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Abstract  

We aim at a unified and coherent presentation of net models for concurrency like 
Petri nets and dataflow networks from the perspective of modularity and substi- 
tutivity. The major goat is to achieve a better understanding of the links between 
modularity issues for nets and laws (or anomalies) in algebras of processes and 
algebras of relations. To this end we develop Mazurkiewicz's compositional ap- 
proach which requires a careful analysis of homomorphisms from algebras of nets 
into algebras of processes and relations. 

0 Introduct ion  

0.1 Modularity, Substitutivity, Compositionality 

Modularity reflects the Frege Principle: any two expressions exprl and expr2 which 
have the same meaning (semantics) can be replaced by each other in every appropriate 
context C[ ] without changing the meaning of the overall expression 
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sem(exprl) = sem(expr2) implies sem(C[exph]) = sem(C[ezpr2]) 

R - substitutivity, where R is a given a binary relation R in the semantical domain 
of meanings, is a broader notion. It means that 

sem(exprl)Rsem(expr2) implies sem(C[exprl])Rsem(C[expr2]) 

In particular, R may happen to be an equivalence relation in the semantical domain. 
For example, a datafiow net may specify a process Pr but what one is mainly interested 
in is the input-output behavior rel(Pr) of this process i.e., the relation between the 
input histories and output histories of Pr. Hence of fundamental importance is --=rel" 
substitutivity i.e., substitutivity of the equivalence rel(Prl) = rel(Pr2). However, in 
general R is not necessarily an equivalence relation. As a matter of fact for dataflow 
nets we consider also substitutivity of <~oz i.e. of rel(Pr 0 C rel(Pr2). 

A conventional syntax (call it TEXTUAL as opposed to NET-syntax) is based on a 
signature E. Morever, a complex piece of syntax expr may be uniquely decomposed 
into simpler subpieces: expr = op(exph, . . ,  exprk), where op is in E. If compositional 
semantics is used, then there is a corresponding semantical clause with the format: 
sem(expr) =d~I OP(sem(exprl), . . . ,sem(exprk)).  Here OR is the semantical con- 
structor which corresponds to op. In this situation there is a natural and clear notion 
of context; it is also quite evident that compositional semantics guarantees modu- 
larity. Compositional semantics may be characterized as a homomorphism from the 
E-algebra of the syntactical domain into the E-algebra of the semantical domain. 

Typically, denotational semantics is formulated in compositional style and hence sup- 
ports modularity. However, often one starts with an operational semantics which lacks 
compositional structure. Then a standard way to prove modularity is to discover a 
compositional semantics which is equivalent to the given operational one. 

In net models of concurrency syntax is provided by some specific class N N  of la- 
belled graphs called nets. On the other hand, semantics is usually defined in an 
operational style through appropriate firing (enabling) rules. Though N N  is not nec- 
essarily equipped with a signature E of operations (i.e. no algebra of nets must be 
assumed) the notions of context, subnet and substitution may make sense and therefore 
R -  substitutivity (in particular modularity) may be defined and investigated. 

0.2 Historical Background 

Petri nets and dataflow nets are fundamental paradigms in concurrency. Historically, 
modularity topics appeared wrt them as follows: 

1. Dataflow. Substitutivity issues for dataflow nets were identified early and in a sharp 
way. The Kahn Principle [7] implies that dataflow nets over functional agents are =r~z- 
substitutive. On the other hand, as Brock and Ackerman observed, --rel-substitutivity 
in general fails if nonfunctional agents (like MERGE) are also allowed. The celebrated 
counterexample from [3] illustrates this so called Brock-Ackerman anomaly. 
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2. Petri Nets. For elementary Petri nets modularity was established by Mazurkiewicz 
[8] following the pattern mentioned above wrt TEXTUAL syntax. Namely, he discov- 
ered a compositional semantics for elementary Petri nets which is equivalent to the 
original 'token game' semantics. Yet, the novelty is that (unlike the case of textual 
syntax) there may be different decompositions of a net into subnets. In other words, 
for textual syntax compositional semantics is an homomorphism from an E-algebra 
over a system of free generators whereas in the case of nets the generators obey some 
nontrivial relations. Clearly in order to support homomorphism, these relations must 
hold also in the semantical domain as well. Mazurkiewicz made the fundamental obser- 
vation that for elementary Petri nets the signature E consists of one binary operation 
to be interpreted as combination of nets (at the syntactical leval) and synchronization 
of processes (at the semantical level); the nontrivial relations amount to commutativ- 
ity and associativity of the operation. In the sequel [9] he formulated compositional 
semantics of this kind also for the more general classes of P/T-nets but without to 
compare it with the already existing token game semantics. 

These seminal works in dataitow nets and in Petri nets inspired and strongly influenced 
the research of modularity for net models. [2, 4, 5, 6, 11, 12, 13, 15, 16, 17, 18]. Note 
that in these works 'modularity' and 'compositionality' are not clearly distinguished. 

Modularity issues for models based on the net concept constitute also one of the 
major goals in our previous papers [5, 15, 16, 17]. In [5] we used the Mazurkiewicz 
algebraical approach to formulate an alternative compositional semantics for the token 
game semantics of P/T-nets.  In this way we established modularity for this, more 
general class of nets. On the other hand, in [15, 16] where our main concern was about 
the phenomena around the Brock-Ackerman-anomaly, we did not rely on any specific 
algebraical arguments. An important conceptual and technical novelty we started in 
[16] and developed in [17] is the idea to consider semantics of nets of relations in 
addition to semantics of nets of processes. As a result of a careful comparison of 
these two kinds of nets we came very close to answering the following question: what 
nonfunctional agents may be used in datailow nets without to produce anomalies? 

As shown in [16], if such nontrivial agents exist they may implement only so called 
unambiguous relations. This seems to be too a strong restriction which cannot offer 
much to practice. However, the full answer to the question is an exciting challenge 
and we have more to say about that in the sequel. 

0.3 Goals  of the Paper  

They are better explained after some preliminary comments about the conceptual and 
notational framework we are going to use. 

A possible formalization of the models we consider is through triples: 

MM =def< NN, DD, SEM >, where 
NN is the syntactical domain, a class of 'nets', 
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DD is the semantical domain, usually a class of 'processes', 
SEM is a function from NN × ENV into DD. Here ENV is an appro- 
priately defined class of 'environments'. 

Syntax .  A great diversity of nets is actually used in the literature. Roughly speaking 
the nets we consider are bipartite graphs as in the theory of Petri nets with the addi- 
tional requirement that the set of all transitions (we call them ports) is divided into 
the set of visible ports and the set of hidden ports. It may happen that for the whole 
class of nets (we denote it as NN1) modularity cannot be guaranteed. In order to 
regain modularity one has to consider subclasses of NN1, which reflect reasonable re- 
strictions on the topology of the net or on the status of visible/hidden nodes. We find 
the following restrictions enough representative: NN2-nets without hiding, NN4-nets 
without loops, NN3-nets with exactly the internal ports hidden. In most of datafiow 
papers (including our [16]) one prefers to deal with simpler (nonbipartite) graphs in 
which edges do not necessarily have nodes, or may have nodes of different kinds. It 
is easy to see that these kinds of nets are shorthands of our bipartite nets and in 
particular of nets in NN3. Summarizing we believe that our approach to nets is quite 
general. 

