
On Nets, Algebras and Modularity

Alexander Rabinovich
IBM Research Division

T.J. Watson Research Center
P.O. Box 218, Yorktown Heights, NY 10598, USA

alik@wat son. ibm. com

Boris A. Trakhtenbrot*
MIT Lab. for Computer Science
borisOtheory. Ics.mit. edu

and
Dep. of Computer Science

Raymond and Beverly Sackler Faculty of Exact Sciences
Tel Aviv University, Tel Aviv, Israel 69978

trakhte@taurus, bitnet

Abstract

We aim at a unified and coherent presentation of net models for concurrency like
Petri nets and dataflow networks from the perspective of modularity and substi-
tutivity. The major goat is to achieve a better understanding of the links between
modularity issues for nets and laws (or anomalies) in algebras of processes and
algebras of relations. To this end we develop Mazurkiewicz's compositional ap-
proach which requires a careful analysis of homomorphisms from algebras of nets
into algebras of processes and relations.

0 Introduct ion

0.1 Modularity, Substitutivity, Compositionality

Modularity reflects the Frege Principle: any two expressions exprl and expr2 which
have the same meaning (semantics) can be replaced by each other in every appropriate
context C[] without changing the meaning of the overall expression

*Supported by NSF Grant No. 9002826-CCR.

177

sem(exprl) = sem(expr2) implies sem(C[exph]) = sem(C[ezpr2])

R - substitutivity, where R is a given a binary relation R in the semantical domain
of meanings, is a broader notion. It means that

sem(exprl)Rsem(expr2) implies sem(C[exprl])Rsem(C[expr2])

In particular, R may happen to be an equivalence relation in the semantical domain.
For example, a datafiow net may specify a process Pr but what one is mainly interested
in is the input-output behavior rel(Pr) of this process i.e., the relation between the
input histories and output histories of Pr. Hence of fundamental importance is --=rel"
substitutivity i.e., substitutivity of the equivalence rel(Prl) = rel(Pr2). However, in
general R is not necessarily an equivalence relation. As a matter of fact for dataflow
nets we consider also substitutivity of <~oz i.e. of rel(Pr 0 C rel(Pr2).

A conventional syntax (call it TEXTUAL as opposed to NET-syntax) is based on a
signature E. Morever, a complex piece of syntax expr may be uniquely decomposed
into simpler subpieces: expr = op(exph, . . , exprk), where op is in E. If compositional
semantics is used, then there is a corresponding semantical clause with the format:
sem(expr) =d~I OP(sem(exprl), . . . ,sem(exprk)). Here OR is the semantical con-
structor which corresponds to op. In this situation there is a natural and clear notion
of context; it is also quite evident that compositional semantics guarantees modu-
larity. Compositional semantics may be characterized as a homomorphism from the
E-algebra of the syntactical domain into the E-algebra of the semantical domain.

Typically, denotational semantics is formulated in compositional style and hence sup-
ports modularity. However, often one starts with an operational semantics which lacks
compositional structure. Then a standard way to prove modularity is to discover a
compositional semantics which is equivalent to the given operational one.

In net models of concurrency syntax is provided by some specific class N N of la-
belled graphs called nets. On the other hand, semantics is usually defined in an
operational style through appropriate firing (enabling) rules. Though N N is not nec-
essarily equipped with a signature E of operations (i.e. no algebra of nets must be
assumed) the notions of context, subnet and substitution may make sense and therefore
R - substitutivity (in particular modularity) may be defined and investigated.

0.2 Historical Background

Petri nets and dataflow nets are fundamental paradigms in concurrency. Historically,
modularity topics appeared wrt them as follows:

1. Dataflow. Substitutivity issues for dataflow nets were identified early and in a sharp
way. The Kahn Principle [7] implies that dataflow nets over functional agents are =r~z-
substitutive. On the other hand, as Brock and Ackerman observed, --rel-substitutivity
in general fails if nonfunctional agents (like MERGE) are also allowed. The celebrated
counterexample from [3] illustrates this so called Brock-Ackerman anomaly.

178

2. Petri Nets. For elementary Petri nets modularity was established by Mazurkiewicz
[8] following the pattern mentioned above wrt TEXTUAL syntax. Namely, he discov-
ered a compositional semantics for elementary Petri nets which is equivalent to the
original 'token game' semantics. Yet, the novelty is that (unlike the case of textual
syntax) there may be different decompositions of a net into subnets. In other words,
for textual syntax compositional semantics is an homomorphism from an E-algebra
over a system of free generators whereas in the case of nets the generators obey some
nontrivial relations. Clearly in order to support homomorphism, these relations must
hold also in the semantical domain as well. Mazurkiewicz made the fundamental obser-
vation that for elementary Petri nets the signature E consists of one binary operation
to be interpreted as combination of nets (at the syntactical leval) and synchronization
of processes (at the semantical level); the nontrivial relations amount to commutativ-
ity and associativity of the operation. In the sequel [9] he formulated compositional
semantics of this kind also for the more general classes of P/T-nets but without to
compare it with the already existing token game semantics.

These seminal works in dataitow nets and in Petri nets inspired and strongly influenced
the research of modularity for net models. [2, 4, 5, 6, 11, 12, 13, 15, 16, 17, 18]. Note
that in these works 'modularity' and 'compositionality' are not clearly distinguished.

Modularity issues for models based on the net concept constitute also one of the
major goals in our previous papers [5, 15, 16, 17]. In [5] we used the Mazurkiewicz
algebraical approach to formulate an alternative compositional semantics for the token
game semantics of P/T-nets. In this way we established modularity for this, more
general class of nets. On the other hand, in [15, 16] where our main concern was about
the phenomena around the Brock-Ackerman-anomaly, we did not rely on any specific
algebraical arguments. An important conceptual and technical novelty we started in
[16] and developed in [17] is the idea to consider semantics of nets of relations in
addition to semantics of nets of processes. As a result of a careful comparison of
these two kinds of nets we came very close to answering the following question: what
nonfunctional agents may be used in datailow nets without to produce anomalies?

As shown in [16], if such nontrivial agents exist they may implement only so called
unambiguous relations. This seems to be too a strong restriction which cannot offer
much to practice. However, the full answer to the question is an exciting challenge
and we have more to say about that in the sequel.

0.3 Goals of the Paper

They are better explained after some preliminary comments about the conceptual and
notational framework we are going to use.

A possible formalization of the models we consider is through triples:

MM =def< NN, DD, SEM >, where
NN is the syntactical domain, a class of 'nets',

179

DD is the semantical domain, usually a class of 'processes',
SEM is a function from NN × ENV into DD. Here ENV is an appro-
priately defined class of 'environments'.

Syntax . A great diversity of nets is actually used in the literature. Roughly speaking
the nets we consider are bipartite graphs as in the theory of Petri nets with the addi-
tional requirement that the set of all transitions (we call them ports) is divided into
the set of visible ports and the set of hidden ports. It may happen that for the whole
class of nets (we denote it as NN1) modularity cannot be guaranteed. In order to
regain modularity one has to consider subclasses of NN1, which reflect reasonable re-
strictions on the topology of the net or on the status of visible/hidden nodes. We find
the following restrictions enough representative: NN2-nets without hiding, NN4-nets
without loops, NN3-nets with exactly the internal ports hidden. In most of datafiow
papers (including our [16]) one prefers to deal with simpler (nonbipartite) graphs in
which edges do not necessarily have nodes, or may have nodes of different kinds. It
is easy to see that these kinds of nets are shorthands of our bipartite nets and in
particular of nets in NN3. Summarizing we believe that our approach to nets is quite
general.

