
Decidable Fragments of Many-Sorted Logic

Aharon Abadi, Alexander Rabinovich, and Mooly Sagiv

School of Computer Science, Tel-Aviv University, Israel
{aharon,rabinoa,msagiv}@post.tau.ac.il

Abstract. We investigate the possibility of developing a decidable logic which
allows expressing a large variety of real world specifications. The idea is to define
a decidable subset of many-sorted (typed) first- order logic. The motivation is
that types simplify the complexity of mixed quantifiers when they quantify over
different types. We noticed that many real world verification problems can be
formalized by quantifying over different types in such a way that the relations
between types remain simple.

Our main result is a decidable fragment of many-sorted first-order logic that
captures many real world specifications.

1 Introduction

Systems with unbounded resources such as dynamically allocated objects and threads
are heavily used in data structure implementations, web servers, and other areas. This
paper develops new methods for proving properties of such systems. Our method is based
on two principles: (i) formalizing the system and the required properties in many-sorted
first-order logic and (ii) developing mechanisms for proving validity of formulas in that
logic over finite models (which is actually harder than validity over arbitrary models).

This paper was inspired by the Alloy Analyzer— a tool for analyzing models written
in Alloy, a simple structural modeling language based on first-order logic [10,11]. The
Alloy Analyzer is similar to a bounded model checker [8], which means that every
reported error is real, but Alloy can miss errors (i.e., produce false positives). Indeed,
the Alloy tool performs an under-approximation of the set of reachable states, and is
designed for falsifying rather than verifying properties.

Main Results. This paper investigates the applicability of first-order tools to reason
about Alloy specifications. It is motivated by our initial experience with employing off-
the-shelf resolution-based first-order provers to prove properties of formulas in many-
sorted first-order logic.

The main results in this paper are decidable fragments of many-sorted first-order
logic. Our methods can generate finite counter-examples and finite models satisfying a
given specification which is hard for resolution-based theorem prover. The rest of this
subsection elaborates on these results.

Motivation: Employing Ordered Resolution-Based Theorem Provers
Ordered Resolution-Based First-Order Systems such asSPASS [16] and Vampire [14]
have been shown to be quite successful in proving first-order theorems. Ordering dra-
matically improves the performance of a prover and in some cases can even guarantee
decidability.

N. Dershowitz and A. Voronkov (Eds.): LPAR 2007, LNAI 4790, pp. 17–31, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

18 A. Abadi, A. Rabinovich, and M. Sagiv

As a motivating experience reported in [3], we converted Alloy specifications into
formulas in first-order logic with transitive closure. We then conservatively modeled
transitive closure via sound first-order axioms similar to the ones in [12]. The result is
that every theorem proved by SPASS about the Alloy specification is valid over finite
models, but the first-order theorem prover may fail due to: (i) timeout in the inference
rules, (ii) infinite models which violate the specification, and (iii) models that violate
the specifications and the transitive closure requirement.

Encouragingly, SPASS was able to prove 8 out of the 12 Alloy examples tried with-
out any changes or user intervention. Our initial study indicates that in many of the
examples SPASS failed due to the use of transitive closure and the fact that SPASS con-
siders infinite models that violate the specifications. It is interesting to note that SPASS
was significantly faster than Alloy when the scope exceeded 7 elements in each type.

Adding Types. Motivated by our success with SPASS we investigated the possibility
of developing a decidable logic which allows to express many of the Alloy examples.
The idea is to define a decidable subset of first-order logic. Since Alloy specifications
include different types, natural specifications use many-sorted first-order logic.

The problem of classifying fragments of first-order logic with respect to the de-
cidability and complexity of the satisfiability problem has long been a major topic in
the study of classical logic. In [7] the complete classification of fragments with decid-
able validity problem and fragments with finite model property according to quantifier
prefixes and vocabulary is provided. However, this classification deals only with one-
sorted logics, and usually does not apply to specifications of practical problems, many
of which are many-sorted.

For example, finite model property fails for the formulas with the quantifier prefix
∀∀∃ and equality. Sorts can reduce the complexity of this prefix class. For example
consider the formula: ∀x, y : A ∃z : B ψ(x, y, z) where ψ is a quantifier-free formula
with equality and without functions symbols. Each model M of the formula contains a
sub-model M ′ that satisfies the formula and has only two elements. Indeed, let M be
a model of the formula; we can pick two arbitrary elements a1εA

M , b1εB
M such that

M |= ψ(a1, a1, b1) and define M ′ to be M restricted to the universe {a1, b1}. Hence,
many-sorted sentences with quantifier prefix ∀x : A∀y : A∃z : B have the finite-
model property. Usually, like in the above example, the inclusion of sorts simplifies the
verification task.