S e m a n t i c a l  domains .  Here our choice is very specific and debatable. We consider 
only processes which are prefix closed sets of finite runs. This may be too a strong 
restriction. Yet it still allows to explain many phenomena concerning modularity and 
anomalies. But note that in addition to processes we consider also the semantical do- 
main of (connected) relations, which are the behaviors of processes. These objects are 
interesting in their own (see [10, 16, 17]) but we use them here also for the explanation 
of -~z-substi tutivity and anomalies. 

Semant ics .  Our starting point is an operational semantics we call SEMp~oc which 
provides meanings for nets of processes in the style of firing (enabling) rules. A se- 
mantics SEM~ez for nets of relations is derived from SEMproe. In [16, 17] we analyzed 
different possible approaches and they provide evidence to the naturalness of the se- 
mantics SEMr~z. 

In this paper we pursue two major interrelated goals. 

The first is to develop our previous results to a level which presents in an unified and 
coherent way the status of different models from the perspective of modularity. To be 
more concrete one can imagine a table with 4 rows (corresponding to our four kinds of 
nets) and with 3 columns (corresponding to modularity for processes, modularity for 
relations and =-~t-substitutivity). At each of the 12 intersections we would expect the 
characterization of those classes of processes or relations (if any!) which support the 
required version of modularity/substitutivity wrt the class of nets under consideration. 

Our second goal is to achieve a better understanding of the links between modular- 
i ty/substitutivity issues for nets and laws (or 'anomalies') in algebras of processes 
and relations. To this end, following Mazurkiewicz, we aim at a careful analysis of 
homomorphisms from algebras of nets into algebras of processes or relations. This 
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may be illustrated by the following comparison with [8]. There, for nets without hid- 
ing, modularity is argued by the fact that process synchronization obeys the laws of 
commutativity and associativity. For other models we expect to discover in a similar 
way appropriate laws which support modularity (in particular - their violation spoils 
modularity). 

0.4 Survey of Contributions 

Let us now proceed with the survey of the paper and its main contributions. 

Section i presents nets as syntax and also the concept of modular net semantics. This 
material is mainly folklore, but note the accurate definition of substitution (for nets 
some of whose nodes may be hidden!) and of substitutional classes of nets. 

Sections 2-4 contain the definitions of input processes, input relations and of the 
semantical functions SEMproc, SEMrez. In general, processes are dealt with in a more 
or less routine way. However our treatment of relations is not routine and heavily 
relies on the notion of kernel which transfers on relations the idea of least fixed points. 
This notion appears in [17, 10] and comes close to Misra's 'smooth solution' [11]. 

The conceptual framework covered in sections 1-4 suffices for the formulation of the 
modularity (relational substitutivity) problems we investigate in this paper. It suffices 
also to formulate most of the facts (though not their proofs) according to the 4×3 
- table we mentioned above. Not surprisingly (though we never met this fact in the 
literature) modularity for processes holds for all nets and all processes (Claim 2.1). 
The real problems arise with modularity for relations and for --~el-substitutivity; both 
fail if all nets are allowed. Moreover, they fail even for trivial subdomains of processes 
or relations. Here is where restrictions oi1 the class of nets have to be considered. If 
hiding is not allowed (the case of class NNe) or if the nets under consideration don't 
contain loops (the case of class NN4) no anomalies appear for relations. This analysis 
shows that the real challenge is with nets which allow both hiding and loops but are 
still tractable. In our classification the appropriate candidate is just the class NN3 
which requires exactly the hiding of the internal ports of the net (additional fanin 
and fanout restrictions are imposed only to make the exposition readable). Note, that 
in most of works on dataflow such nets (or more precisely - their shorthands) are 
considered. Earlier in [16] we also investigated these nets; it appears that for them 
the two following tasks are reducible to each other: 
Task 1. Find a class of processes which is relational substitutive. 
Task 2. Find a class of relations which is modular. 

Sections 5-8 contain the algebraical part of the paper. 

In Section 5 the classes NN1, NN2, NN3, NN4 of nets are characterized as alge- 
bras with appropriate signatures. Moreover the corresponding nontrivial relations for 
their generators are explicitly formulated. Among them the most prominent are: the 
existential quantifier law - 5.2(4) and the looping law - 5.2(5). 
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Section 6 deals with algebra of processes to an extent which exceeds the direct neces- 
sities of our modularity issues (in particular we consider the union operation which is 
not in the signature of the net algebras). Nevertheless, we included claim 6.1 which 
shows that well known logical laws hold in the algebra of processes. Beyond of be- 
ing a generally stimulating observation, this fact may be also useful for other related 
applications (e.g., for the proof of the generalized Kahn Principle as in [17]). 

Section 7 deals briefly with the algebra of relations. Again we notice similarities of 
the operations in this algebra with logical operations, but unlike for processes these 
similarities are much more limited and exhibit anomalies. 

Section 8 contains the main technical result (claim 8.3) which establishes the links 
between the algebras investigated in the previous sections and their relationship to 
the original semantical functions SEMproc and SEMr~. It extends the Mazurkiewicz 
compositional approach to a broad class of net models and paves the way to the 
discovery of modular models or to the prediction that they are impossible under given 
circumstances. Actually, that is how most of the claims in sections 1-4 may be proved. 
In particular a model < NNa, RR, SEMrd > is modular iff the looping law holds 
in the class R R  of relations. Recalling the connection between modularity for nets of 
relations and ---rel-substitutivity (see Task 1 and Task 2 on the previous page) we can 
see that this fact opens the way to the full characterization of nonfpnctional agents 
which avoid the Brock-Ackerman anomaly. However, the explicit description of all 
classes of relations which obey the looping rule appears to be a subtle task and will 
be the subject of a separate paper [14]. 

1 N e t s  

1.1 General Definitions 

A net is an appropriately labeled bipartite directed graph with nodes of two kinds, 
pictured as circles and boxes and called respectively places and por ts .  The edges of 
the net are called channels .  If there is a channel between port p and place pl they 
are said to be adjacent. If there is a channel from port p to place pl then p is called 
an input port of pl. If there is a channel to port p from place pl then p is called 
an output port of pl. Channels connecting place pl to its input ports and output 
ports are numbered. This allows to refer to the first input channel of pl, to its second 
input channel, . . . ,  first output channel etc. The difference between ports and places 
is relevant for the notion of subnet. 

Definit ion 1 A subgraph N1 of N is considered to be a subnet of N if the set of its 
nodes consists of some places and all ports and channels adjacent to these places. 

Ports of a net are partitioned into input, output and internal ports as follows: 

I n p u t  po r t s  - ports with no entering channel. 
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Output ports - ports with no exiting channel. 

Internal ports - all the other ports. 

Output and internal ports are called local ports. 

In the sequel we consider marked nets i.e. nets in which some ports are declared as 

visible ports; all the other ports are said to be hidden. 

