- Infinite binary tree
- Finite-State Tree Automata
- Examples
- Buchi tree automata Vs. Muller tree automata
- The Complementation Problem for Automata on Infinite Trees
 - Game theoretical approach
 - Complementation proof

Definitions - Finite-State Tree Automata

- Until now, automata consume one input symbol at a time
 - Enter a successor state determined by a transition relation
 - $\circ \quad \delta: \mathbf{Q} \times \Sigma \to \mathbf{Q}$

- Now, we want to run automata on infinite trees
- The transition function:
 - $\circ \quad \delta: Q \times \Sigma \to Q \ge Q$

Definitions - Finite-State Tree Automata

Tree automaton is of the form A = (Q, Σ , δ ,q₀,F), where:

- Q is finite set of states
- Σ is a finite alphabet
- $\delta \subseteq (Q \times \Sigma) \times (Q \times Q)$ is the transition function
- q_0 is the initial state
- F is the acceptance component

Definitions - Finite-State Tree Automata

• Computations start at the root of an input tree and work through the input on each path in parallel

• A transition $(q_{,a},q_{_1},q_{_2})$ allows to pass from state q at node u with label a i.e. t(u) = a, to the states $q_{_1},q_{_2}$ at the successor nodes $u_{_0},u_{_1}$

Definitions - **RUN**

Assignment of states to the tree nodes

- $\rho: \{0,1\}^* \to Q$ with:
 - $\rho(\epsilon) = q_0$
 - $\circ \quad (\rho(u),t(u),\rho(u_{_0}),\rho(u_{_1})) \in \delta \text{ for all } u \in \{0,1\}^*$
- Example:
 - \circ (q₀,a,q₀,q₀)
 - $\circ \quad (\mathsf{q}_0,\mathsf{b},\mathsf{q}_1,\mathsf{q}_0)$
 - (q_1, a, q_1, q_1)
 - $\circ \quad (\mathbf{q}_1, \mathbf{b}, \mathbf{q}_1, \mathbf{q}_1)$

Definitions - run

- Successful run
 - **Each path** of the ρ is successful with respect to acceptance condition
- Acceptance conditions:
 - o Buchi
 - \circ Muller
 - Rabin
 - Parity
- Language of an automaton A with alphabet Σ, is the set of Σ-trees which are accepted by A
 - Denoted L(A)

Buchi Tree Automaton

• Tree automaton A = (Q,Σ,δ,q_0,F) accepts tree t if there exists a run ρ of A on t, such that on **EACH PATH** of ρ , a state from F occurs infinitely times

What about Muller?

• For each path $\pi \in \{0,1\}^{\omega}$ the Muller acceptance condition is satisfied \circ Inf $(\rho|\pi) \in F$

Outline

- Motivation
- Infinite binary tree
- Finite-State Tree Automata
- Examples
- Buchi tree automata Vs. Muller tree automata
- The Complementation Problem for Automata on Infinite Trees
 - Game theoretical approach
 - Complementation proof

Starting Windows

C Microsoft Corporation

Examples (1)

L(A) is the set of all Σ -trees having at least one b on every branch

Let's look on every path separately

- $F = \{q_1\}$
- Transition function
 - \circ (q₀,a,q₀,q₀)
 - $\circ \quad (\mathsf{q}_0,\mathsf{b},\mathsf{q}_1,\mathsf{q}_1)$
 - \circ (q₁,a,q₁,q₁)
 - $\circ \quad (\mathbf{q}_1, \mathbf{b}, \mathbf{q}_1, \mathbf{q}_1)$

Examples (1)

L(A) is the set of all Σ -trees having at least one b on every branch

Let's look on every path separately

- $F = \{q_1\}$
- Transition function
 - \circ (q₀,a,q₀,q₀)
 - $\circ \quad (\mathsf{q}_0,\mathsf{b},\mathsf{q}_1,\mathsf{q}_1)$
 - $\circ (q_1,a,q_1,q_1)$
 - $\circ \quad (\mathbf{q}_1, \mathbf{b}, \mathbf{q}_1, \mathbf{q}_1)$