Our Contribution. The main technical contribution of this paper is identification of a
fragment of many-sorted logic which is (1) decidable (2) useful — can formalize many
of the Alloy examples that do not contain transitive closure and (3) has a finite counter-
model property which guarantees that a formula has a counter-model iff it has a finite
counter-model (equivalently formula is valid iff it is valid over the finite models).

Our second contribution is an attempt to classify decidable prefix classes of many-
sorted logic. We show that a naive extension of one-sorted prefix classes to a many-
sorted case inherits neither decidability nor finite model property.

The rest of this paper is organized as follows. In Section 2, we describe three frag-
ments of many-sorted logic and formalize some Alloy examples by formulas in these
fragments. In Section 3 we prove that our fragments are decidable for validity over

Decidable Fragments of Many-Sorted Logic 19

finite models. In Section 4, we investigate ways of generalizing decidable fragments
from first-order logic to many-sorted logic.

The reader is referred to [3] for proofs, more examples of formalizing interesting
properties using decidable logic, extensions for transitive closure, and a report on our
experience with SPASS.

2 Three Fragments of Many-Sorted First-Order Logic

Safety properties of programs/systems can be usually formalized by universal sen-
tences. The task of the verification that a programP satisfies a property θ can be reduced
to the validity problem for sentences of the form ψ ⇒ θ, where sentence ψ formulate
the behavior of P .

In this section we introduce three fragments St0,St1 and St2 of many-sorted logic
for description of the behavior of programs and systems. The validity (and validity over
the finite models) problems for formulas of the form ψ ⇒ θ, where ψ ∈ St i and θ is
universal are decidable. This allows us to prove that a given program/system satisfy a
property expressed as a universal formula.

St0 is a natural fragment of the universal formulas which has the following finite
model property: if ψ ∈ St0, then it has a model iff it has a finite model.

St0 has an even stronger satisfiability with finite extension property which we intro-
duce in Section 3. This property implies that the validity problem over finite models for
the sentences of the form ψ ⇒ θ where ψ ∈ St0 and θ is universal, is decidable. In
Section 2.3 we formalize birthday book example in St0.

Motivated by examples from Alloy we introduce in Section 2.1, a more expressive
(though less natural) set of formulas St1. The St1 formulas also have satisfiability with
finite extension property, and therefore might be suitable for automatic verification of
safety properties. The behavior of many specifications from [1] can be formalized by
St1. We also describe the Railway safety example which cannot be formalized in St1.
Our attempts to formalize the Railway safety example led us to a fragment St2 which
is defined in Section 2.4. This fragment has the satisfiability with finite extension prop-
erty. All except one specifications from [1] which do not use transitive closure can be
formalized by formulas of the form ψ ⇒ θ, where ψ ∈ St2 and θ are universal.

2.1 St0 Class

In this subsection we will describe a simple class of formulas denoted as St0.

Definition 1 (Stratified Vocabulary). A vocabulary Σ for many-sorted logic is strati-
fied if there is a function level from sorts (types) into Nat such that for every function
symbol f : A1 × . . .×Am → B level (B) < level (Ai) for all i = 1, . . . ,m.

It is clear that for a finite stratified vocabularyΣ and a finite set V of variables there are
only finitely many terms over Σ with the variables in V .

St0 Syntax. The formulas in St0 are universal formulas, over a stratified vocabulary.
It is easy to show that St0 has the finite model property, due to the finiteness of

Herbrand model over St0 vocabulary. We will extend this class to the class St1.

20 A. Abadi, A. Rabinovich, and M. Sagiv

2.2 St1 Class

St1 is an extension of St0 with a restricted use of new atomic formula x ∈ Im[f], where
f is a function symbol. The formula x ∈ Im[f] is a shorthand for ∃y1 : A1 . . .∃yn :
An (x = f(y1, . . . , yn)).

This is formalized below.

St1 Vocabulary. Contains predicates, function symbols, equality symbol and atomic
formulas x ∈ Im[f] where f is a function symbol.

St1 Syntax. The formulas in St1 are universal formulas, over a stratified vocabulary
and for every function f : A1×. . .×An → B that participates in a subformulaxεIm[f]
f is the only function with the range B.

The semantics is as in many-sorted logic. For the new atomic formula the semantics
is as for the formula ∃y1 : A1 . . . ∃yn : An (x = f(y1, . . . , yn)).

In section 3 we will prove that St1 has satisfiability with finite extension property
which generalize finite model property.