Label ing .  Ports are labeled by port names. Different ports of a net are labeled by 
different names. Places are labeled by identifiers together with pair of natural numbers 
(rank). An identifier assigned to a place pl with n input ports and m output ports 
should have the rank (n; m) 

The type of place pl is the set of names of port adjacent to it. We use the notation 
Port(pl) for the type of pl. A net with only one place and any number of ports is 
called a tomic .  At(al , . . .a~; b l ,"  .bin) is a typical notation for an atomic net with 
place labeled by At(n; m), with input ports labeled by a l , ' . . a s  and output ports 
labeled by bI,...bm. Different ports of a net have different labels. Hence we may 
identify ports with their labels. We always assume in the sequel that no parallel 
channels are allowed in the net: given an arbitrary place and an arbitrary port in 
the net there may be no more than one channel which connects them. Therefore, in 
any atomic subnet Atl(al , . . .a~; b l , ' "  b,~) all the port labels a l , ' "  a~, bl,.." b,~ are 
different. 

Fig. 1 suggest itself. For example in N2 place pll has two adjacent ports. Port a is 
adjacent to places pll, pl2, pl3. As usual nets are to be considered up to isomorphism. 
Two nets are isomorphic if there is a bijection between them which preserves adjacency, 
visibility status of ports and also the labeling. 

Here are some possible restrictions concerning hiding and the topology of directed 
nets: 

1. No hiding at all 

2. No Confluence - For every port there is at most one channel entering it. 

3. No Forks - For every port there is at most one channel exiting it. 

4. All internal ports are hidden. 

5. No Loops - No directed cycles in the net. 

1.2 S u b s t i t u t i o n  

Let pl be a place of a net N. We say that a net N1 is substitutable for a place pl in 
N if: 
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I. The sets of input and local visible ports of NI are the same as the sets of input 
and output ports of pl. 

2. No hidden port of NI is a port of N. 

3. N1 and N do not have common places. 

The result of substitution N[N1/pl] is the net N2 defined as follows: 

1. P laces (Nz )  = P l a c e s ( N )  - {pl} U Places(N1)  

2. Por t s (N2)  = P o r t s ( N )  U Por t s (N1)  

3. A port and a place are connected in N2 if they are connected in N or in N1 and 
the edges preserves their direction. 

4. A port is visible in N2 if it is visible in N. 

5. All nodes inherit their labelling. 

For example in Fig. 1 N2 = N[N1/pl].  

A class of nets is ,called s u b s t i t u t i o n a l  if it is closed under substitutions. 

No ta t ions .  In the sequel we will refer to some specific substitutional classes of nets 
and denote them as follows: 

• N N 1  - all nets 

• N N 2  - all nets with only visible ports 
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• NN3 - all nets without forks, without confluences and exactly internal ports are 
hidden. 

• NN4 - all nets without loops. 

NN3 is a subclass of what we would be more interested in, namely the class of all nets 
with exactly the internal ports hidden. However, we impose the additional restriction 
for NN3 in order to simplify the exposition. 

If for classes NN1, NN2, NN4 we require also that no confluences are allowed, then 
we obtain non substitutional classes. 

Sometimes in the literature the class of nets without hiding, without confluences and 
without forks is considered. This class is not substitutional. See Fig. 1 in which 
N2 = N[N~/pl], nets N, N~ are in this class, but N~ is not. 

On the other hand the class without forks, without confluence and with all internal 
ports hidden is substitutional. 

1.3 Modular  Net  Semantics  

A model of net semantics is a triple < NN, D, S E M  > where: N N  is a substitutional 
class of nets, D is an 'appropriate' semantical domain we do not specify here (In the 
sequel classes of relations or classes of processes are intended mainly). S E M  is a func- 
tion from N N  × E N V  into D. Here E N V  is the set of environments; each environment 
is a mapping from (all) atomic nets into D which respects types and renaming (see 
definition 3 below). An interpreted net is a net together with an environment. Nota- 
tions < N, env > and SEM(N,  env) are used for an interpreted net and its semantics. 
Since the places of a net are uniquely identified with its atomic subnets we refer (by 
abuse of notation) to env in < N, env > also as to a function from the places of N 
into D. As always a net context is a net with partial environment (an environment 
which assigns value not to all places of N). N~l] is a typical notation for the net with 
one hole pl. 

Def in i t ion  2 ( M o d u l a r i t y )  We say that model < NN,  D, S E M  > is modular (or 
briefly- that semantics S E M  is modular) iff SEM(N1, env) = SEM(N2, env) implies 
that for arbitrary context N~vl] 

SEM(N[N1/pl], env) = SEM(N[N2/pl], env) 

From the particular case when N2 is atomic it follows that a modular semantics S E M  
has the following 

P r o p e r t y :  Assume that pl is a place in N and SEM(Nl ,  env) = env(pl); then 
SEM(N,  env) = SEM(N[N1/pl], env). 

It is easy to see that if N N  contains all atomic nets then this property is equivalent 
to modularity. 
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2 P r o c e s s e s  

2.1 Basic Definit ions 

Let P be a set of ports and A be a fixed da ta  set. A communication event over P 
is a p a i r  < port, d > with port E P and d E A. A l i n e a r  run over P i s  a finite 
string of communications over P .  A linear process of type P is a pair (T, P), where 
T is a prefix closed set of runs over P.  Note, tha t  processes of different types might 
contain the same set of string; such processes are different. The  type of a process is 
its impor tan t  at tr ibute;  we use notations ports(Pr) for the type of process Pr. On 
processes of a given type one considers the subset preorder: Prl  <_ Pr2 iff every run 

of Prl  is a run of Pr2. 

E x a m p l e  1 B u f f e r .  Usually under 'buffer' one has in mind an au tomaton  with one 
input port  one output  port; it reads values and outputs  them according to the FIFO 
discipline. As a linear process a buffer with input port  p and output  port  q (notat ion 
- buf(p -* q)) consists of all strings s which obey the condition: in every prefix of 
s the sequence of da ta  communicated through q is a prefix of the sequence of da ta  
communicated through p. 

E x a m p l e  2 L a b e l e d  t r a n s i t i o n  s y s t e m s  a n d  l i n e a r  p r o c e s s e s  A Labeled Tran- 
sition System (LTS) of type P is an au tomaton  whose a]phabet (set of actions) is the 
set of communications over P and the special invisible action T. It consists of: 

• Set of states Q. 

• Initial state q0 E Q. 

• Transit ion Relation: a subset of Q × Alphabet × Q. 

We use q <p,d> ql as a notat ion for a transit ion from state q via communication < p, d > 

to state q'; we say tha t  < p, d > is enabled at state q if there is a transit ion q <p,d> q, 
for some q'. 

An al ternat ing sequense qo, ao, ql, a l , ' . .a~_l ,  q~ of states of LTS T and actions 
of T is an execution sequence of T if q0 is the initial s tate  of T and qi ~ qi+l are 
transitions of T for i = 0 . . .  n -  1. A run of T is the sequence of communications which 
is obtained from an execution sequence by deleting the states of T and ~- actions. For 
every LTS T the process of the same type as T is assigned. This process consists of 
the runs of T. It  is clear tha t  the set of runs of T is a prefix closed set of strings. It is 
also clear tha t  for every process Pr there corresponds a LTS whose set of runs consists 
of the strings of Pr. 
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2 . 2  O p e r a t i o n a l  S e m a n t i c s  Sem~o~  f o r  n e t s  o f  p r o c e s s e s  

Let  us consider first operational  semantics for a net of LTS. 

Let  N be a net with n places and let p be a function which assigns to every place pIi 
of N a LTS of the same type as pl. N and p define the LTS T as follows: 

• States of T are the tuples (q~, . . .  q~), where q~ is a state of p(pli). 