Examples (2)

L(A2) is the set of all Σ -trees which have at least one branch with infinitely many b's

- $Q = \{q_a, q_b, q_+\}$ $F = \{q_b, q_+\}$
- ullet
- Transition relation:

Examples (2)

L(A2) is the set of all Σ -trees which have at least one branch with infinitely many b's

- Non deterministic
- $Q = \{q_a, q_b, q_+\}$
- $F = \{q_b, q_+\}$
- Transition relation:

Examples (3)

L(A3) is the set of all Σ -trees having infinitely many a's on every branch

Buchi tree automata A3:

- $Q = \{q_a, q_b\}$
- Initial state q_a
- $F = \{q_a\}$
- Transition function
 - $\circ \quad (\mathbf{q}_{\mathbf{a}}, \mathbf{a}, \mathbf{q}_{\mathbf{a}}, \mathbf{q}_{\mathbf{a}})$
 - $\circ \quad (\mathbf{q}_{\mathrm{b}}, \mathrm{a}, \mathbf{q}_{\mathrm{a}}, \mathbf{q}_{\mathrm{a}})$
 - $\circ \quad (\mathbf{q}_{a}, \mathbf{b}, \mathbf{q}_{b}, \mathbf{q}_{b})$
 - $\circ \quad (\mathbf{q}_{\mathrm{b}},\mathbf{b},\mathbf{q}_{\mathrm{b}},\mathbf{q}_{\mathrm{b}})$

Examples (4)

L(A4) is the set of Σ -trees in which every branch contains only finitely many b's

Muller tree automata A4:

- $Q = \{q_a, q_b\}$
- Initial state q_a
- $F = \{\{q_a\}\}$
- Transition function (the same as Example 3)
 - $\circ \quad (\mathbf{q}_{\mathbf{a}}, \mathbf{a}, \mathbf{q}_{\mathbf{a}}, \mathbf{q}_{\mathbf{a}})$
 - $\circ \quad (\mathbf{q}_{\mathrm{b}}, \mathrm{a}, \mathbf{q}_{\mathrm{a}}, \mathbf{q}_{\mathrm{a}})$
 - $\circ \quad (\mathbf{q}_{a}, \mathbf{b}, \mathbf{q}_{b}, \mathbf{q}_{b})$
 - $\circ \quad (\mathbf{q}_{\mathrm{b}}, \mathbf{b}, \mathbf{q}_{\mathrm{b}}, \mathbf{q}_{\mathrm{b}})$
- Is it the same as Example 3?

Examples (5)

L(A5) is the set of all Σ -trees having at least one path π through t such that $t|\pi \in (a + b)^*(ab)^{\omega}$

- We will use muller
- A5 memorizes in its state the last read input symbol
- A5 switches back to the initial state q_T if he get unexpected symbol
- Infinite alternation between a state q_a memorizing input symbol a and a state q_b memorizing b
- A will guess a path through t and checks, if the label of this path belongs to (a+b)* (ab)^ω

Examples (5)

- **Guess** decide whether the left or the right successor node of the input tree belongs to the path
- q_d signals that we are outside the guessed path
- $A = (\{q_I, q_a, q_b, q_d\}, \{a, b\}, \delta, q_I, \{\{q_a, q_b\}, \{q_d\}\})$

• δ:

- $\circ \quad \text{Initial} (q_{I}, a, q_{a}, q_{d}) \setminus (q_{I}, a, q_{d}, q_{a}) \setminus (q_{I}, b, q_{b}, q_{d}) \setminus (q_{I}, b, q_{d}, q_{b})$
- For q_d (q_d , a, q_d , q_d) \ (q_d , b, q_d , q_d)
- $\circ \quad \text{Change letter } (q_a, b, q_b, q_d) \setminus (q_a, b, q_d, q_b) \setminus (q_b, a, q_a, q_d) \setminus (q_b, a, q_d, q_a)$
- Same letter $(q_a, a, q_I, q_d) \setminus (q_a, a, q_d, q_I) \setminus (q_b, b, q_I, q_d) \setminus (q_b, b, q_d, q_I)$