S e m a n t i c a l domains . Here our choice is very specific and debatable. We consider
only processes which are prefix closed sets of finite runs. This may be too a strong
restriction. Yet it still allows to explain many phenomena concerning modularity and
anomalies. But note that in addition to processes we consider also the semantical do-
main of (connected) relations, which are the behaviors of processes. These objects are
interesting in their own (see [10, 16, 17]) but we use them here also for the explanation
of -~z-substi tutivity and anomalies.

Semant ics . Our starting point is an operational semantics we call SEMp~oc which
provides meanings for nets of processes in the style of firing (enabling) rules. A se-
mantics SEM~ez for nets of relations is derived from SEMproe. In [16, 17] we analyzed
different possible approaches and they provide evidence to the naturalness of the se-
mantics SEMr~z.

In this paper we pursue two major interrelated goals.

The first is to develop our previous results to a level which presents in an unified and
coherent way the status of different models from the perspective of modularity. To be
more concrete one can imagine a table with 4 rows (corresponding to our four kinds of
nets) and with 3 columns (corresponding to modularity for processes, modularity for
relations and =-~t-substitutivity). At each of the 12 intersections we would expect the
characterization of those classes of processes or relations (if any!) which support the
required version of modularity/substitutivity wrt the class of nets under consideration.

Our second goal is to achieve a better understanding of the links between modular-
i ty/substitutivity issues for nets and laws (or 'anomalies') in algebras of processes
and relations. To this end, following Mazurkiewicz, we aim at a careful analysis of
homomorphisms from algebras of nets into algebras of processes or relations. This

180

may be illustrated by the following comparison with [8]. There, for nets without hid-
ing, modularity is argued by the fact that process synchronization obeys the laws of
commutativity and associativity. For other models we expect to discover in a similar
way appropriate laws which support modularity (in particular - their violation spoils
modularity).

0.4 Survey of Contributions

Let us now proceed with the survey of the paper and its main contributions.

Section i presents nets as syntax and also the concept of modular net semantics. This
material is mainly folklore, but note the accurate definition of substitution (for nets
some of whose nodes may be hidden!) and of substitutional classes of nets.

Sections 2-4 contain the definitions of input processes, input relations and of the
semantical functions SEMproc, SEMrez. In general, processes are dealt with in a more
or less routine way. However our treatment of relations is not routine and heavily
relies on the notion of kernel which transfers on relations the idea of least fixed points.
This notion appears in [17, 10] and comes close to Misra's 'smooth solution' [11].

The conceptual framework covered in sections 1-4 suffices for the formulation of the
modularity (relational substitutivity) problems we investigate in this paper. It suffices
also to formulate most of the facts (though not their proofs) according to the 4×3
- table we mentioned above. Not surprisingly (though we never met this fact in the
literature) modularity for processes holds for all nets and all processes (Claim 2.1).
The real problems arise with modularity for relations and for --~el-substitutivity; both
fail if all nets are allowed. Moreover, they fail even for trivial subdomains of processes
or relations. Here is where restrictions oi1 the class of nets have to be considered. If
hiding is not allowed (the case of class NNe) or if the nets under consideration don't
contain loops (the case of class NN4) no anomalies appear for relations. This analysis
shows that the real challenge is with nets which allow both hiding and loops but are
still tractable. In our classification the appropriate candidate is just the class NN3
which requires exactly the hiding of the internal ports of the net (additional fanin
and fanout restrictions are imposed only to make the exposition readable). Note, that
in most of works on dataflow such nets (or more precisely - their shorthands) are
considered. Earlier in [16] we also investigated these nets; it appears that for them
the two following tasks are reducible to each other:
Task 1. Find a class of processes which is relational substitutive.
Task 2. Find a class of relations which is modular.

Sections 5-8 contain the algebraical part of the paper.

In Section 5 the classes NN1, NN2, NN3, NN4 of nets are characterized as alge-
bras with appropriate signatures. Moreover the corresponding nontrivial relations for
their generators are explicitly formulated. Among them the most prominent are: the
existential quantifier law - 5.2(4) and the looping law - 5.2(5).

181

Section 6 deals with algebra of processes to an extent which exceeds the direct neces-
sities of our modularity issues (in particular we consider the union operation which is
not in the signature of the net algebras). Nevertheless, we included claim 6.1 which
shows that well known logical laws hold in the algebra of processes. Beyond of be-
ing a generally stimulating observation, this fact may be also useful for other related
applications (e.g., for the proof of the generalized Kahn Principle as in [17]).

Section 7 deals briefly with the algebra of relations. Again we notice similarities of
the operations in this algebra with logical operations, but unlike for processes these
similarities are much more limited and exhibit anomalies.

Section 8 contains the main technical result (claim 8.3) which establishes the links
between the algebras investigated in the previous sections and their relationship to
the original semantical functions SEMproc and SEMr~. It extends the Mazurkiewicz
compositional approach to a broad class of net models and paves the way to the
discovery of modular models or to the prediction that they are impossible under given
circumstances. Actually, that is how most of the claims in sections 1-4 may be proved.
In particular a model < NNa, RR, SEMrd > is modular iff the looping law holds
in the class R R of relations. Recalling the connection between modularity for nets of
relations and ---rel-substitutivity (see Task 1 and Task 2 on the previous page) we can
see that this fact opens the way to the full characterization of nonfpnctional agents
which avoid the Brock-Ackerman anomaly. However, the explicit description of all
classes of relations which obey the looping rule appears to be a subtle task and will
be the subject of a separate paper [14].

1 N e t s

1.1 General Definitions

A net is an appropriately labeled bipartite directed graph with nodes of two kinds,
pictured as circles and boxes and called respectively places and por ts . The edges of
the net are called channels . If there is a channel between port p and place pl they
are said to be adjacent. If there is a channel from port p to place pl then p is called
an input port of pl. If there is a channel to port p from place pl then p is called
an output port of pl. Channels connecting place pl to its input ports and output
ports are numbered. This allows to refer to the first input channel of pl, to its second
input channel, . . . , first output channel etc. The difference between ports and places
is relevant for the notion of subnet.

Definit ion 1 A subgraph N1 of N is considered to be a subnet of N if the set of its
nodes consists of some places and all ports and channels adjacent to these places.

Ports of a net are partitioned into input, output and internal ports as follows:

I n p u t po r t s - ports with no entering channel.

182

Output ports - ports with no exiting channel.

Internal ports - all the other ports.

Output and internal ports are called local ports.

In the sequel we consider marked nets i.e. nets in which some ports are declared as

visible ports; all the other ports are said to be hidden.

Label ing . Ports are labeled by port names. Different ports of a net are labeled by
different names. Places are labeled by identifiers together with pair of natural numbers
(rank). An identifier assigned to a place pl with n input ports and m output ports
should have the rank (n; m)

The type of place pl is the set of names of port adjacent to it. We use the notation
Port(pl) for the type of pl. A net with only one place and any number of ports is
called a tomic . At(al , . . .a~; b l ," .bin) is a typical notation for an atomic net with
place labeled by At(n; m), with input ports labeled by a l , ' . . a s and output ports
labeled by bI,...bm. Different ports of a net have different labels. Hence we may
identify ports with their labels. We always assume in the sequel that no parallel
channels are allowed in the net: given an arbitrary place and an arbitrary port in
the net there may be no more than one channel which connects them. Therefore, in
any atomic subnet Atl(al , . . .a~; b l , ' " b,~) all the port labels a l , ' " a~, bl,.." b,~ are
different.