• The initial s tate  of T is the tuple of the initial states of p(pl~). 

• The transit ions of T are defined as follows: 

1. If qi ~ > q~ is a transitions of p(pl 0 then 
(ql, ""qi-lqi, qi+l,"" qn) ~ ~ (ql, "'" q~-lq~, qi+l,"" qn) is a transitions of 
T. 

2. If in each of the places ply1,.. "pli~ which are adjacent to the por t  p the 
communicat ion < p, d > is enabled at state (ql, " '" qi-lqi, qi+l,'" • qn), and 

<p,d> , <p,d> , 
qi~ qi~ ""qi~ qik are transitions of p(pli~)"'p(plik) then 

(ql, ""qi-~qi, q i + l , ' " q = )  ~: (ql, " " q ~ , " ' q ~ k " ' q n )  is a transitions of T 
if p is a hidden por t  of N and 

(ql, ""qi-lqi, qi+l,"" qn) <p,d> (ql, "'" q~,' '" q~' '"  q,~) is a transitions of 

T if p is a visible port  of N.  

D e f i n i t i o n  3 A process e n v i r o n m e n t  pp is a mapping from atomic nets into pro- 
cesses which 

• Respects types: pp(At (a l , " 'an;b l , ' "bm))  has the same type as 
At(a1,. . .  an; bl ,""  bin). 

• Respects renaming: the processes pp(At(al , . . .a~;bl , . . .bm)) and 
! . 1 pp(At(a[,. . .an, bl,...b~m)) are the same up to appropriate renaming of their 

ports. 

S e m a n t i c s  o f  a n e t  o f  p r o c e s s e s  Let < N, pp > be an interpreted net of processes 
and let p be a function which maps the places of N into labeled transit ion systems 
such tha t  the sets of runs of p(pli) is the same as the process pp(pli). The process 
semantics Semproc of < N, pp > is the process assigned to the LTS for < N, p >. 

It  is easy to see tha t  Semproc(N, pp) does not  depend on the choice of p. Therefore 
process semantics is well defined. 
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2.3 Input Processes 

Def in i t ion  4 Pr is an i npu t  p rocess  if its ports are divided into input ports and 
local ports with the only demand that if p is declared as an input port it should be 'input 
buffered' in the following sense: Assume s in Pr;  then Pr  contains also all strings one 
can construct via the following operations: 

• Input extension. Extend s appending to the right arbitrary many communications 
through p. 

• Input anticipation. I f  a communication < p, d > follows immediately after a 
communication through a port different from p, permute them. 

The following remarks explain the intuition behind these conditions. Let Pr' be a 
process of type p' m P.  Consider the process Pr  specified by the net N with hidden 
port p' and two places: one for Pr' and another for buf(p > p') (here p is not a port 
of Pr). Then port p in Pr  satisfies input extension and input anticipation conditions. 

If a process is obtained by the construction above, we say that its port p contains 
a buffer. It is easy to check that a process is input buffered at ports P l , " ' P k  iff it 
contains buffers at these ports. Additional remarks about input bufferness will be 
given in section 6.2 when we consider operations on processes. 

E x a m p l e  3 buf(p ~ q) is a linear process with input port p and local port q. 

E x a m p l e  4 (Rudimentary Processes [15]). Start with an arbitrary run s over ports 
P m Q. Let Pre f i x ( s )  be the closure of s under prefixes. Finally, close Pre f i x ( s )  
under input extension and input anticipation wrt ports in P. The resulting process 
Rudim(s,  P, Q) is called the rudimentary process generated by s, P, Q. It is an 
input process with input ports P and local ports Q. 

From now on when we refer to an interpreted net of processes we will have in mind that 
its environment assigns to the atoms input processes and to an atom At with input 

ports Pl,'",pk and output ports ql,"',qm the environment assigns a process with 
input ports Pl,"',Pk and local ports ql,"', q,,. It is easy to check that the process 
Pr specified by such an interpreted net is an input process wrt to the set of visible 

inputs in _N. Hence, the general notion of semantics for a net of processes consistently 
restricts to semantics for nets of input processes. 

Cla im 2.1 (Modularity of SEMp~oc). Let PP1 be the the class of all input processes. 
Then < NNL, PP1, SEMp~o~ > is a modular model. 

For the proof see later section 8.3. As a straightforward consequence we mention: 

C o r o l l a r y  2.2 Let < N N ,  PP, SEMp~oc > be a model with arbitrary substitutional 
set N N  and arbitrary set P P  of input processes; then this model is modular. 
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3 Implementing Relations 

3.1 Basic Definit ions 

Let D be a domain and P be a set of (port) names. A p o r t  relation R of type P over 
D is a subset of D P. We will designate the type P of R as ports(R). Below we will 
consider port relations over stream domains. 

Definition 5 Let A be an arbitrary set. The stream domain D = STREAM(A)  over 
A consists of all finite and infinite strings over A, including the empty string and is 
partially ordered by the relation 'x is a prefix of y '. 

Obviously the set of streams ordered as above is a CPO. 

Let D be a CPO. Recall that an element x of D is called finite if it satisfies the 
following condition: assume that x < a, where a is the least upper bound (lub) of a 
sequence al _< a2 _< ...; then x < am for some n. 

For a finite set of ports P ,  the finite elements of STREAM(A)  P are functions which 
map ports into finite streams. Let s be a run of process Pr. The behavior of run s 
at port p is the stream of data communicated through p in s. Therefore, to each run 
there corresponds a function from ports to STREAM(A) .  And to a process Pr of 
type P there corresponds a port relation of type P which we denote by rel(Pr). We 
say that process Pr implements this relation. We say that processes Pri, Pr2 are 
relationally equivalent (notation Prl --~eI Pr2) if rel(Pr~) = rel(Pr2). Among the 
processes which implement a relation R there is a maximal process (i.e. each other 
process implementing R is its subset). This maximal process is said to be fat  and is 
denoted by fat(R). We also introduce a preorder _<~z on processes: Prl <~,z Pr: if 
rel(Prl) is a subset of rel(Pr2). 

3.2 About  --rd-substitutivity issues for SEM~roe 

Consider a model < NN, PP, SEM~oc > where N N  is a substitutional set of nets 
and P P  is a set of processes. We know already what it means that such a model is 
modular. Sa, f that it respects - tel  (or that it is =ra  substitutive) if the following holds: 
Assume that two interpreted nets < NI,ppt > and < N2,pp2 > in this model specify 
processes Pr l ,  Pr2 which implement the same relation (i.e. rel(Pr~) = rel(Pr~)) 
and that they are both substitutable in some context. Then they are replaceable by 
each other without changing the relation of the overall net. Similarily one defines 
'respecting _<~d (or _<r~I substitutivity): require that if (Prl <_r~z Pr2 then replacing 
< N1, PPi > by < N2, PP2 > may only increase the relation of the overall net. Clearly 
_<r~l substitntivity implies =tel substitutivity. The Brock-Ackerman example (Brock- 
Ackerman anomaly) is a warning that substitutive reasoning of this kind is generally 
impossible; nevertheless, it still does not exclude specific cases when this is possible. 