2.3 Examples

Most of our examples come from Alloy [10,11]1. The vast majority of Alloy exam-
ples include transitive closure, and thus cannot be formalized in our logic. We exam-
ined eight Alloy specifications without transitive closure and seven of them fit into
our logic. This is illustrated by the birthday book example. The second example is
a Railway Safety specification. This example cannot be formalized by formulas in
St1. However, it fits in St2 which is an extension of St1, and will be described in
Section 2.4.

Birthday Book. Table 1 is used to model a simple Birthday book program2. A birthday
book has two fields: known, a set of names (of persons whose birthdays are known),
and date, set of triples (birthday book, person, the birthday date of that person). The
operation getDate gets the birthday date for a given birthday book and person. The
operationAddBirthday adds an association between a name and a date. The assertion
Assert checks that if you add an entry and then look it up, you get back what you just
entered.

The specification assertion has the form ψ ⇒ θ where ψ ∈ St0 and θ is universal.
The specification contains only one function getDate : BirthdayBook×Person→

Date. We can define level as follows: level(BirthdayBook) = 1, level(Person) = 1 and
level(Date) = 0.

Railway Safety Example. A policy for controlling the motion of trains in a railway
system is analyzed. Gates are placed on track segments to prevent trains from collid-
ing. We need a criterion to determine when gates should be closed. In [4] a different

1 For details, see [1].
2 The example originates in [15] and the translation to Alloy is given as an example in the Alloy

distribution found at http://alloy.mit.edu

Decidable Fragments of Many-Sorted Logic 21

Table 1. Constants, Facts, and Formulas used in the Birthday Book example

Types Person, Date, BirthdayBook
Relations known ⊆ BirthdayBook × Person

date ⊆ BirthdayBook × Person × Date
Functions getDate : BirthdayBook × Person → Date
constants b1, b2 : BirthdayBook

d1, d2 : Date
p1 : Person

facts ∀b : BirthdayBook ∀p : Person ∀d : Date date(b, p, d) ⇒ known(b, p)
∀b : BirthdayBook ∀p : Person known(b, p) ⇒ date(b, p, getDate(b, p))
∀b′ : BirthdayBook ∀p′ : Person ∀d′, d′′ : Date

date(b′, p′, d′) ∧ date(b′, p′, d′′) ⇒ d′ = d′′

Formulas AddBirthday : (bb, bb′ : BirthdayBook, p : Person, d : Date)
¬known(bb, p) ∧ ∀p′ : Person ∀d′ : Date date(bb′, p′, d′) ⇔
(p′ = p ∧ d′ = d) ∨ date(bb, p′, d′)

Assert Facts ∧ AddBirthday(b1, b2, p1, d1) ∧ date(b2, p1, d2) ⇒ d1 = d2

Railroad crossing problem is formalized, where the time is treated as continuous time,
while we use a discrete time. The Alloy formalization in [1,2] differs slightly from our
formalization, however both of them represent the same specification. In our formaliza-
tion the type Movers and the relation moving were added to represent sets of moving
trains. In addition some of the relations and the functions have suffix current or next
to represent interpretation at the current and the next period. For example instead of
P (t) ⇒ P (t+ 1) we write P current ⇒ P next. Here P (t) ⇒ P (t+ 1) means that if
P holds at time t then P holds at time t + 1 and P current ⇒ P next means that if P
holds at current time then P holds at next time.

Formulas Description

– safe current and safe next operations express that for any pair of distinct trains
t1 and t2, the segment occupied by t1 does not overlap with the segment occupied
by t2.

– moveOk describes in which gate conditions it is legal for a set of trains to move.
– trainMove is a physical constraint: a driver may not choose to cross from one

segment into another segment which is not connected to it. The constraint has
two parts. The first ensures that every train that moves ends up in the next time
on a segment that is a successor of the segment it was in the previous current
time. The second ensures that the trains that do not move stay on the same
segments.

– GatePolicy describes the safety mechanism, enforced as a policy on a gate state.
It comprises two constraints. The first is concerned with trains and gates: it en-
sures that the segments that are predecessors of those segments that are occu-
pied by trains should have closed gates. In other words, a gate should be down
when there is a train ahead. This is an unnecessarily stringent policy, since it does

22 A. Abadi, A. Rabinovich, and M. Sagiv

Table 2. Types, relations, functions, constants and facts used in the train example

Types Train, Segment, GateState, Movers
Relations next ⊆ Segment × Segment

Overlaps ⊆ Segment × Segment
on current ⊆ Train × Segment
on next ⊆ Train × Segment
Occupied current ⊆ Segment
Occupied next ⊆ Segment
moving ⊆ Movers × Train
closed ⊆ GateState × Segment