Examples (5)

There is no situation where $Inf(\rho|\pi) =$

- $\{\{q_d\}\}$
- {{ q_a }} \ {{ q_a },{ q_d }}
- $[{q_b}]$ \ $[{q_b}, {q_d}]$

Outline

- Motivation
- Infinite binary tree
- Finite-State Tree Automata
- Examples
- Buchi tree automata Vs. Muller tree automata
- The Complementation Problem for Automata on Infinite Trees
 - Game theoretical approach
 - Complementation proof

Theorem 1

Buchi tree automata are strictly weaker than Muller tree automata

• **In Hebrew:** There exists a Muller tree automaton recognizable language which is not Buchi tree automaton recognizable

<u>Proof</u>

- The language
 - $T = \{t \in T\{a,b\} \mid any \text{ path through t carries only finitely many b} \}$

can obviously be recognized by a Muller tree automaton (example 4)

Theorem 1 (proof)

- Assume for contradiction that T is recognized by a Buchi tree automaton $B = (Q, \Sigma, \delta, q_I, F)$
- Let n = |F| + 1
- Consider the following tree:

Theorem 1 (proof)

....

• Because the automata accepts t:

- Path 1^{ω} a final state is visited say at 1^{m0}
- Path $1^{m0}01^{\omega}$ a final state is visited say at $1^{m0}01^{m1}$
- Proceeding in this way we obtain n + 1 positions -
- $V_0 = 1^{m0}$, $V_2 = 1^{m0} 01^{m1}$, ..., $V_n = 1^{m0} 01^{m1} 0...1^{mn}$ that get to final state
- For certain i < j, the same state appears at V_i and V_j
- Between V_i and V_i at least one label b (by our construction)

Theorem 1 (proof)

We now construct another input tree t' by infinite repetition of the path from $V^{}_{\rm i}$ to $V^{}_{\rm j}$ (π)

- This tree contains an infinite path which carries infinitely many b's, thus t' \notin T
- We can easily construct a successful run on t' by copying the actions of π infinitely often \Rightarrow t' \in T
- Contradiction

Theorem 2

Muller, parity, Rabin and Streett tree automata all recognize the same tree languages

Parity Tree Automaton

- Tree automaton A = $(Q, \Sigma, \delta, q_0, C)$
- Coloring C: Q -> {0,....,k}
- Accepts tree t if there exists a run ρ of A on t such that on EACH PATH of ρ, the maximal color assumed infinitely often is even
- Example:
 - Automata that recognize trees that each path of them has only finitely many b
 - Use q_a and q_b to signal the letters a,b
 - $C(q_a) = 0, C(q_b) = 1$
 - The maximal color is even \Leftarrow > the letter b occurs finitely often on the path

lime for a break!

Outline

- Motivation
- Infinite binary tree
- Finite-State Tree Automata
- Examples
- Buchi tree automata Vs. Muller tree automata
- The Complementation Problem for Automata on Infinite Trees
 - Game theoretical approach
 - Complementation proof

Parity Tree Automaton

- Tree automaton A = $(Q, \Sigma, \delta, q_0, C)$
- Coloring C: Q -> {0,....,k}
- Accepts tree t if there exists a run ρ of A on t such that on EACH PATH of ρ, the maximal color assumed infinitely often is even
- Example:
 - Automata that recognize trees that each path of them has only finitely many b
 - Use q_a and q_b to signal the letters a,b
 - $C(q_a) = 0, C(q_b) = 1$
 - The maximal color is even \Leftarrow > the letter b occurs finitely often on the path

Closure under complementation

- We will now show closure under complementation for tree languages acceptable by parity tree automata
 - \circ and hence acceptable by Muller tree automata
- For every automata $A = (S, T, T_0, \mathcal{F})$, there is an automata $A' = (S', T', T_0', \mathcal{F}')$ such that:

 $v \in L(A') \Leftrightarrow v \notin L(A)$

We identify a parity tree automaton A = (Q,Σ,δ,q_I,c) and an input tree t with an infinite two-person game G_{A,t}

Rules

- The players move alternately
- Player 0 (Automaton): picking transition from Δ such that the alphabet symbol of this transition equals that at the current node
- Player 1 (Pathfinder): determines whether to proceed with the left or the right successor
- Example

Run Example

Δ :

- (q_I, b, q_b, q_b)
- (q_I, a, q_I, q_I)
- (q_b, b, q_b, q_b)
- (q_b, a, q_a, q_a)
- (q_a, a, q_a, q_a)
- (q_a, b, q_b, q_b)

Winning

- Play single sequence of actions $\circ \pi = s_0, d_1, s_1, d_2, \dots$
- $In(\pi) = \{s \in S | s = s_n \text{ for infinitely many } n\}$
- Player 0 wins the play if this infinite state sequence satisfies the acceptance condition of A
 - $\circ \quad In(\pi) \in \mathcal{F}$
- Otherwise Player 1 wins
- Game = set of plays

Winning strategy

- Automaton all paths of the corresponding run meet the acceptance condition -> A accepts the tree
- Pathfinder if there exists a path which violates the acceptance condition for every state sequence chosen by player 0 -> A rejects the tree

In other words:

- Automaton has winning strategy in $G_{A,t} \Leftrightarrow t \in L(A)$
- Pathfinder has winning strategy in $G_{A,t} \Leftrightarrow t \notin L(A)$

Game Positions

- A play is an infinite sequence of game positions which alternately belong to player 0 or player 1
- A game can be considered as a graph which consists of all game positions as vertices
- Edges between different positions indicate that the succeeding position is reachable from the preceding one by a valid action

Definitions - Game Positions

• Player 0 (should decide on transition):

 $V_0 = \{(w,q) | w \in \{0,1\}^*, q \in Q\}$

• Player 1 (should decide on state):

 $V_1 = \{(w,\delta) | w \in \{0,1\}^*, \delta \in \Delta_{t(w)}\}$

min-parity game

Game $G_{A,\alpha}$ for a parity automata $A = (Q, \Sigma, \delta, q_I, c)$ and $\alpha \in \Sigma^{\omega}$ is a graph (V, E,C) that serves as an arena for the two players 0 and 1.

The graph (V, E,C) is defined as follows:

- The set of vertices V can be partitioned into the two sets V0 and V1
 - $\circ V_0 = Q \times \omega$
 - $\circ V_1 = Q \times P(Q) \times \omega$
- The edge relation $E \subseteq (V0 \times V1) \cup (V1 \times V0)$ is defined by
 - $\circ \quad ((q,i),(q,M,j)) \in E \Leftrightarrow j = i+1 \text{ and } M \in Mod(\delta(q,\alpha(i)))$
 - $\circ \quad ((p,M,i),(q,j)) \in E \Leftrightarrow j = i, q \in M, \text{ and } c(q) \in C$

Graph example

- Game position u = (w,q) of player 0
- Player 0 chooses a transition $\tau = (q,t(w),q_0,q_1)$
- Game position $v = (w,\tau)$ of player 1
- Edge (u,v) then represents a valid move of player 0
- Player 1 chooses a direction $i \in \{0,1\}$
- Game position $u' = (w_i, q'_i)$ of player 0
- Edge (v,u') represents a valid move of player 1

Definition

We need to color the vertices (since it is a parity game):

The coloring function C: $V_0 \cup V_1 \rightarrow \{0,1,...,k\}$

•
$$\forall$$
 (w,q) \in V₀, C((w,q)) = c(q)

• \forall (w,(q,t(w),q_0,q_1)) \in V₁, C((w,(q,t(w),q_0,q_1))) = c(q)

Why are we doing all of this?