189 

Given a substitutional set of nets N N  and a set of processes PP the closure of P P  
under N N  consists of all processes which can be specified by nets from N N  over pro- 
cesses from PP. Say that PP is modular wrt N N  if < NN, closure(PP), SEMp, oc > 
is a modular model. In a similar way we refer to P P  as being _<ra-substitutive wrt 
NN. 

Looking for _<**z substitutive sets of processes we prefer to deal with sets PP of pro- 
cesses which have enough computational power [15]. The formalization is in terms of 
powerful sets. PP is said to be a powerful set if it contains at least all the rudimentary 
processes (see example 4 in 2.3). 

Here is a slightly rephrased version of our result in [16], adapted to the notations of 
this paper: 
Assume that P P  is a powerful set of processes which is closed under NN3. Then the 
model < NN3, PP, SEMp~oc > is <_~el substitutive iff all the processes in PP  are fat. 

One direction of this claim is easy. Note (1) SEMp~o~ is monotonic wrt inclusion of 
processes. (2) for fat processes, Prl c_ Pr2 iff reI(Prl) C_ rel(Pr2). Hence, if all pro- 
cesses in PP are fat then the model < NN3, PP, SEMp~oc > is _<~a substitutive. The 
second direction that a modular powerful set of processes contains only fat processes 
is more subtle and its proof is based on full abstractness. 

What powerful sets of processes are _<~l-substitutive wrt NN1, NN2, NN3, NN4? 

C l a i m  3.1 i. NN1. No powerful set is <~z-substitutive wrt NN1. 

2. NN2. A powerful set is <_,ez-substitutive wrt NN2 iff it consists of only fat 
processes. 

3. NN3. A powerful set is <_~l-substitutive wrt NN3 iff its closure under NN3 
consists of only fat processes. 

4. NN4. Each set of processes is <_~l-substitutive wrt NN4. 

C o m m e n t .  (Comparing classes NN2 and NN3.) If a set PP consists of only fat 
processes then its closure under NN2 will also consist of only fat processes. That 
is not the case for NN3. Hence, it is easy to give examples of <~l-subsitutive (and 
powerful) sets for NN2; just take all fat input buffered processes. On the other hand, 
it is not even simple to check that the closure of the rudimentary processes under 
NN3 consists only of fat processes. Therefore, the construction of all powerful _<r~z- 
substitutive sets is a difficult problem. This issue is better handled in connection with 
modularity for relations (see 4.3). 

4 C o n n e c t e d  Relat ions  

4.1 Basic Definitions 

Since processes are prefix closed their relations may not be arbitrary. 
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We are going to characterize briefly this particular kind of relations, we call connected 
relations (see [17, 10]). 

Def in i t ion  6 We will write xl << x2 (xl immediately precedes x2, or x2 covers x l )  if 
Xl < x2 and there is no element between xl and x2. A finite chain s = {xi : i = 1...n} 
is called strict if  it begins with _L and xi << X~+l for all i < n. 

Let R be a subset of D. chain(R) denotes the set of all strict chains contained in R. 
The kernel of R (denoted Kern(R))  is the subset of R such that x is in Kern(R)  if it 
belongs to a chain in chain(R). 

Def in i t ion  7 A relation R is called c o n n e c t e d  if  R = Kern(R) .  

Obviously, Kern(R)  is the maximal connected subset of R. Every connected relation 
over a stream domain consists only of finite elements. 

E x a m p l e  5 (kernel vs least fixed point) Consider the relations: 5' =d~f {Y = f (x ,  y)} 
and S' =d~f {Y < f ( x ,  y)}. Assume that f is the constant function which returns the 
stream 00. Then S consists of all pairs < x, O0 > and its kernel is obviously empty. 
On the other hand for arbitrary continuous f :  K e r n ( S  0 consists of all finite x, y such 
that y < h(x), where h(x) =des I fp .Ay. f (x ,  y). 

Def in i t ion  8 Given a relation R of type P (i.e., R C S T R E A M ( A )  P) we say that 
R increases at port p if the following holds: Assume that x, y are finite elements 
in S T R E A M ( A )  P) which differ only on p and moreover x(p) ~_ y(p). Then x e R 
implies that y E R. 

Similarly one defines 'R decreases in p'. We will refer to a relation R as to an input 
relation if its ports are divided (someway]) into input ports and local ports with the 
only requirement that R increases on each of its input ports. Notations like R(~; ~) 
are used to point on the vector ~7 of input ports and on the vector ~ of local ports. 

E x a m p l e  6 bu f (p --* q) implements the relation R we designate as p > q. It contains 
only finite elements and x E R v:~ x(p) >_ x(q). Note that this relation increases in p 
and decreases in q. 

It is easily seen that if p is an input port of Pr  then rel(Pr) increases on this port. 
Hence rel(Pr) may be considered as an input relation with the same inputs as Pr. 

Fac t  4.1 1. R is a connected relation iff it is implemented by a linear process. 

2. R is an input relation with input ports P and local ports Q iff it is implemented 
by input process with input ports P and local ports Q. 
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4.2 Nets  of Relat ions  and their Semantics  

Relational environments are defined similarly to process environments. Let rr be a 
relational environment. Given the interpreted net < N, rr > choose a process environ- 
ment pp such that for each place pl in N the process pp(pl) implements the relation 
rr(pl). Now consider the relation S implemented by the process SEMp~o~(N, pp). Since 
a relation may be implemented by different processes neither pp nor S are uniquely 
determined by < N, rr > 

Fac t  4.2 [16, 17] There is an extreme environment pp which returns the maximal 
among all possible S; namely, this is the environment which assigns to each pl the fat 
implementation of rr(pl). 

Def in i t ion  9 The maximal relation S achievable in this way is called the relational 
semantics of the net and is denoted by SEMper(N, rr). 

Hence, S E M ~ ( N ,  rr) = rel(SEMp~o~(N, fat(rr))). 

4.3 Modularity of Semrel  and <rd substitutivity of Semproe 

Given a substitutional class of nets N N  and a set of connected relations RR. We 
define 'RR is modular wrt N N '  in the same way as for processes in 3.2. A set RR of 
relations is said to be powerful if it contains all the rudimentary relations, i.e. those 
relations which are implemented by rudimentary processes (see example 4 in section 
2.3). 

There is a simple relationship between modularity for relations and =~z-substitutivity 
for processes. 

Cla im 4.3 Let RR  and P P  be corresponding sets of relations and fat processes, i.e. 
Pr E P P  iff Pr = fat(R) for R in RR. Then P P  is -~el-substitutive wrt NN3 iff 
RR  is modular wrt N N3. 

This claim is the starting point for improvements which show that problems about 
rel-substitutivity may be reduced to problems about modularity for relations. 

What sets RR of relations are modular wrt NN1, NN2, NN3, NN4? 

Cla im 4.4 1. NN1. No powerful set RR  is modular wrt NN1. 

2. NN2. Every set RR  is modular wrt NN2. 

3. NN3. A powerful set RR  is modular wrt NN3 iff the corresponding set of pro- 
cesses fa t (RR) is <~el-substitutive wrt NN3. 
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4. NN4. Every set RR is modular wrt NN4. 