Functions getSegment current : Train → Segment
getSegment next : Train → Segment

Constants g : GateState m : Movers
Facts –At any moment every train is on some segment

∀t : Train on current(t, getSegment current(t))
∀t : Train on next(t, getSegment next(t))
–At any moment train is at most on one segment
∀t : Train ∀s1, s2 : Segment

(on current(t, s1) ∧ on current(t, s2)) ⇒ s1 = s2

∀t : Train ∀s1, s2 : Segment
(on next(t, s1) ∧ on next(t, s2)) ⇒ s1 = s2

–Occupied gives the set of segments occupied by trains
∀s : Segment Occupied current(s) ⇒ s ∈ Im[getSegment current]
∀s : Segment Occupied next(s) ⇒ s ∈ Im[getSegment next]
∀t : Train ∀s : Segment on current(t, s) ⇒ Occupied current(s)
∀t : Train ∀s : Segment on next(t, s) ⇒ Occupied next(s)
–Overlaps is symmetric and reflexive
∀s1, s2 : Segment Overlaps(s1, s2) ⇔ Overlaps(s2, s1)
∀s : Segment Overlaps(s, s)

not permit a train to move to any successor of a segment when one successor is
occupied. The second constraint is concerned with gates alone: it ensures that be-
tween any pair of segments that have an overlapping successor, at most one gate
can not be closed.

The Assert implies that if a move is permitted according to the rules of MoveOK, and
if the trains move according to the physical constraints of TrainMove, and if the safety
mechanism described by GatePolicy is enforced, then a transition from a safe state will
result in a state that is also safe. In other words, safety is preserved.

Tables 2 and 3 contains the specification of the train example.
The specification contains functions getSegment current : Train → Segment

and getSegment next : Train → Segment where getSegment current partic-
ipates in formula xεIm[getSegment current] in contrast to our requirements from
St1 formulas.

Decidable Fragments of Many-Sorted Logic 23

Table 3. Formulas and assert used in the train example

Formulas safe current :
∀t1, t2 : Train ∀s1, s2 : Segment

(t1
= t2 ∧ on current(t1, s1) ∧ on current(t2, s2)) ⇒
¬Overlaps(s1, s2)

safe next:
∀t1, t1 : Train ∀s1, s2 : Segment
(t1
= t2 ∧ on next(t1, s1) ∧ on next(t2, s2)) ⇒
¬Overlaps(s1, s2)

moveOk(g : GateState ,m : Movers) :
∀s : Segment ∀t : Train
(moving(m, t) ∧ on current(t, s)) ⇒
¬closed(g, s)

trainMove(m : Movers)
∀ t : Train∀s1, s2 : Segment

(moving(m, t) ∧ on next(t, s2) ∧ on current(t, s1)) ⇒
next(s1, s2)
∧

∀t : Train ∀s : Segment
¬moving(m, t) ⇒ (on next(t, s) ⇔ on current(t, s))

gatePolicy(g : GateState)
∀s1, s2, s3 : Segment

next(s1, s2) ∧ Occupied current(s3) ∧ overlaps(s2, s3)) ⇒
closed(g, s1)
∧
∀s1, s2, s3, s4 : Segment

(s1
= s2 ∧ next(s1, s3) ∧ next(s2, s4) ∧ overlaps(s3, s4)) ⇒
(closed(g, s1) ∨ closed(g, s2))

Assert (Facts ∧ safe current ∧ moveOk(g,m) ∧ trainMove(m) ∧ GatePolicy(g)) ⇒
safe next

2.4 St2 Class

St2 Vocabulary. Contains predicates, function symbols, equality symbol and atomic
formulas x ∈ Im[f] where f is a function symbol.

St2 Syntax. The formulas in St2 are universal formulas over a stratified vocabulary,
and for every function f : A1×. . .×Ak → B that participates in a subformulaxεIm[f]
the following condition holds:

For every function symbol g : Ā1 × . . .× Āk̄ → B:

(*) ∀a1 : A1, . . . ,∀ak : Ak ∀ā1 : Ā1, . . . , ∀āk̄ : Āk̄ f(a1, . . . , ak) = g(ā2, . . . , āk̄) ⇒
k = k̄ ∧ a1 = ā2 ∧ . . . ∧ ak = āk̄.

Notice that (*) is a semantical requirement. When we say that a Str2 formula ψ is
“satisfiable”, we mean that it is satisfiable in a structure which fulfills this semantical
requirement (*) .

24 A. Abadi, A. Rabinovich, and M. Sagiv

In many cases formalized by us the requirement (*) above immediately follows from
the intended interpretation of functions. In the railway safety example some work needs
to be done to derive this requirement from the specification.