Fig. 1 suggest itself. For example in N2 place pll has two adjacent ports. Port a is
adjacent to places pll, pl2, pl3. As usual nets are to be considered up to isomorphism.
Two nets are isomorphic if there is a bijection between them which preserves adjacency,
visibility status of ports and also the labeling.

Here are some possible restrictions concerning hiding and the topology of directed
nets:

1. No hiding at all

2. No Confluence - For every port there is at most one channel entering it.

3. No Forks - For every port there is at most one channel exiting it.

4. All internal ports are hidden.

5. No Loops - No directed cycles in the net.

1.2 S u b s t i t u t i o n

Let pl be a place of a net N. We say that a net N1 is substitutable for a place pl in
N if:

183

at-

cr--]

N

1)

?b
N1

Figure 1:N2 = N[N1/pl]

C

b

N 2

I. The sets of input and local visible ports of NI are the same as the sets of input
and output ports of pl.

2. No hidden port of NI is a port of N.

3. N1 and N do not have common places.

The result of substitution N[N1/pl] is the net N2 defined as follows:

1. P laces (Nz) = P l a c e s (N) - {pl} U Places(N1)

2. Por t s (N2) = P o r t s (N) U Por t s (N1)

3. A port and a place are connected in N2 if they are connected in N or in N1 and
the edges preserves their direction.

4. A port is visible in N2 if it is visible in N.

5. All nodes inherit their labelling.

For example in Fig. 1 N2 = N[N1/pl].

A class of nets is ,called s u b s t i t u t i o n a l if it is closed under substitutions.

No ta t ions . In the sequel we will refer to some specific substitutional classes of nets
and denote them as follows:

• N N 1 - all nets

• N N 2 - all nets with only visible ports

184

• NN3 - all nets without forks, without confluences and exactly internal ports are
hidden.

• NN4 - all nets without loops.

NN3 is a subclass of what we would be more interested in, namely the class of all nets
with exactly the internal ports hidden. However, we impose the additional restriction
for NN3 in order to simplify the exposition.

If for classes NN1, NN2, NN4 we require also that no confluences are allowed, then
we obtain non substitutional classes.

Sometimes in the literature the class of nets without hiding, without confluences and
without forks is considered. This class is not substitutional. See Fig. 1 in which
N2 = N[N~/pl], nets N, N~ are in this class, but N~ is not.

On the other hand the class without forks, without confluence and with all internal
ports hidden is substitutional.

1.3 Modular Net Semantics

A model of net semantics is a triple < NN, D, S E M > where: N N is a substitutional
class of nets, D is an 'appropriate' semantical domain we do not specify here (In the
sequel classes of relations or classes of processes are intended mainly). S E M is a func-
tion from N N × E N V into D. Here E N V is the set of environments; each environment
is a mapping from (all) atomic nets into D which respects types and renaming (see
definition 3 below). An interpreted net is a net together with an environment. Nota-
tions < N, env > and SEM(N, env) are used for an interpreted net and its semantics.
Since the places of a net are uniquely identified with its atomic subnets we refer (by
abuse of notation) to env in < N, env > also as to a function from the places of N
into D. As always a net context is a net with partial environment (an environment
which assigns value not to all places of N). N~l] is a typical notation for the net with
one hole pl.

Def in i t ion 2 (M o d u l a r i t y) We say that model < NN, D, S E M > is modular (or
briefly- that semantics S E M is modular) iff SEM(N1, env) = SEM(N2, env) implies
that for arbitrary context N~vl]

SEM(N[N1/pl], env) = SEM(N[N2/pl], env)

From the particular case when N2 is atomic it follows that a modular semantics S E M
has the following

P r o p e r t y : Assume that pl is a place in N and SEM(Nl , env) = env(pl); then
SEM(N, env) = SEM(N[N1/pl], env).

It is easy to see that if N N contains all atomic nets then this property is equivalent
to modularity.

185

2 P r o c e s s e s

2.1 Basic Definit ions

Let P be a set of ports and A be a fixed da ta set. A communication event over P
is a p a i r < port, d > with port E P and d E A. A l i n e a r run over P i s a finite
string of communications over P . A linear process of type P is a pair (T, P), where
T is a prefix closed set of runs over P. Note, tha t processes of different types might
contain the same set of string; such processes are different. The type of a process is
its impor tan t at tr ibute; we use notations ports(Pr) for the type of process Pr. On
processes of a given type one considers the subset preorder: Prl <_ Pr2 iff every run

of Prl is a run of Pr2.

E x a m p l e 1 B u f f e r . Usually under 'buffer' one has in mind an au tomaton with one
input port one output port; it reads values and outputs them according to the FIFO
discipline. As a linear process a buffer with input port p and output port q (notat ion
- buf(p -* q)) consists of all strings s which obey the condition: in every prefix of
s the sequence of da ta communicated through q is a prefix of the sequence of da ta
communicated through p.

E x a m p l e 2 L a b e l e d t r a n s i t i o n s y s t e m s a n d l i n e a r p r o c e s s e s A Labeled Tran-
sition System (LTS) of type P is an au tomaton whose a]phabet (set of actions) is the
set of communications over P and the special invisible action T. It consists of:

• Set of states Q.

• Initial state q0 E Q.

• Transit ion Relation: a subset of Q × Alphabet × Q.

We use q <p,d> ql as a notat ion for a transit ion from state q via communication < p, d >

to state q'; we say tha t < p, d > is enabled at state q if there is a transit ion q <p,d> q,
for some q'.

An al ternat ing sequense qo, ao, ql, a l , ' . .a~_l , q~ of states of LTS T and actions
of T is an execution sequence of T if q0 is the initial s tate of T and qi ~ qi+l are
transitions of T for i = 0 . . . n - 1. A run of T is the sequence of communications which
is obtained from an execution sequence by deleting the states of T and ~- actions. For
every LTS T the process of the same type as T is assigned. This process consists of
the runs of T. It is clear tha t the set of runs of T is a prefix closed set of strings. It is
also clear tha t for every process Pr there corresponds a LTS whose set of runs consists
of the strings of Pr.

186

2 . 2 O p e r a t i o n a l S e m a n t i c s Sem~o~ f o r n e t s o f p r o c e s s e s

Let us consider first operational semantics for a net of LTS.

Let N be a net with n places and let p be a function which assigns to every place pIi
of N a LTS of the same type as pl. N and p define the LTS T as follows:

• States of T are the tuples (q~, . . . q~), where q~ is a state of p(pli).

• The initial s tate of T is the tuple of the initial states of p(pl~).

• The transit ions of T are defined as follows:

1. If qi ~ > q~ is a transitions of p(pl 0 then
(ql, ""qi-lqi, qi+l,"" qn) ~ ~ (ql, "'" q~-lq~, qi+l,"" qn) is a transitions of
T.

2. If in each of the places ply1,.. "pli~ which are adjacent to the por t p the
communicat ion < p, d > is enabled at state (ql, " '" qi-lqi, qi+l,'" • qn), and

<p,d> , <p,d> ,
qi~ qi~ ""qi~ qik are transitions of p(pli~)"'p(plik) then

(ql, ""qi-~qi, q i + l , ' " q =) ~: (ql, " " q ~ , " ' q ~ k " ' q n) is a transitions of T
if p is a hidden por t of N and

(ql, ""qi-lqi, qi+l,"" qn) <p,d> (ql, "'" q~,' '" q~' '" q,~) is a transitions of

T if p is a visible port of N.