C o m m e n t .  Claims 3.1.3 and 4.4.3 provide the reductions between the following tasks: 

1. Find powerful sets of processes which are <r~Z-substitutive wrt NN3. 

2. Find powerful sets of relations which are modular wrt NN3.(Such sets will be 
directly characterized later through claim 8.4) 

Indeed, if RR is a modular and powerful set of relations, then according to claim 
4.4.3, the set fat(RR) of processes is powerful and <r~l-substitutive. On the other 
hand, if PP is a powerful and <~-substitutive set of processes then by claim 3.1.3 
it consists only of fat processes. Therefore, PP coincides with fat(reI(PP)) and is 
_<r~z-substitutive. Hence, by claim 4.4.3, rel(PP) is modular. 

5 Algebra of Nets  

5.1 N e t  C o n s t r u c t o r s  

Below we consider a set ~ of operations on nets which allow to construct complex nets 
from more elementary ones. For all these operations labelling of nodes is unchanged. 

C o m b i n a t i o n .  N1 and N2 may be combined if they do not have a hidden port with 
the same name. The set of nodes in the resulting net is union of the set of nodes of 
N1 and N2. A port and a place are connected in N if they are connected in N1 or in 
N~. Ports inherit their visibility status; edges inherit their directions and numbering. 

Aggrega t ion :  is combination of nets which do not have common port names. (neither 
hidden, nor visible). 

Sequen t i a l  c o m p o s i t i o n  (notation seq) is combination of two nets N1, N2 such 
that every common port name is the name of a visible local port in N1 and the name 
of a visible input port in N2. 

Hid ing .  If p is a visible port in N it becomes hidden in 3p.N. 

Note that for all operations above the set of atomic subnets of resulting net is the 
union of the sets of atomic subnets of components. The following operations do not 
possess this property. 

L O O P i n g  of a local port y and an input port x which are visible in a net N. 

The operation LOOP(y --+ x) in N is defined as following: 

1. Delete x from N. 

2. Connect y to all places which were connected to x. 
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3. The visibility status of all ports is unchanged. 

looping (note the low case spelling), loop(y --+ x) in N is defined as LOOP(y -+ x) 
in N, but the status of y changes from visible to hidden. 

Simultaneous LOOP(~ --+ ~) in N and loop(~ --+ ~) in N are defined in a similar 
way. 

Note that all looping constructors are only partially defined in order to avoid the 
creation of nets with parallel channels. Note also that all constructors preserve the 
number of ports adjacent to a given place. (If parallel channels have been allowed, 
the looping constructors would be totally defined, but the above invariant would be 
violated). 

Relying on the signature E and on some appropriate notations for atomic nets one can 
formulate a language NET (in the spirit of [4]) for the description of nets. For example, 
both terms (At(; a, b)combAt~ (a; c)) and (LOOP(a --+ a') in (At(; a, b)aggrdtl(a'; c))) 
describe the net N in Fig. 1. If two terms tl, t2 of NET describe the same net, we 
say that they are graph equivalent and write tl ~-graph t2. 

5.2 Equivalences  in N E T  

Below are equivalences which allow to prove that terms in NET describe the same net: 

1. combination is commutative and associative. 

2. aggregation is commutative and associative. 

3. 3p~q.N = ~q3p.N 

4. 3p. (NlcombN2) = (3p. N1)combN2, provided p is not visible in N2. 

5. loop(£ --+ :~1) in ( Ioop(~,72 --+ :~2) in N) = Ioop(~.71, ~72 --+ ~1, ~2) in N 

6. loop@ --+ x) in (NlaggrN2) = (loop(y ~ x) in N1)aggrN2, provided y and x are 
not visible ports of N2. 

5.3 Constructor  sets for specific classes of nets  

Say that the class N N  of nets is generated by the subsignature E ~ C E if it contains 
exactly the nets generated from atomic nets by the operations in E / (in other words - 
the nets expressible in the language NET with the use of only E ~) 

C la im  5.1 1. The classes NN~ below are generated as follows: 

(a) (All nets.) NN1 is generated by comb and hide. 
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. 

(b) (All nets with only visible ports.) NN2 is generated by comb. 

(c) (All nets without forks, without confluences and exactly internal ports hid- 
den.) NN3 is generated by aggr and loop. 

(d) (All nets without loops.) NN4 is generated by aggr, seq and hide. 

(Standard systems of equivalences.) For each of the classes NN~ above and their 
corresponding constructor set E~ there is a standard system of equivalences from 
which all other equivalences are provable by equational reasoning. 

(a) For NNI: equivalences 1,3,4; 

(b) For NN2: equivalences 1; 

(c) For NN3: equivalences 2, 5, 6; 

(d) For NN4: omitted; 

6 Algebra of Processes 

6.1 Pre l iminary  Remarks  

We consider below the special interpretation of E (the signature of net constructors) 
wrt processes (see 6.2). Eproc will designate the set of these operations on processes. 

We preserve the terminology and notations used wrt nets except for combination, to 
which there corresponds synchronization (11) of processes. All the definitions implicitly 
include an appropriate classification of the ports (in the result of the operation) into 
input and local ports exactly as for the corresponding constructors. It is easy to check 
that the ports declared as input ports indeed obey the input buffering condition. We 
consider also union of processes. 

As an immediate consequence of the interpretation Ep~oc one can use the syntax of 
NET for specification of processes. 

6.2 Operat ions  on Processes  

First we consider operations on processes which correspond to the signature E of the 
net constructs. 

Synchronization (notations: II) 

ports( Prl l[ Pr2 ) = ports( Prl ) u ports( Pr2 ) 
s E Prx]lPr2 ifffor i ~-- 1,2 

slports(Pri ) E Pri 
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where ports(Pr) is the type of process Pr and slA is the notation for the string one 
gets from s by deleting all events which are not on ports A. 

Aggrega t ion .  In the case when Prl and Pr2 do not have common ports, their 
synchronization is called aggregation. 

Hid ing .  3 p. Pr results in the process of type ports(Pr) - p; its strings are obtained 
from the strings of Pr by deleting all occurrences of communications on p. 

Next we consider two versions of the looping operation. Note that we use for them 
upper cases notations (when the local port is not hidden) and lower case notation 
(when the local port is hidden). 

L O O P i n g  of a local port y and an input port x of process Pr. 

LOOP(y -* x) in Pr =de/ 3x.(Prllbuf(Y ~ x)) 

looping,  loop(y -~ x) in Pr =de /3y . (LOOP(y  --+ x) in Pr). 

Another useful operation on processes is 
Union .  For processes Prl, Pr2 of the same type, Prl t2 Pr2 inherits this alphabet 
and contains all strings in Prl and in Pr2. 

R e m a r k  a b o u t  t he  re levance  of  i npu t  bufferness .  Let Pr be a process and p be 
its port. One can show that Pr is input buffered at p (see definition 4) iff for any port 
r not in Pr the process ~p.Prllbuf(r -~ p) is the same as the process obtained from 
Pr by renaming p by r. Therefore, in input processes a buffer is attached to every 
input port. 

In our definition of the looping operations we explicitly rely on buffers. The in- 
put buferness is needed later only to show that the semantics based on aggregation 
and LOOPing coincides with the semantics based on synchronization. For exam- 
ple, net N~ in Fig I can be described as At1(; a)combAt2(a; b) and as LOOP (a -~ 
a') in At1 (; a)aggrAt2(a'; b). If a n  environment pp assigns to At~ and At2 input buffered 
processes, then these two terms will specify the same process in pp; otherwise these 
terms might specify different processes. 