First we can notice that the specification contains functions getSegment current :
Train → Segment and getSegment next : Train → Segment. We can define
level as follows: level(Train) = 1, level(Segment) = 0, level(GateState) = 0 and
level(Movers) = 0.

It remains to prove that the semantic requirement holds. In the Train specification
there are getSegment current, getSegment next functions such that x ∈ Im[getSegment
current]

participates in the formula. Let M be model such thatM � Assert Train. It suffices to
show that ∀t1, t2 : Train (t1 �= t2) ⇒ getSegment current(t1) �= getSegment next(t2).
Let t1 �= t2 and suppose that getSegment current(t1) = s. From the Train Facts
immediately follows that Occupied current(s). Hence from gatePolicy follows that all
previous Segments of s have a closed gate. Thus according to moveOk no train comes
to s at next time. But M � safe current so s �= getSegment current(t2). From this and
from the fact that no train comes to s at next time follows that s �= getSegment next(t2).

3 Decidability of Validity Problem

Let F1 and F2 be sets of formulas. We denote by F1 ⇒ F2 the set {ψ ⇒ ϕ : ψ ∈
F1 and ϕ ∈ F2}. The set of universal sentences will be denoted by UN . The main
results of this section is stated in the following theorem.

Theorem 2. The validity problem for St2 ⇒ UN is decidable.

We also prove that every sentence in St2 ⇒ UN is valid iff it holds over the class of
finite models.

The section is organized as follows. First, we introduce basic definitions. Next, fol-
lowing Beauquier and Slissenko in [5,6] we provide sufficient semantical conditions for
decidability of validity problem. Unfortunately, these semantical conditions are unde-
cidable. However, we show that the formulas in St2 ⇒ UN satisfy these semantical
conditions.

3.1 Basic Definitions

Definition 3 (Partial Model). Let L be a many-sorted first-order language. A partial
Model M ′ of L consists of the following ingredients:

– For every sort s a non-empty set D′
s, called the domain of M ′.

– For every predicate symbol pi
s of L with argument types s1, . . . , sn an assignment

of an n-place relation (pi
s)M ′

in D′
s1
, . . . , D′

sn
.

– For every function symbol f i
s ofL with type f i

s : s1×s2×. . . sn → s an assignment
of a partial n-place operation (f i

s)M ′
in D′

s1
× . . .×D′

sn
→ D′

s.

– For every individual constant cis of L an assignment of an element (cis)M ′
of D′

s.

Decidable Fragments of Many-Sorted Logic 25

We say that a partial model is finite if every D′
s is finite.

A partial model M ′ is a model if every function (f i
s)

M ′
: D′

s1
× . . .×D′

sn
→ D′

s is
total.

The following definition strengthens the notion of finite model property.

Definition 4 (Satisfiability with Finite Extension). A formula ψ is satisfiable with a
finite extension iff for every finite partial model M ′: if M ′ can be extended to a model
M of ψ, then M ′ can be extended to a finite model M̄ of ψ.

The satisfiability with finite extension definition was inspired by (but is quite different
from) the definition of C-satisfiable with augmentation for complexity (k, n) in [5,6].

Definition 5 (k-Refutability). A formula ψ is k-refutable iff for every counter-model
M of ψ there exists a finite partial model M ′ such that:

– For every sort s : |D′
s| ≤ k

– M is an extension of M ′

– any extension of M ′ to a model is a counter-model of ψ.

We say that a formula is finitely refutable if it is k-refutable for some k∈ Nat.

Example 6 (k-Refutability). Recall the formula safe current of Railway Safety system:

safe current :
∀t1, t1 : Train ∀s1, s2 : Segment
(t1 �= t2 ∧ on current(t1, s1) ∧ on current(t2, s2))
⇒ ¬Overlaps(s1, s2)

The constraint ensures that at current moment for any pair of distinct trains t1 and
t2, the segment that t1 occupies is not a member of the set of segments that overlap
with the segment t2 occupies. Let us show that safe current is 2-refutable. Suppose
that safe current has a counter model M then there are: t1, t2 : TrainM , s1, s2 :
SegmentM such that M |= ¬(on current(t1, s2) ∧ on current(t2, s2) ∧ t1 �= t2 ⇒
¬Overlaps(s1, s2)). Take M ′ sub model of M with the domains TrainM ′

= {t1, t2},
SegmentM

′
= {s1, s2}. For any extension of M ′ to model M̄ it still holds that M̄ |=

¬(on current(t1, s2) ∧ on current(t2, s2) ∧ t1 �= t2 ⇒ ¬Overlaps(s1, s2)), so M̄ is a
counter model of safe current.