D e f i n i t i o n 3 A process e n v i r o n m e n t pp is a mapping from atomic nets into pro-
cesses which

• Respects types: pp(At (a l , " 'an;b l , ' "bm)) has the same type as
At(a1,. . . an; bl ,"" bin).

• Respects renaming: the processes pp(At(al , . . .a~;bl , . . .bm)) and
! . 1 pp(At(a[,. . .an, bl,...b~m)) are the same up to appropriate renaming of their

ports.

S e m a n t i c s o f a n e t o f p r o c e s s e s Let < N, pp > be an interpreted net of processes
and let p be a function which maps the places of N into labeled transit ion systems
such tha t the sets of runs of p(pli) is the same as the process pp(pli). The process
semantics Semproc of < N, pp > is the process assigned to the LTS for < N, p >.

It is easy to see tha t Semproc(N, pp) does not depend on the choice of p. Therefore
process semantics is well defined.

187

2.3 Input Processes

Def in i t ion 4 Pr is an i npu t p rocess if its ports are divided into input ports and
local ports with the only demand that if p is declared as an input port it should be 'input
buffered' in the following sense: Assume s in Pr; then Pr contains also all strings one
can construct via the following operations:

• Input extension. Extend s appending to the right arbitrary many communications
through p.

• Input anticipation. I f a communication < p, d > follows immediately after a
communication through a port different from p, permute them.

The following remarks explain the intuition behind these conditions. Let Pr' be a
process of type p' m P. Consider the process Pr specified by the net N with hidden
port p' and two places: one for Pr' and another for buf(p > p') (here p is not a port
of Pr). Then port p in Pr satisfies input extension and input anticipation conditions.

If a process is obtained by the construction above, we say that its port p contains
a buffer. It is easy to check that a process is input buffered at ports P l , " ' P k iff it
contains buffers at these ports. Additional remarks about input bufferness will be
given in section 6.2 when we consider operations on processes.

E x a m p l e 3 buf(p ~ q) is a linear process with input port p and local port q.

E x a m p l e 4 (Rudimentary Processes [15]). Start with an arbitrary run s over ports
P m Q. Let Pre f i x (s) be the closure of s under prefixes. Finally, close Pre f i x (s)
under input extension and input anticipation wrt ports in P. The resulting process
Rudim(s, P, Q) is called the rudimentary process generated by s, P, Q. It is an
input process with input ports P and local ports Q.

From now on when we refer to an interpreted net of processes we will have in mind that
its environment assigns to the atoms input processes and to an atom At with input

ports Pl,'",pk and output ports ql,"',qm the environment assigns a process with
input ports Pl,"',Pk and local ports ql,"', q,,. It is easy to check that the process
Pr specified by such an interpreted net is an input process wrt to the set of visible

inputs in _N. Hence, the general notion of semantics for a net of processes consistently
restricts to semantics for nets of input processes.

Cla im 2.1 (Modularity of SEMp~oc). Let PP1 be the the class of all input processes.
Then < NNL, PP1, SEMp~o~ > is a modular model.

For the proof see later section 8.3. As a straightforward consequence we mention:

C o r o l l a r y 2.2 Let < N N , PP, SEMp~oc > be a model with arbitrary substitutional
set N N and arbitrary set P P of input processes; then this model is modular.

188

3 Implementing Relations

3.1 Basic Definit ions

Let D be a domain and P be a set of (port) names. A p o r t relation R of type P over
D is a subset of D P. We will designate the type P of R as ports(R). Below we will
consider port relations over stream domains.

Definition 5 Let A be an arbitrary set. The stream domain D = STREAM(A) over
A consists of all finite and infinite strings over A, including the empty string and is
partially ordered by the relation 'x is a prefix of y '.

Obviously the set of streams ordered as above is a CPO.

Let D be a CPO. Recall that an element x of D is called finite if it satisfies the
following condition: assume that x < a, where a is the least upper bound (lub) of a
sequence al _< a2 _< ...; then x < am for some n.

For a finite set of ports P , the finite elements of STREAM(A) P are functions which
map ports into finite streams. Let s be a run of process Pr. The behavior of run s
at port p is the stream of data communicated through p in s. Therefore, to each run
there corresponds a function from ports to STREAM(A) . And to a process Pr of
type P there corresponds a port relation of type P which we denote by rel(Pr). We
say that process Pr implements this relation. We say that processes Pri, Pr2 are
relationally equivalent (notation Prl --~eI Pr2) if rel(Pr~) = rel(Pr2). Among the
processes which implement a relation R there is a maximal process (i.e. each other
process implementing R is its subset). This maximal process is said to be fat and is
denoted by fat(R). We also introduce a preorder _<~z on processes: Prl <~,z Pr: if
rel(Prl) is a subset of rel(Pr2).

3.2 About --rd-substitutivity issues for SEM~roe

Consider a model < NN, PP, SEM~oc > where N N is a substitutional set of nets
and P P is a set of processes. We know already what it means that such a model is
modular. Sa, f that it respects - tel (or that it is =ra substitutive) if the following holds:
Assume that two interpreted nets < NI,ppt > and < N2,pp2 > in this model specify
processes Pr l , Pr2 which implement the same relation (i.e. rel(Pr~) = rel(Pr~))
and that they are both substitutable in some context. Then they are replaceable by
each other without changing the relation of the overall net. Similarily one defines
'respecting _<~d (or _<r~I substitutivity): require that if (Prl <_r~z Pr2 then replacing
< N1, PPi > by < N2, PP2 > may only increase the relation of the overall net. Clearly
_<r~l substitntivity implies =tel substitutivity. The Brock-Ackerman example (Brock-
Ackerman anomaly) is a warning that substitutive reasoning of this kind is generally
impossible; nevertheless, it still does not exclude specific cases when this is possible.

189

Given a substitutional set of nets N N and a set of processes PP the closure of P P
under N N consists of all processes which can be specified by nets from N N over pro-
cesses from PP. Say that PP is modular wrt N N if < NN, closure(PP), SEMp, oc >
is a modular model. In a similar way we refer to P P as being _<ra-substitutive wrt
NN.

Looking for _<**z substitutive sets of processes we prefer to deal with sets PP of pro-
cesses which have enough computational power [15]. The formalization is in terms of
powerful sets. PP is said to be a powerful set if it contains at least all the rudimentary
processes (see example 4 in 2.3).

Here is a slightly rephrased version of our result in [16], adapted to the notations of
this paper:
Assume that P P is a powerful set of processes which is closed under NN3. Then the
model < NN3, PP, SEMp~oc > is <_~el substitutive iff all the processes in PP are fat.

One direction of this claim is easy. Note (1) SEMp~o~ is monotonic wrt inclusion of
processes. (2) for fat processes, Prl c_ Pr2 iff reI(Prl) C_ rel(Pr2). Hence, if all pro-
cesses in PP are fat then the model < NN3, PP, SEMp~oc > is _<~a substitutive. The
second direction that a modular powerful set of processes contains only fat processes
is more subtle and its proof is based on full abstractness.

What powerful sets of processes are _<~l-substitutive wrt NN1, NN2, NN3, NN4?

C l a i m 3.1 i. NN1. No powerful set is <~z-substitutive wrt NN1.