In the sequel under a process we have in mind an input process. 

6.3 Some  Laws 

In order to characterize the algebras of processes we notice similarities between the 
logical operations conjunction, disjunction and existential quantifier on one hand and 
the operations synchronization, union and hiding for processes on the other hand. 
Let t be a first order term which uses only conjunction, disjunction and existential 
quantifiers. In addition to the usual logical interpretations of such terms one can 
consider also their process interpretations following a way similar to that we used in 
section 6.1 for terms in NET. For example, (Atl(b', c) A At2(a, b)) is interpreted in 
logic as the conjunction of the relations assigned by a logical environment to symbols 
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Atl, At2. In the process algebra this term is interpreted as the synchronization of the 
processes assigned by a process environment to symbols Atl(b', c), At2(a, b). 

Given two terms tl, t2 of the same type {a l . .  "an}; say that tl implies t2 in logic if 
the formula Val . . .  an(t1 --+ t2) is first order valid formula. The following claims are 
valid for arbitrary not just input processes. 

Claim 6.1 (Relationship of process algebra to logic). 

I f  tl implies t2 in logic then the process specified by (tl, pp) is a subset of the process 
specified by (t2, pp) in arbitrary process environment pp. 

Coro l l a ry  6.2 All basic equivalences for net constructors (see 5.3) hold in the algebra 
of processes, i.e., for every constructor set Ei considered above and terms tl and t2 
over Ei the equivalence tl ~-graph t2 implies that for each process environment pp the 
interpreted terms (tl, pp) and (t2, pp) define the same process. 

Proof: The equivalences 1, 3, 4 from section 5.2 hold in logic and hence by claim 6.1 we 
obtain immediately the equivalences for combination and hiding. For other operations 
it may be inferred from their definition based on synchronization and hiding. [] 

7 A l g e b r a  o f  C o n n e c t e d  re la t i ons  

7.1 Preliminary Remarks 

As for processes we consider below the special interpretation of E (the signature of 
net constructors) wrt relations. F~r,l will designates the set of these operations on 
relations. 

We preserve the terminology and notations used wrt nets except for combination, to 
which there corresponds strong conjunction (__&) of relations. In addition to Er~z we 
consider also union (disjunction) of relations. 

As an immediate consequence of the interpretation E~,l, one can use the syntax of 
NET for specification of relations. Let rr be a relational environment and let t be an 
arbitrary term in NET; then the pair < t, rr > is an interpreted term whose meaning, 
denoted (t, rr) ,  is a port relation which is fully determined by the environment rr and 
the interpretation E~,z of the net constructor symbols. 

7.2 Operations on Relations 

Given x E D P and xl E D P1, assume that P1 _C P and for every port p in P1 the 
equality xl(p) = x(p) holds; in this case we say that xl is the p r o j e c t i o n  of x onto 
P1. 
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First we consider the operations join and disjunction. 

Join. Let R1 be a relation of type P1 and let R2 be a relation of type P2. The join 
of R1 and R2 is the relations of type P1 U P2 defined as follows: x E RI&R2 if the 
projection of x on P1 is in R1 and the projection of x on P2 is in R2. 

Dis junc t ion .  Let R1 and R2 be relations of the same type P. R1 U R2 is the relation 
of the type P which denotes the union of R1 and R2. 

Disjunction of connected relations is a connected relation. But the result of the join 
of connected relations is not always a connected relation. 

Now we list the operations in E,.¢z. 

S t rong  C o n j u n c t i o n  - (no ta t ion  _&). Let R1 be a relation of type P1 and R2 be a 
relation of type P2. The strong conjunction of R1 and Re is the kernel of their join. 

E x a m p l e  7 Consider the system of equation $1 and the corresponding system of in- 
equalities $2. 

$ 1 = {  y=x= yf(X'Z) $ 2 = {  y < yf(X'Z) 

The solutions of $1 is R1 = {(x, y, z) :  x = y = IfpAx.f(x,  z)}. 

The strong conjunction of the two inequalities in $2 is R2 = {f ini te  (x, y, z) : x 
y <__ Ifp Ax.f(x,  z)} 

Aggrega t ion .  In the case when R1 and R2 do not have common ports their strong 
conjunction is called aggregation. 

It is easy to see that aggregation of connected relations coincides with their join. 

Hiding. 3p.R is the relation of type ports(R) - {p} which consists of projections of 
elements of R on these ports. 

Again as for processes we consider two versions of looping: without and with hiding 
of local ports. 

L O O P i n g  of a local port y and an input port x of relation R. 

LOOP(y --+ x) in R =d~f 3x.Kern(R&__(x <_ y)). 

loop(y --~ x) in R =def 3y.LOOP(y -~ x) in R. 

7.3 Some Laws and Anomal ies  

As for processes we notice similarities between the logical operations conjunction, dis- 
junction and existential quantifier on one hand and the operations strong conjunction, 
disjunction and hiding for relations. However, the algebra of connected relations is not 
rich as the algebra of processes. Some laws are valid; in particular strong conjunction 
is commutative and associative, hiding is commutative. But note equivalence 4 (from 
section 5.2); we refer to it in the sequel as 3-rule: 
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3p. (NlcombN2) = (Sp inN1)combN2, provided p is not visible port of N2. 

The rule is not valid for the set of all connected relations; in other words, for this set 
there holds 3-anomaly. Also equivalences 5 and 6 (from section 5.2) fail. Hence, for 
connected relations there is no analog of corollary 6.2 we established for processes in 
section 6.3 

8 Modularity and Robustness 

8.1 Term Semantics 

Sometimes (see [4, 18]) when referring to net semantics SEM(N,  env) what one really 
has in mind is term semantics (t, env), where t belongs to some chosen set T N  of 
descriptions of the net N. In such a case one has to make sure that for all ti in T N  
the meaning of (ti, env) is the same. Otherwise the net-semantics is not well defined. 

In particular, given an interpreted net < N, pp >, consider the set T N  of N's  descrip- 
tions which perform first the combination of all atomic subnets and after that all the 
hidings. Due to the commutativity and associativity of process synchronization and of 
process hiding one can use interpreted terms < t, pp > with t in T N  for a well defined 
semantics < N, pp >. The same remark holds for strong conjunction and hiding wrt 
relations and hence for a well defined semantics of nets of relations. 

Fact 8.1 Semantics defined this way coincides with SEMp~oc for processes and with 
SEM~z for relations 

But what about other descriptions for (N, env). Do they provide also the same mean- 
ing as (t, pp) and (t, rr)  for t in TN? 

8.2 Compositional Semantics 

Consider one of the sets N~% of nets (see 5.3) equipped with its constructor set Ei. 
Below tl, t2,"" are terms in NET which use only constructors from F~i; PP and RR 
denote some sets of input processes and relations respectively which are supposed to 
be closed under EpToc and Er~z respectively. 

Definit ion 10 The semantical model < NNi, PP, S E M  > is compositional (SEM 
is a compositional semantics from NNi into PP)  iff for each environment (types re- 
spected!) S E M  induces a E.~ homomorphism from NNi into PP. 

C o r o l l a r y  8.2 Every compositional model is modular. 
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C l a i m  8.3 1. A compositional semantics from NN~ into PP  is possible (and if 
possible is unique) if there holds the following r o b u s t n e s s  cond i t ion :  Given 
arbitrary terms t~, t2 over Ei the equivalence tl =--g~ph t2 implies that for every 
environment env in P P  the processes specified by (t~, env), (t2, env) are equal. 