From the above example we can learn that if M is a counter-model for a k-refutable
formula, then M contains k elements in the domain that cause a contradiction. If we
take the partial model obtained by the restriction of M to these elements, then any
extension of it still contains these elements and therefore still is a counter-model.

In the rest of this section we will prove the decidability of formulas of the form
θ ⇒ ϑ where θ is satisfiable with finite extension and ϑ is k-refutable for some k. In
addition we will prove that:

– Every formula in St2 is satisfiable with finite extension.
– A formula is equivalent to a formula from UN iff the formula is k-refutable for

some k.

This will complete the proof of decidability of formulas of the form St2 → UN .

26 A. Abadi, A. Rabinovich, and M. Sagiv

3.2 Sufficient Semantical Conditions for Decidability

The next lemma is a consequence of the definitions 4 and 5.

Lemma 7 (Finite Counter-Model Property). Let ψ be a formula of the form θ ⇒ ϕ,
where θ is satisfiable with finite extension and ϕ is finitely refutable. Then ¬ψ has the
finite model property.

Notice that the lemma does not give a bound to the size of the model.

Theorem 8 (Sufficient Conditions for Decidability). Let Ffin−ref be a set of sen-
tences in many-sorted first-order logic which are finitely refutable and let Fsat−fin−ext

be a set of sentences in many-sorted first-order logic which are satisfiable with finite
extension. Then the validity problem for Fsat−fin−ext ⇒ Ffin−ref is decidable. More-
over, if ψ ∈ Fsat−fin−ext ⇒ Ffin−ref , then ψ is valid iff it is valid over the finite
models.

Proof: The validity problem for many-sorted first-order logic is recursively enumerable.
By lemma 7 if a sentence in this class is not valid then it has a finite counter-model.
Hence, in order to check whether a sentence ϕ in this class is valid we can start (1) to
enumerate proofs looking for a proof of ϕ and (2) to enumerate all finite models looking
for a counter-model for ϕ. Either (1) or (2) will succeed. If (1) succeeds then ϕ is valid,
if (2) succeeds ϕ it is not valid. �
Since lemma 7 does not provide a bound of the size of the model, we cannot provide a
concrete complexity bound on the algorithm in theorem 8.

Theorem 8 provides semantical conditions on a class of formulas which ensure de-
cidability of validity problem for this class. Unfortunately, these semantical conditions
are undecidable.

Theorem 9. The following semantical properties of sentences are undecidable:

1. Input: A formula ψ.
Question : Is ψ finitely refutable ?

2. For every k ∈ Nat:
Input: A formula ψ.
Question: is ψ k-refutable?

3. Input: A formula ψ.
Question: Is ψ satisfiable with finite extension?

In the next two subsections we describe syntactical conditions which ensure

(1) finitely refutable property.
(2) satisfiability with finite extension.

3.3 Syntactical Conditions for Decidability

The proof of the following lemma uses the preservation theorem from first-order logic,
which says that a sentence ψ is equivalent to universal formula iff any submodel of a
model of ψ is a model of ψ. The preservation theorem is valid also for the many-sorted
first-order logics.

Decidable Fragments of Many-Sorted Logic 27

Lemma 10 (Syntactical Conditions for Finite Refutability). A formula ψ is k-
refutable for some k iff ψ is equivalent to a universal formula.

Usually safety properties are easily formalized by universal formulas. Hence, the class
Fsat−fin−ext ⇒ UN is appropriate for verification of safety properties and has decid-
able validity problem.

The next theorem is our main technical theorem.

Theorem 11. Let ψ be a formula in St2 then ψ is satisfiable with finite extension.

Proof (Sketch)
Assume that a formula ψ ∈ St2 is satisfiable in M and that M ′ is a finite partial sub-
model of M .

First, we extend M ′ to a finite partial sub-model M ′′ of M such that Im[f] has a
“correct” interpretation. Assume that the level of types in Σ are in the set {0, . . . ,m}.

Let M0 = M ′ and for i = 0, . . . ,m we define Di Ni and Mi+1 as follows. Let Di

be the set of elements inMi of the types at level i such that b ∈ Di iffM |= b ∈ Im[f],
however, there is no tuple ā ∈Mi with M |= f(ā) = b.

Now for every b ∈ Di choose ā ∈ M such that M |= f(ā) = b. Observe that each
element in ā has type at level > i. Let Ni be the set of all chosen elements (for all
elements in Di and all function symbols in Σ). Let Mi+1 be the partial sub-model of
M over Dom(Mi) ∪Ni.