2. NN2. A powerful set is <_,ez-substitutive wrt NN2 iff it consists of only fat
processes.

3. NN3. A powerful set is <_~l-substitutive wrt NN3 iff its closure under NN3
consists of only fat processes.

4. NN4. Each set of processes is <_~l-substitutive wrt NN4.

C o m m e n t . (Comparing classes NN2 and NN3.) If a set PP consists of only fat
processes then its closure under NN2 will also consist of only fat processes. That
is not the case for NN3. Hence, it is easy to give examples of <~l-subsitutive (and
powerful) sets for NN2; just take all fat input buffered processes. On the other hand,
it is not even simple to check that the closure of the rudimentary processes under
NN3 consists only of fat processes. Therefore, the construction of all powerful _<r~z-
substitutive sets is a difficult problem. This issue is better handled in connection with
modularity for relations (see 4.3).

4 C o n n e c t e d Relat ions

4.1 Basic Definitions

Since processes are prefix closed their relations may not be arbitrary.

190

We are going to characterize briefly this particular kind of relations, we call connected
relations (see [17, 10]).

Def in i t ion 6 We will write xl << x2 (xl immediately precedes x2, or x2 covers x l) if
Xl < x2 and there is no element between xl and x2. A finite chain s = {xi : i = 1...n}
is called strict if it begins with _L and xi << X~+l for all i < n.

Let R be a subset of D. chain(R) denotes the set of all strict chains contained in R.
The kernel of R (denoted Kern(R)) is the subset of R such that x is in Kern(R) if it
belongs to a chain in chain(R).

Def in i t ion 7 A relation R is called c o n n e c t e d if R = Kern(R) .

Obviously, Kern(R) is the maximal connected subset of R. Every connected relation
over a stream domain consists only of finite elements.

E x a m p l e 5 (kernel vs least fixed point) Consider the relations: 5' =d~f {Y = f (x , y)}
and S' =d~f {Y < f (x , y)}. Assume that f is the constant function which returns the
stream 00. Then S consists of all pairs < x, O0 > and its kernel is obviously empty.
On the other hand for arbitrary continuous f : K e r n (S 0 consists of all finite x, y such
that y < h(x), where h(x) =des I fp .Ay. f (x , y).

Def in i t ion 8 Given a relation R of type P (i.e., R C S T R E A M (A) P) we say that
R increases at port p if the following holds: Assume that x, y are finite elements
in S T R E A M (A) P) which differ only on p and moreover x(p) ~_ y(p). Then x e R
implies that y E R.

Similarly one defines 'R decreases in p'. We will refer to a relation R as to an input
relation if its ports are divided (someway]) into input ports and local ports with the
only requirement that R increases on each of its input ports. Notations like R(~; ~)
are used to point on the vector ~7 of input ports and on the vector ~ of local ports.

E x a m p l e 6 bu f (p --* q) implements the relation R we designate as p > q. It contains
only finite elements and x E R v:~ x(p) >_ x(q). Note that this relation increases in p
and decreases in q.

It is easily seen that if p is an input port of Pr then rel(Pr) increases on this port.
Hence rel(Pr) may be considered as an input relation with the same inputs as Pr.

Fac t 4.1 1. R is a connected relation iff it is implemented by a linear process.

2. R is an input relation with input ports P and local ports Q iff it is implemented
by input process with input ports P and local ports Q.

191

4.2 Nets of Relat ions and their Semantics

Relational environments are defined similarly to process environments. Let rr be a
relational environment. Given the interpreted net < N, rr > choose a process environ-
ment pp such that for each place pl in N the process pp(pl) implements the relation
rr(pl). Now consider the relation S implemented by the process SEMp~o~(N, pp). Since
a relation may be implemented by different processes neither pp nor S are uniquely
determined by < N, rr >

Fac t 4.2 [16, 17] There is an extreme environment pp which returns the maximal
among all possible S; namely, this is the environment which assigns to each pl the fat
implementation of rr(pl).

Def in i t ion 9 The maximal relation S achievable in this way is called the relational
semantics of the net and is denoted by SEMper(N, rr).

Hence, S E M ~ (N , rr) = rel(SEMp~o~(N, fat(rr))).

4.3 Modularity of Semrel and <rd substitutivity of Semproe

Given a substitutional class of nets N N and a set of connected relations RR. We
define 'RR is modular wrt N N ' in the same way as for processes in 3.2. A set RR of
relations is said to be powerful if it contains all the rudimentary relations, i.e. those
relations which are implemented by rudimentary processes (see example 4 in section
2.3).

There is a simple relationship between modularity for relations and =~z-substitutivity
for processes.

Cla im 4.3 Let RR and P P be corresponding sets of relations and fat processes, i.e.
Pr E P P iff Pr = fat(R) for R in RR. Then P P is -~el-substitutive wrt NN3 iff
RR is modular wrt N N3.

This claim is the starting point for improvements which show that problems about
rel-substitutivity may be reduced to problems about modularity for relations.

What sets RR of relations are modular wrt NN1, NN2, NN3, NN4?

Cla im 4.4 1. NN1. No powerful set RR is modular wrt NN1.

2. NN2. Every set RR is modular wrt NN2.

3. NN3. A powerful set RR is modular wrt NN3 iff the corresponding set of pro-
cesses fa t (RR) is <~el-substitutive wrt NN3.

192

4. NN4. Every set RR is modular wrt NN4.

C o m m e n t . Claims 3.1.3 and 4.4.3 provide the reductions between the following tasks:

1. Find powerful sets of processes which are <r~Z-substitutive wrt NN3.

2. Find powerful sets of relations which are modular wrt NN3.(Such sets will be
directly characterized later through claim 8.4)

Indeed, if RR is a modular and powerful set of relations, then according to claim
4.4.3, the set fat(RR) of processes is powerful and <r~l-substitutive. On the other
hand, if PP is a powerful and <~-substitutive set of processes then by claim 3.1.3
it consists only of fat processes. Therefore, PP coincides with fat(reI(PP)) and is
_<r~z-substitutive. Hence, by claim 4.4.3, rel(PP) is modular.

5 Algebra of Nets

5.1 N e t C o n s t r u c t o r s

Below we consider a set ~ of operations on nets which allow to construct complex nets
from more elementary ones. For all these operations labelling of nodes is unchanged.

C o m b i n a t i o n . N1 and N2 may be combined if they do not have a hidden port with
the same name. The set of nodes in the resulting net is union of the set of nodes of
N1 and N2. A port and a place are connected in N if they are connected in N1 or in
N~. Ports inherit their visibility status; edges inherit their directions and numbering.

Aggrega t ion : is combination of nets which do not have common port names. (neither
hidden, nor visible).

Sequen t i a l c o m p o s i t i o n (notation seq) is combination of two nets N1, N2 such
that every common port name is the name of a visible local port in N1 and the name
of a visible input port in N2.

Hid ing . If p is a visible port in N it becomes hidden in 3p.N.

Note that for all operations above the set of atomic subnets of resulting net is the
union of the sets of atomic subnets of components. The following operations do not
possess this property.

L O O P i n g of a local port y and an input port x which are visible in a net N.

The operation LOOP(y --+ x) in N is defined as following:

1. Delete x from N.

2. Connect y to all places which were connected to x.

193

3. The visibility status of all ports is unchanged.

looping (note the low case spelling), loop(y --+ x) in N is defined as LOOP(y -+ x)
in N, but the status of y changes from visible to hidden.

Simultaneous LOOP(~ --+ ~) in N and loop(~ --+ ~) in N are defined in a similar
way.

Note that all looping constructors are only partially defined in order to avoid the
creation of nets with parallel channels. Note also that all constructors preserve the
number of ports adjacent to a given place. (If parallel channels have been allowed,
the looping constructors would be totally defined, but the above invariant would be
violated).