2. Under the conditions above S E M  coincides with SEMp~oc. 

3. If < NNi, PP, SEMp~o~ > is a modular model then SEMp~o~ is a compositional 
semantics from NNi into PP. 

Similarly for semantics from NNi into RR. 

8.3 M o d u l a r  M o d e l s  

Relying on corollary 8.2 and on claim 8.3 we are going to characterize some modular 
models < NNi, PP, SEMproc > and < NNi, RR, SEMrd >. To this end we survey 
situations when the robustness condition holds. 

a) Robustness holds for all models < NN~, PP, SEM~oc >. 

That is due to corollary 6.2, and it proves modularity of SEMp~o~ (see claim 2.1 from 
section 2.3). 

For relations the situation is quite different. This can be shown directly by coun- 
terexamples, but is also evident from the 3-anomaly (see section 7.3), which violates a 
basic equivalence for {comb, hide}. Therefore, it makes sense to look for more specific 
situations in which robustness and hence modularity hold. The following cases are 
easy and prove claim 4.4 (see section 4.3) for NN1, NN2 and NN4. 

b) NN2 (No hiding). Robustness holds for arbitrary RR. That  is because the only 
relevant equivalences are commutativity and associativity for both comb and _~. 

c) NN4 (No loops). Robustness holds for all relations. We omit the details. 

d) NN~ (arbitrary nets). Robustness fails for every powerful set RR. Actually, the 
~-rule (see 7.3) is violated in such set. 

Hence, if we want to allow both loops and hiding and at the same time to have 
robustness we must restrict the set NNI. An instructive case is the set NN3 with the 
constructors {aggr, loop}. The basic equivalences 2 and 6 (see 5.2) wrt {aggr, loop} 
hold in general for all relations. There is still one kind of basic equivalences which 
should be explicitly postulated: 

The looping law: For each relation R in the class RR there holds 
loop(il -~ ~i) in (loop(ix -~ g2) in R) = 

.~ loop(~2  ~ ~2) i n  (loop(2~l ~ ~1) in R) -~- 
----- loop(Z1, :~2 --+ Yl, Y2) in R 

Therefore we conclude: 
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Cla im 8.4 A model < NNs, RR, SEM~l > is modular iff for all R in RR there holds 
the looping law. 

A powerful model of this kind is provided by the class of all functional relations. Recall 
[16] that a relation R(~; if) is functional if for some continuous function f 

R(~; if) iff ~ and y are finite elements and y _< f(~).  

Note that such a relation is not only input increasing but it is also decreasing wrt 
all local ports. (In our previous papers [16, 17] we used the terminology 'observable 
relations' for relations with this property). The looping law for functional relations is 
a consequence of the well known fact that for functions the least fixed point operators 
commute. Note that usually the proof of modularity for functional relations is based on 
the Kahn Principle for dataflow nets. Here we inferred it directly from the robustness 
condition. Are there other nontrivial classes RR which obey the looping equivalence 
and hence are modular? We know that there are such classes. According to claim 
4.4.3 in section 4.3 these classes correspond exactly to powerful classes of processes 
which are <~ez-substitutive, i.e. avoid Brock-Ackerman anomaly. 

9 Concluding Remarks 

9.1 C o m m e n t s  to 8.2 

It is not difficult to understand that processes and relations are not exceptions and that 

claim 8.3.1 (and the definitions it is based on) can be generalized to a broad class of 
domains. For such a domain D and for an appropriate interpretation of the signature 

of net constructors one can consider the robustness condition and its relationship to 
modularity. First, observe that under the robustness condition a net semantics is 
induced in a natural way. For example, in the cases of processes we would define 
semrobust(N, pp) as the value (t, pp), where t is an arbitrary description of N over 
NNi, the point being that this definition does not depend on the particular choice of 
the description t for N. This definition of semantics may be adapted to 'arbitrary' 
domain D and, what is more, one can show that the semantics will be modular. In 
the case of processes and relations the use of Eproc and Erez implies also 8.3.2 and 8.3.3 
i.e., the robust semantics coincides with SEMproc and SEMrez respectively. In the 
general case at this stage we do not have any a priory net semantics to compare with. 
But assume that we started with a modular model < NNi, D, S E M  >; is it the case 
that the signature Ei may be interpreted in D in such a way that robustness holds? It 
appears that in the general case some additional assumptions about S E M  are needed. 
In the particular case of processes or relations these assumptions are implicit in the 
requirements about input buffering and input increasing. 
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9.2 The impact of hiding 

It seems clear that nets without loops are too poor to support an interesting theory 
of dataflow networks. On the other hand, it makes sense to look to what extent the 
theory may (or should) be developed without hiding. In particular: do there exist 
interesting models without hiding for which the Kahn Principle and its generalization 
[2] hold? 

It seems that in [2] Abramsky had in mind just such model. Here is a quotation from 
[I]: 'I didn't forget about hiding in my paper. I ]eft it out because I didn't consider it 
germane for the Kahn Principle. It is no need for me to build hiding into my definition 
of network composition ... It is well known that this (hiding) spoils the nice properties 
of of composition-this is why it isn't done e.g. in CCS and CSP'. 

Unfortunately, there is some slight inconsistency in [2] which can be easily repaired 
without affecting the results of the paper. This can be done in two ways. One of them 
would preserve the definition of 'process P computes function f' chosen in [2], but 
would require hiding internal ports of the net. The other one seems to correspond to 
Abramsky's idea of justifying Kahn Principle without building on hiding. It amounts 
to weaken the definition of 'process P computes function f'. 

However, now there may be different processes which implement different relations, 
but compute the same functions. Therefore, unlike the case of relational substitutivity 
it would not make sense to distinguish between different relations to which there 
corresponds the same function (an idea advocated by those who insist on considering 
complete computations). Hence, instead of --~l-substitutivity one should consider 
a weaker equivalence between processes. But then anomalies would appear without 
hiding exactly as they appeared wrt -fez substitutivity in the presence of hiding. As a 
matter of fact, the original Brock-Ackerman example illustrates this kind of anomaly 
without hiding. 

The mora~: though one can justify the Kahn Principle in models without hiding, this 
approach does not rescue from anomalies. 

9.3 Further Research 

1. We considered processes and relations over stream domains. The generalization to 
F-domains [17] is straightforward. 

2. Technically more involved seems to be the accurate extension of the the theory to 
other sets and algebras of nets. But we do not see any serious difficulties on this way. 

3. Deepening the knowledge about the algebras of processes and relations. We con- 
jecture that 'logical laws' for processes (see section 6.3) may' be essentially improved. 
On the other hand, despite the stigma of anomalies, the algebra of relations is worth 
to be explored carefully. Though anomalies cannot be avoided, facing them may still 
be possible in many situations. 
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4. This paper as well as our previous works [15, 16, 17] is based on a simple model of 
processes which does not take into account such discriminating features as branching, 
terminating, etc.. It seems that  ignoring these features is not harmful and may be 
even useful as long as one can develop the theory without them. But finally we have 
to face the challenge of analyzing more sophisticated models which take into account, 
for example, complete runs [2, 3, 6, 11, 18]. 
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