It is not difficult to show that Mi+1 is a finite partial submodel of M and for every
b ∈ Dom(Mi) ifB is the type of b and the level ofB is at most i, then there is ā ∈Mi+1

such that M |= f(ā) = b iff there is ā′ ∈M such that M |= f(ā′) = b.
In particular, for every b ∈ Dom(Mm+1) if M |= b ∈ Im[f], then there is a tuple

ā ∈ Dom(Mm+1) such that M |= f(ā) = b.
Next, let M ′′ be defined as Mm+1 and let Ass be the set of assignments to the

variables with values in Dom(M ′′) and let D̄ be the set of values (in M) of all terms
overΣ under these assignments. The set D̄ is finite, because our vocabulary is stratified
and M ′′ is finite. Let M̄ be the partial submodel of M over the domain D̄. From the
definition of M̄ follows that M̄ is a submodel ofM . Moreover, it is not difficult to show
using the semantic requirement (*) , that the interpretations of Im[f] in M and in M̄
agree, i.e. for every b ∈ Dom(M̄), M |= b ∈ Im[f] iff M̄ |= b ∈ Im[f]. �

Finally, Theorem 2 is an immediate consequence of Theorem 8, Lemma 10 and Theo-
rem 11.

4 Some Fragments of Many-Sorted Logic

In the previous section we introduced decidable fragments of many-sorted logic. In this
section, we consider classes from first-order logic which have the finite-model property.
We try to find a way to extend these classes to many-sorted logic.

We use the notation from [7]. According to [7] the following classes have the finite
model property:

– [∃∗∀∗, all]= (Ramsey 1930) the class of all sentences with quantifier prefix ∃∗∀∗
over arbitrary relational vocabulary with equality.

28 A. Abadi, A. Rabinovich, and M. Sagiv

– [∃∗∀∃∗, all]= (Ackermann 1928) the class of all sentences with quantifier prefix
∃∗∀∃∗ over arbitrary relational vocabulary with equality.

– [∃∗, all, all]= (Gurevich 1976) the class of all sentences with quantifier prefix ∃∗
over arbitrary vocabulary with equality.

– [∃∗∀, all, (1)]= (Grädel 1996) the class of all sentences with quantifier prefix ∃∗∀
over vocabulary that contain unary function and arbitrary predicate symbols with
equality.

– FO2 (Mortimer 1975) [13] the class of all sentences of relational vocabulary that
contain two variables and equality.

Below we describe a generic natural way to generalize a class of first-order formu-
las to many-sorted logic. Unfortunately, finite model property and decidability are not
preserved under this generalization.

Let Q1 . . . Qm be a quantifier prefix in many-sorted logic. Its projection on a type A
is obtained by erasing all quantifiers over the variables of types distinct fromA. One can
hope that if for every typeA the projection of the quantifier prefix onA is in a decidable
class of one sorted logic, then this prefix is in a decidable class of many-sorted logic.
However, we show that neither decidability nor finite model property for a prefix of
many-sorted logic is inherited from the corresponding properties of projections.

When we take a projection of a formula to a type, in addition to removing the quan-
tifiers over other types we should also modify the quantifier free part of the formula.
Here is a definition:

Definition 12 (Projection of a Formula Onto Type A). Let ψ be a formula of many-
sorted logic in the prenex normal form. Its projection on type A is denoted by ψ̄A and
is obtained as follows:

1. For each type T different from A:

(a) Eliminate all quantifiers of type T .

(b) Replace every term of type T by constant CT .

2. Let R(t1, . . . tk) be an atomic sub-formula which contains new constantsCTj (1 �
j � m) at positions i1, i2, . . . im.
Introduce a new predicate name Pi1,i2,...,im with an arity k −m
and replace R(t1, . . . tk)
by Pi1,i2,...,im(t1, . . . ti1−1, ti1+1, . . . ti2−1, ti2+1 . . . tim−1, tim+1 . . . tk).

3. Let f(t1, . . . tk) be a term which contains new constants CTj (1 � j � m) at
positions i1, i2, . . . im.
Introduce a new function name fi1,i2,...,im with an arity k −m
and replace f(t1, . . . tk)
by fi1,i2,...,im(t1, . . . ti1−1, ti1+1, . . . ti2−1, ti2+1 . . . tim−1, tim+1 . . . tk).

For a formula ψ its projection on A is the formula ψ̄A with one type; hence it can be
considered as the first-order logic formula.

Decidable Fragments of Many-Sorted Logic 29

Definition 13 (Naive Extension)
A set of many-sorted first-order formulasDext is a naive extension of a set of first-order
formulas D if for every ψ ∈ Dext and for every type A holds that ψ̄A ∈ D.