Relying on the signature E and on some appropriate notations for atomic nets one can
formulate a language NET (in the spirit of [4]) for the description of nets. For example,
both terms (At(; a, b)combAt~ (a; c)) and (LOOP(a --+ a') in (At(; a, b)aggrdtl(a'; c)))
describe the net N in Fig. 1. If two terms tl, t2 of NET describe the same net, we
say that they are graph equivalent and write tl ~-graph t2.

5.2 Equivalences in N E T

Below are equivalences which allow to prove that terms in NET describe the same net:

1. combination is commutative and associative.

2. aggregation is commutative and associative.

3. 3p~q.N = ~q3p.N

4. 3p. (NlcombN2) = (3p. N1)combN2, provided p is not visible in N2.

5. loop(£ --+ :~1) in (Ioop(~,72 --+ :~2) in N) = Ioop(~.71, ~72 --+ ~1, ~2) in N

6. loop@ --+ x) in (NlaggrN2) = (loop(y ~ x) in N1)aggrN2, provided y and x are
not visible ports of N2.

5.3 Constructor sets for specific classes of nets

Say that the class N N of nets is generated by the subsignature E ~ C E if it contains
exactly the nets generated from atomic nets by the operations in E / (in other words -
the nets expressible in the language NET with the use of only E ~)

C la im 5.1 1. The classes NN~ below are generated as follows:

(a) (All nets.) NN1 is generated by comb and hide.

194

.

(b) (All nets with only visible ports.) NN2 is generated by comb.

(c) (All nets without forks, without confluences and exactly internal ports hid-
den.) NN3 is generated by aggr and loop.

(d) (All nets without loops.) NN4 is generated by aggr, seq and hide.

(Standard systems of equivalences.) For each of the classes NN~ above and their
corresponding constructor set E~ there is a standard system of equivalences from
which all other equivalences are provable by equational reasoning.

(a) For NNI: equivalences 1,3,4;

(b) For NN2: equivalences 1;

(c) For NN3: equivalences 2, 5, 6;

(d) For NN4: omitted;

6 Algebra of Processes

6.1 Pre l iminary Remarks

We consider below the special interpretation of E (the signature of net constructors)
wrt processes (see 6.2). Eproc will designate the set of these operations on processes.

We preserve the terminology and notations used wrt nets except for combination, to
which there corresponds synchronization (11) of processes. All the definitions implicitly
include an appropriate classification of the ports (in the result of the operation) into
input and local ports exactly as for the corresponding constructors. It is easy to check
that the ports declared as input ports indeed obey the input buffering condition. We
consider also union of processes.

As an immediate consequence of the interpretation Ep~oc one can use the syntax of
NET for specification of processes.

6.2 Operat ions on Processes

First we consider operations on processes which correspond to the signature E of the
net constructs.

Synchronization (notations: II)

ports(Prl l[Pr2) = ports(Prl) u ports(Pr2)
s E Prx]lPr2 ifffor i ~-- 1,2

slports(Pri) E Pri

195

where ports(Pr) is the type of process Pr and slA is the notation for the string one
gets from s by deleting all events which are not on ports A.

Aggrega t ion . In the case when Prl and Pr2 do not have common ports, their
synchronization is called aggregation.

Hid ing . 3 p. Pr results in the process of type ports(Pr) - p; its strings are obtained
from the strings of Pr by deleting all occurrences of communications on p.

Next we consider two versions of the looping operation. Note that we use for them
upper cases notations (when the local port is not hidden) and lower case notation
(when the local port is hidden).

L O O P i n g of a local port y and an input port x of process Pr.

LOOP(y -* x) in Pr =de/ 3x.(Prllbuf(Y ~ x))

looping, loop(y -~ x) in Pr =de /3y . (LOOP(y --+ x) in Pr).

Another useful operation on processes is
Union . For processes Prl, Pr2 of the same type, Prl t2 Pr2 inherits this alphabet
and contains all strings in Prl and in Pr2.

R e m a r k a b o u t t he re levance of i npu t bufferness . Let Pr be a process and p be
its port. One can show that Pr is input buffered at p (see definition 4) iff for any port
r not in Pr the process ~p.Prllbuf(r -~ p) is the same as the process obtained from
Pr by renaming p by r. Therefore, in input processes a buffer is attached to every
input port.

In our definition of the looping operations we explicitly rely on buffers. The in-
put buferness is needed later only to show that the semantics based on aggregation
and LOOPing coincides with the semantics based on synchronization. For exam-
ple, net N~ in Fig I can be described as At1(; a)combAt2(a; b) and as LOOP (a -~
a') in At1 (; a)aggrAt2(a'; b). If a n environment pp assigns to At~ and At2 input buffered
processes, then these two terms will specify the same process in pp; otherwise these
terms might specify different processes.

In the sequel under a process we have in mind an input process.

6.3 Some Laws

In order to characterize the algebras of processes we notice similarities between the
logical operations conjunction, disjunction and existential quantifier on one hand and
the operations synchronization, union and hiding for processes on the other hand.
Let t be a first order term which uses only conjunction, disjunction and existential
quantifiers. In addition to the usual logical interpretations of such terms one can
consider also their process interpretations following a way similar to that we used in
section 6.1 for terms in NET. For example, (Atl(b', c) A At2(a, b)) is interpreted in
logic as the conjunction of the relations assigned by a logical environment to symbols

196

Atl, At2. In the process algebra this term is interpreted as the synchronization of the
processes assigned by a process environment to symbols Atl(b', c), At2(a, b).

Given two terms tl, t2 of the same type {a l . . "an}; say that tl implies t2 in logic if
the formula Val . . . an(t1 --+ t2) is first order valid formula. The following claims are
valid for arbitrary not just input processes.

Claim 6.1 (Relationship of process algebra to logic).

I f tl implies t2 in logic then the process specified by (tl, pp) is a subset of the process
specified by (t2, pp) in arbitrary process environment pp.

Coro l l a ry 6.2 All basic equivalences for net constructors (see 5.3) hold in the algebra
of processes, i.e., for every constructor set Ei considered above and terms tl and t2
over Ei the equivalence tl ~-graph t2 implies that for each process environment pp the
interpreted terms (tl, pp) and (t2, pp) define the same process.

Proof: The equivalences 1, 3, 4 from section 5.2 hold in logic and hence by claim 6.1 we
obtain immediately the equivalences for combination and hiding. For other operations
it may be inferred from their definition based on synchronization and hiding. []

7 A l g e b r a o f C o n n e c t e d re la t i ons

7.1 Preliminary Remarks

As for processes we consider below the special interpretation of E (the signature of
net constructors) wrt relations. F~r,l will designates the set of these operations on
relations.

We preserve the terminology and notations used wrt nets except for combination, to
which there corresponds strong conjunction (__&) of relations. In addition to Er~z we
consider also union (disjunction) of relations.

As an immediate consequence of the interpretation E~,l, one can use the syntax of
NET for specification of relations. Let rr be a relational environment and let t be an
arbitrary term in NET; then the pair < t, rr > is an interpreted term whose meaning,
denoted (t, rr) , is a port relation which is fully determined by the environment rr and
the interpretation E~,z of the net constructor symbols.

7.2 Operations on Relations

Given x E D P and xl E D P1, assume that P1 _C P and for every port p in P1 the
equality xl(p) = x(p) holds; in this case we say that xl is the p r o j e c t i o n of x onto
P1.

197

First we consider the operations join and disjunction.