- The game G_{A_t} meet exactly the definition of min-parity game
- The notions of a **strategy**, a **memoryless strategy** and a **winning strategy**, as defined last lecture apply to the games G_{A,t} as well

A tree automaton A accepts an input tree t \Leftrightarrow

There is a winning strategy for Player 0 from position (ϵ , q_I) in the game $G_{A,t}$

Proof - 1'st Direction

- A accepts the input tree t \Rightarrow there exists an accepted run ρ
- The run ρ keeps track of all transitions that have to be chosen in order to accept the input tree t
- For any of the nodes $(w,q) \in V_0$, where (w_0,q_0) and (w_1,q_1) are the immediate successors, we can derive the corresponding transition

 $\circ \quad \delta = (q,t(w),q_0,q_1) \subseteq \Delta$

- Since ρ determines for each node and each path the correct transition, Player 0 can always choose the right transition, independently of Player 1's decisions
- He will always win
- (Player 1's decide on the direction, but A accepts all the paths of t)

Proof - 2'nd Direction

- We can use the winning strategy f₀ for player 0 in G_{A,t} to construct a successful run of A on t
- For each game position (w,q) \in V₀, f₀ determines the correct transition $\delta = (q,t(w),q_0,q_1) \in \Delta$
- Player 0 must be prepared to proceed from both (w_0,q_0) and (w_1,q_1) since he cannot predict player 1's decision
- However, for both positions the winning strategy can determine correct transitions
- Hence we label w by q, w_0 by q_0 and w_1 by $q_1 =>$ obtain the entire run ρ
- ρ is successful since it is determined by a winning strategy f_0

Winning Strategy

Known facts about parity games:

- Parity games are determined
 - One of the players has a memoryless winning strategies
- Memoryless winning strategies are enough to win a game

In other words -

From any game position in $G_{A,t}$, either Player 0 or Player 1 has a memoryless winning strategy

The Complementation of Finite Tree Automata Languages

- Outline:
- Given a parity tree automaton A, we have to specify a tree automaton B that accepts all input trees rejected by A
- Rejecting means that there is no winning strategy for player 0 from position (ε,q_i) in the game G_{A,t}
- This guarantees the existence of a memoryless winning strategy starting at (ε,q_i) for player 1
- We will construct an automaton that checks exactly this

Memoryless Strategy of Player 1

- Function f1 : {0,1}* X △ → {0,1} determining a direction 0 (left successor) or 1 (right successor)
- There is a natural isomorphism between such functions and functions of the type $f1 : \{0,1\}^* \to (\Delta \to \{0,1\})$
- fl is a tree (with functions as labels)
- We call such trees strategy trees
- If the corresponding strategy is winning for player 1 in the game G_{A,t}, we say it is a winning tree for t

From the previous definitions:

Let A be a parity tree automaton and t be an input tree.

There exists a winning tree s for player 1 <=> if A does not accept t

First step -

- ω-automaton M will decide if each path of t, using the strategy for player 1 defined by s (tree), will be accepted by A. If yes it accepts.
- M will need to check all the possible strategies for player 0
- As we saw -
 - At least once A's acceptance condition is met \Leftrightarrow s cannot be a winning tree for t
- M needs to handle all ω -words of the form u = (s(ε), t(ε), π_1)(s(π_1), t(π_1), π_2)....

Example

• Path π = 0110... on t

- $f: \Delta \rightarrow \{0, 1\}$ (from s)
- $a \in \Sigma$
- $i \in \{0, 1\}$ (f(τ) = i)

M - definitions

- $M = (Q, \Sigma', \Lambda, q_I, c)$
- $\Sigma' = \{(f, a, i) \mid f : \Delta \rightarrow \{0, 1\}, a \in \Sigma, i \in \{0, 1\}\}$
- A and M have the same acceptance conditions
- Λ (transitions):
- For (f,a,i) $\in \Sigma$ '
 - map_a denotes the set of all mappings from Δ_a to {0, 1}
 - $f \in \operatorname{map}_{a}$, and $\tau = (q,a,q'_{0},q'_{1}) \in \Delta_{a}$ such that $f(\tau) = i$
 - \circ M has a transition (q, (f, a, i), q'_i)