Join. Let R1 be a relation of type P1 and let R2 be a relation of type P2. The join
of R1 and R2 is the relations of type P1 U P2 defined as follows: x E RI&R2 if the
projection of x on P1 is in R1 and the projection of x on P2 is in R2.

Dis junc t ion . Let R1 and R2 be relations of the same type P. R1 U R2 is the relation
of the type P which denotes the union of R1 and R2.

Disjunction of connected relations is a connected relation. But the result of the join
of connected relations is not always a connected relation.

Now we list the operations in E,.¢z.

S t rong C o n j u n c t i o n - (no ta t ion _&). Let R1 be a relation of type P1 and R2 be a
relation of type P2. The strong conjunction of R1 and Re is the kernel of their join.

E x a m p l e 7 Consider the system of equation $1 and the corresponding system of in-
equalities $2.

$ 1 = { y=x= yf(X'Z) $ 2 = { y < yf(X'Z)

The solutions of $1 is R1 = {(x, y, z) : x = y = IfpAx.f(x, z)}.

The strong conjunction of the two inequalities in $2 is R2 = {f ini te (x, y, z) : x
y <__ Ifp Ax.f(x, z)}

Aggrega t ion . In the case when R1 and R2 do not have common ports their strong
conjunction is called aggregation.

It is easy to see that aggregation of connected relations coincides with their join.

Hiding. 3p.R is the relation of type ports(R) - {p} which consists of projections of
elements of R on these ports.

Again as for processes we consider two versions of looping: without and with hiding
of local ports.

L O O P i n g of a local port y and an input port x of relation R.

LOOP(y --+ x) in R =d~f 3x.Kern(R&__(x <_ y)).

loop(y --~ x) in R =def 3y.LOOP(y -~ x) in R.

7.3 Some Laws and Anomal ies

As for processes we notice similarities between the logical operations conjunction, dis-
junction and existential quantifier on one hand and the operations strong conjunction,
disjunction and hiding for relations. However, the algebra of connected relations is not
rich as the algebra of processes. Some laws are valid; in particular strong conjunction
is commutative and associative, hiding is commutative. But note equivalence 4 (from
section 5.2); we refer to it in the sequel as 3-rule:

198

3p. (NlcombN2) = (Sp inN1)combN2, provided p is not visible port of N2.

The rule is not valid for the set of all connected relations; in other words, for this set
there holds 3-anomaly. Also equivalences 5 and 6 (from section 5.2) fail. Hence, for
connected relations there is no analog of corollary 6.2 we established for processes in
section 6.3

8 Modularity and Robustness

8.1 Term Semantics

Sometimes (see [4, 18]) when referring to net semantics SEM(N, env) what one really
has in mind is term semantics (t, env), where t belongs to some chosen set T N of
descriptions of the net N. In such a case one has to make sure that for all ti in T N
the meaning of (ti, env) is the same. Otherwise the net-semantics is not well defined.

In particular, given an interpreted net < N, pp >, consider the set T N of N's descrip-
tions which perform first the combination of all atomic subnets and after that all the
hidings. Due to the commutativity and associativity of process synchronization and of
process hiding one can use interpreted terms < t, pp > with t in T N for a well defined
semantics < N, pp >. The same remark holds for strong conjunction and hiding wrt
relations and hence for a well defined semantics of nets of relations.

Fact 8.1 Semantics defined this way coincides with SEMp~oc for processes and with
SEM~z for relations

But what about other descriptions for (N, env). Do they provide also the same mean-
ing as (t, pp) and (t, rr) for t in TN?

8.2 Compositional Semantics

Consider one of the sets N~% of nets (see 5.3) equipped with its constructor set Ei.
Below tl, t2,"" are terms in NET which use only constructors from F~i; PP and RR
denote some sets of input processes and relations respectively which are supposed to
be closed under EpToc and Er~z respectively.

Definit ion 10 The semantical model < NNi, PP, S E M > is compositional (SEM
is a compositional semantics from NNi into PP) iff for each environment (types re-
spected!) S E M induces a E.~ homomorphism from NNi into PP.

C o r o l l a r y 8.2 Every compositional model is modular.

199

C l a i m 8.3 1. A compositional semantics from NN~ into PP is possible (and if
possible is unique) if there holds the following r o b u s t n e s s cond i t ion : Given
arbitrary terms t~, t2 over Ei the equivalence tl =--g~ph t2 implies that for every
environment env in P P the processes specified by (t~, env), (t2, env) are equal.

2. Under the conditions above S E M coincides with SEMp~oc.

3. If < NNi, PP, SEMp~o~ > is a modular model then SEMp~o~ is a compositional
semantics from NNi into PP.

Similarly for semantics from NNi into RR.

8.3 M o d u l a r M o d e l s

Relying on corollary 8.2 and on claim 8.3 we are going to characterize some modular
models < NNi, PP, SEMproc > and < NNi, RR, SEMrd >. To this end we survey
situations when the robustness condition holds.

a) Robustness holds for all models < NN~, PP, SEM~oc >.

That is due to corollary 6.2, and it proves modularity of SEMp~o~ (see claim 2.1 from
section 2.3).

For relations the situation is quite different. This can be shown directly by coun-
terexamples, but is also evident from the 3-anomaly (see section 7.3), which violates a
basic equivalence for {comb, hide}. Therefore, it makes sense to look for more specific
situations in which robustness and hence modularity hold. The following cases are
easy and prove claim 4.4 (see section 4.3) for NN1, NN2 and NN4.

b) NN2 (No hiding). Robustness holds for arbitrary RR. That is because the only
relevant equivalences are commutativity and associativity for both comb and _~.

c) NN4 (No loops). Robustness holds for all relations. We omit the details.

d) NN~ (arbitrary nets). Robustness fails for every powerful set RR. Actually, the
~-rule (see 7.3) is violated in such set.

Hence, if we want to allow both loops and hiding and at the same time to have
robustness we must restrict the set NNI. An instructive case is the set NN3 with the
constructors {aggr, loop}. The basic equivalences 2 and 6 (see 5.2) wrt {aggr, loop}
hold in general for all relations. There is still one kind of basic equivalences which
should be explicitly postulated:

The looping law: For each relation R in the class RR there holds
loop(il -~ ~i) in (loop(ix -~ g2) in R) =

.~ loop(~2 ~ ~2) i n (loop(2~l ~ ~1) in R) -~-
----- loop(Z1, :~2 --+ Yl, Y2) in R

Therefore we conclude:

200

Cla im 8.4 A model < NNs, RR, SEM~l > is modular iff for all R in RR there holds
the looping law.

A powerful model of this kind is provided by the class of all functional relations. Recall
[16] that a relation R(~; if) is functional if for some continuous function f

R(~; if) iff ~ and y are finite elements and y _< f(~).

Note that such a relation is not only input increasing but it is also decreasing wrt
all local ports. (In our previous papers [16, 17] we used the terminology 'observable
relations' for relations with this property). The looping law for functional relations is
a consequence of the well known fact that for functions the least fixed point operators
commute. Note that usually the proof of modularity for functional relations is based on
the Kahn Principle for dataflow nets. Here we inferred it directly from the robustness
condition. Are there other nontrivial classes RR which obey the looping equivalence
and hence are modular? We know that there are such classes. According to claim
4.4.3 in section 4.3 these classes correspond exactly to powerful classes of processes
which are <~ez-substitutive, i.e. avoid Brock-Ackerman anomaly.

9 Concluding Remarks

9.1 C o m m e n t s to 8.2

It is not difficult to understand that processes and relations are not exceptions and that

claim 8.3.1 (and the definitions it is based on) can be generalized to a broad class of
domains. For such a domain D and for an appropriate interpretation of the signature

of net constructors one can consider the robustness condition and its relationship to
modularity. First, observe that under the robustness condition a net semantics is
induced in a natural way. For example, in the cases of processes we would define
semrobust(N, pp) as the value (t, pp), where t is an arbitrary description of N over
NNi, the point being that this definition does not depend on the particular choice of
the description t for N. This definition of semantics may be adapted to 'arbitrary'
domain D and, what is more, one can show that the semantics will be modular. In
the case of processes and relations the use of Eproc and Erez implies also 8.3.2 and 8.3.3
i.e., the robust semantics coincides with SEMproc and SEMrez respectively. In the
general case at this stage we do not have any a priory net semantics to compare with.
But assume that we started with a modular model < NNi, D, S E M >; is it the case
that the signature Ei may be interpreted in D in such a way that robustness holds? It
appears that in the general case some additional assumptions about S E M are needed.
In the particular case of processes or relations these assumptions are implicit in the
requirements about input buffering and input increasing.

201

9.2 The impact of hiding

It seems clear that nets without loops are too poor to support an interesting theory
of dataflow networks. On the other hand, it makes sense to look to what extent the
theory may (or should) be developed without hiding. In particular: do there exist
interesting models without hiding for which the Kahn Principle and its generalization
[2] hold?

It seems that in [2] Abramsky had in mind just such model. Here is a quotation from
[I]: 'I didn't forget about hiding in my paper. I]eft it out because I didn't consider it
germane for the Kahn Principle. It is no need for me to build hiding into my definition
of network composition ... It is well known that this (hiding) spoils the nice properties
of of composition-this is why it isn't done e.g. in CCS and CSP'.

Unfortunately, there is some slight inconsistency in [2] which can be easily repaired
without affecting the results of the paper. This can be done in two ways. One of them
would preserve the definition of 'process P computes function f' chosen in [2], but
would require hiding internal ports of the net. The other one seems to correspond to
Abramsky's idea of justifying Kahn Principle without building on hiding. It amounts
to weaken the definition of 'process P computes function f'.

However, now there may be different processes which implement different relations,
but compute the same functions. Therefore, unlike the case of relational substitutivity
it would not make sense to distinguish between different relations to which there
corresponds the same function (an idea advocated by those who insist on considering
complete computations). Hence, instead of --~l-substitutivity one should consider
a weaker equivalence between processes. But then anomalies would appear without
hiding exactly as they appeared wrt -fez substitutivity in the presence of hiding. As a
matter of fact, the original Brock-Ackerman example illustrates this kind of anomaly
without hiding.

The mora~: though one can justify the Kahn Principle in models without hiding, this
approach does not rescue from anomalies.

9.3 Further Research

1. We considered processes and relations over stream domains. The generalization to
F-domains [17] is straightforward.

2. Technically more involved seems to be the accurate extension of the the theory to
other sets and algebras of nets. But we do not see any serious difficulties on this way.

3. Deepening the knowledge about the algebras of processes and relations. We con-
jecture that 'logical laws' for processes (see section 6.3) may' be essentially improved.
On the other hand, despite the stigma of anomalies, the algebra of relations is worth
to be explored carefully. Though anomalies cannot be avoided, facing them may still
be possible in many situations.

202

4. This paper as well as our previous works [15, 16, 17] is based on a simple model of
processes which does not take into account such discriminating features as branching,
terminating, etc.. It seems that ignoring these features is not harmful and may be
even useful as long as one can develop the theory without them. But finally we have
to face the challenge of analyzing more sophisticated models which take into account,
for example, complete runs [2, 3, 6, 11, 18].

Acknowledgements

We are indebted to Antoni Mazurkiewicz whose compositional approach to Petri nets
provided the initial stimulus to this work. We would also like to thank Samson Abram-
sky and Albert R. Meyer for stimulating discussions.

References

[1] S. Abramsky. e-mail correspondence.

[2] S. Abramsky. A generalized Kahn principle for abstract asynchronous networks.
In M. Main, A. Melton, M. Mislove, and D. Scmidt, editors, Mathematical Foun-
dations of Programming Languages Semantics, volume 442 of Lect. Notes in Com-
puter Science. Springer Verlag, 1990.

[3] J. D. Brock and W. B. Ackerman. Scenarios: A model of non-determinate com-
putation. In Formalization of Programming Concepts, volume 107 of Lect. Notes
in Computer Science, pages 252-259. Springer Verlag, 1981.

[4] M. Broy. Semantics of finite a~d infinite networks of concurrent communicating
agents. Distributed Computing, 2, 1987.

[5] J. Hirshfeld, A. Rabinovich, and B. A. Trakhtenbrot. Discerning causality in
interleaving behavior. In A. R. Meyer and M. A. Taitsin, editors, Proceedings
of Logic at Botik 89, volume 363 of Lect. Notes in Computer Science. Springer
Verlag, 1989.

[6] B. Jonsson. A fully abstract trace model for dataflow networks. In Proceedings
of the 16-th ACM Symposium on Principles of Programming Languages, 1989.

[7] G. Kahn. The semantics of a simple language for parallel programming. In J. L.
Rosenfeld, editor, Information Processing ~. North Holland Publ. Co., 1974.

[8] A. Mazurkiewicz. Semantics of concurrent systems: A modular fixed point trace
approach. In Advanced in Petri Nets, volume 188 of Lect. Notes" in Computer
Science. Springer Verlag, 1984.

203

[9] A. Mazurkiewicz. Concurrency, modularity and synchronization. In Mathematical
Foundation of Computer Science, volume 379 of Lect. Notes in Computer Science.
Springer Verlag, 1989.

[10] A. Mazurldewicz, A. Rabinovich, and B. A. Trakhtenbrot. Connectedness and
synchronization. In D. Bjorner and V. Kotov, editors, Images of Programming
(dedicated to the memory of A. Ershov). North Holland Publ. Co., 1991.

[11] J. Misra. Equational reasoning about nondeterministic processes. In Proceedings
of 8th ACM Symposium on Principles of Distributed Computing, 1989.

[12] D. Park. The fairness problem and nondeterministic computing networks. In
J. W. de Bakker and J. van Leeuwen, editors, Proceedings, 4th Advanced Cource
on Theoretical Computer Science. Mathematisch Centrum, 1982.

[13] V. R. Pratt. On composition of processes. In Proceedings of the Ninth Annual
ACM Symposium on Principle of Programming Languages, 1982.

[14] A. Rabinovich. in preparation.

[15] A. Rabinovich and B. A. Trakhtenbrot. Nets of processes and data flow. In
Proceedings of Rex Workshop on Linear Time, Branching Time and Partial Order
in Logics and Models for Concurrency, volume 354 of Lect. Notes in Computer
Science. Springer Verlag, 1988.

[16] A. Rabinovich and B. A. Trakhtenbrot. Nets and data llow interpreters. In the
Proceedings of the Fourth Symposium on Logic in Computer Science, 1989.

[17] A. Rabinovich and B. A. Trakhtenbrot. Communication among relations. In
International Conference on Automata, Languages and Programming, volume 443
of Lect. Notes in Computer Science. Springer Verlag, 1990.

[18] E. W. Stark. A simple generalization of Kahn's principle to indeterminate
dataflow networks. In M. Z. Kwiatkowska, M. W. Shields, and R. M. Thomas,
editors, Semantics for concurrency, Workshops in Computing. Springer Verlag,
1990.