M - informally

- The automaton M has to check for each possible move of Player 0 if the outcome is winning for Player 0
- M uses the same acceptance condition as A
 - It will accept if the run on a path is consistent with s and will be accepted by A
- If M won't accept an ω -word u it means that player 1 win
 - \circ ~ Since M checked all the options for player 0 and non of them worked

Lemma

The tree s is a winning tree for t \Leftrightarrow L(s,t) \cap L(M) = \emptyset

- Language of L(s,t) all the possible paths that player 1 can choose, while using strategy s
- Language of L(M) all the paths which are good for player 0 and consistent with player 1's strategy

- If $L(s,t) \cap L(M) = \emptyset$ then all the paths in t which are consistent with s will make player 1 win
 - \circ ~ i.e., s is a winning strategy for player 1 $\,$

Why is M usefull?

- The word automaton M accepts all sequences over Σ which satisfy A's acceptance condition
- In order to construct B, we first of all generate a word automaton S such that $L(S) = \Sigma' \setminus L(M)$
- We'll use Safra's construction (chapter 3)

Building S

- We can transform M to a Buchi-automaton
- By Safra, we can build deterministic Rabin automaton that accepts L(M)
- The Streett condition is the negation of the Rabin condition
- Finally
 - Word automaton S = (Q', Σ ', δ , $q'_{I'}\Omega$)
 - $\circ \quad L(S) = \Sigma' \setminus L(M)$

Building B from S

- B will run S in parallel along each path of an input tree
- The transition relation of B is defined by
- $(q,a,q_0,q_1) \in \Delta' \Leftrightarrow$ there exist transitions in S
 - $\circ \quad \delta(q,(f,a,0)) = q_0$
 - $\circ \quad \delta(q,(f,a,1)) = q_1$

Final Theorem:

The class of languages recognized by finite-state tree automata is closed under complementation

It remains to be shown that indeed $T(B) = T^{\omega}_{\Sigma'} \setminus T(A)$

Proof - 1'st Direction

- We assume $t \in T$ (B)
- There exists an accepting run ρ of B on t
- For each path $\pi = \pi_1 \pi_2 = \{0,1\}^{\circ}$ the corresponding state sequence satisfies B's acceptance condition
- There are transitions of S
 - $\circ \quad \delta(q, (s(w), t(w), 0)) = q_1$
 - $\circ \quad \delta(q, (s(w), t(w), 1)) = q_2$
- And the corresponding transition of B (q, t(w), q_1, q_2)
- Player 1 is the winner \Rightarrow all words $u \in L(s, t)$ are accepted by S
- Since $L(S) = \Sigma' \setminus L(M) \Rightarrow L(s, t) \cap L(M) = \emptyset$
- By the previous lemma s is a winning tree for Player 1
- A does not accept t

Proof - 2'st Direction

- We assume $t \notin T(A)$
- There exists a winning tree s for tree t of player 1
- $L(s, t) \cap L(M) = \emptyset$
- $L(s,t) \subseteq L(S)$ (since $L(S) = \Sigma' \setminus L(M)$)
- For each path π = π₁π₂ · · · ∈ {0, 1}[∞] there exists a run on the ω-word u = (s(ε), t(ε), π₁)(s(π1), t(π1), π2) · · · ∈ L(s, t) that satisfies Ω (of automata S)
- By construction of B there exists an accepting run of B on t
 t ∈ T (B)

- 1. From A (tree automaton) we built M (words automaton)
- 2. From M we built S such that $L(S) = \Sigma' \setminus L(M)$
- 3. From S we built B

Outline

- Motivation
- Infinite binary tree
- Finite-State Tree Automata
- Examples
- Buchi tree automata Vs. Muller tree automata
- The Complementation Problem for Automata on Infinite Trees
 - Game theoretical approach
 - Complementation proof