Examples

1. Let ψ be ∀x1 : A ∀x2 : B ∃y1 : A ∀y2 : B p(x1, y1, x2) ∨ q(y1, y2).
Let us look at its projections onA andB. After first two steps we obtain the formu-
las ∀x1 : A ∃y1 : A p(x1, y1, c

B)∨q(y1, cB) and ∀x2 : B ∀y2 : B p(cA, cA, x2)∨
q(cA, y2). After replacing predicates we obtain : ∀x1 : A ∃y1 : A p3(x1, y1) ∨
q2(y1) and ∀x2 : B ∀y2 : B p1,2(x2) ∨ q1(y2). Both formulas are in FO2. Hence,
ψ is in FO2

ext.
2. Let ψ be ∀x1 : A ∀x2 : B ∃y1 : A ∃y2 : B p(x1, y1, x2)∨p(x1, x1, y2)∨q(y1, x1).

Its projections onA andB are ∀x1 : A ∃y1 : A p3(x1, y1)∨ p3(x1, x1)∨ q(y1, x1)
and ∀x2 : A ∃y2 : A p1,2(x2) ∨ p1,2(y2) ∨ q12. Since, the projections are in
Ackermann class, ψ is in the extension of Ackermann class.

Note that the extension of the Ramsey class to many-sorted logic is a fragment of St0

and has the finite model property and thus is decidable. It is easy to prove that the naive
extension of Gurevich class is decidable. The next two theorems state that the naive
extensions of Ackermann, Grädel and Mortimer classes do not have the finite model
property and, even more disappointing, are undecidable.

Theorem 14 (Finite Model Property Fails). Each of the following fragments has a
formula which is satisfiable only in infinite structures: [∃∗∀, all, (1)]ext

= , [FO2]ext and
[∃∗∀∃∗, all]ext

= .

Proof: see [3].

Theorem 15 (Undecidability). The satisfiability problem is undecidable for each of
the following fragments: [∃∗∀, all, (1)]ext

= , [FO2]ext and [∃∗∀∃∗, all]ext
= .

Our proof of the above theorem (see [3]) provides formalization of two register machine
and is similar to the proofs in [7].

It is well known that [∀ ∀ ∃]= and [∀ ∃∀]= are undecidable classes for one-sorted
first-order logic (see [9]). The following theorem says that for many-sorted first-order
logic the only undecidable three quantifier prefix classes are these two one-sorted.

Although we did not found any practical use for this result we think that it has some
theoretical interest.

Theorem 16. The satisfiability problem is decidable for sentences of the form Q1Q2

Q3ψ, where ψ is a quantifier free many-sorted formula with equality without functions
symbols and Q1Q2Q3 is a quantifier prefix not of the form [∀x1 : A∀x2 : A∃x3 : A] or
[∀x1 : A∃x2 : A∀x3 : A] for some sort A.

Proof: see [3] .

30 A. Abadi, A. Rabinovich, and M. Sagiv

5 Conclusion

In this paper we initiated a systematic study of fragments of many-sorted logic, which
are decidable/have the finite model property and have a potential for practical use. To
our knowledge, the idea of looking at this problem in a systematic way has not been
explored previously (despite the well-known complete classification in the one-sorted
case, presented in the book by Boerger, Graedel and Gurevich [7]).

We presented a number of decidable fragments of many-sorted first-order logic. The
first one, St0, is based on a stratified vocabulary. The stratification property guarantees
that only a finite number of terms can be built with a given finite set of variables. As a
result, the Herbrand universe is finite and the small model property holds. Moreover, a
stronger property of satisfiability with finite extension holds.

Subsequently, we extended the class St0 to class St1 and then to St2, and proved that
these classes also have the satisfiability with finite extension property (and therefore, the
finite model property). The added expressive power in St2 is the ability to test whether
an element is in the image of a function. Even though this particular extension may
seem less natural from a syntactic viewpoint, it is very useful in many formalizations.

We provided semantical sufficient conditions for decidability. As a consequence, we
obtained that for the sentences of the form ψ ⇒ ϕ, where ψ ∈ St2 and ϕ is universal,
the validity problem is decidable. In order to illustrate the usefulness of the fragment,
we formalized in it many examples from [1] - the Alloy finite model finder.

Finally, we looked at classes corresponding to decidable classes (or classes with the
finite-model property) of first-order logic. We observed that just requiring the decidabil-
ity of projections of the quantifier prefix onto each type individually is not a sufficient
condition for the decidability (respectively, the finite-model property) in general. Future
work is needed in order to carry out a complete classification for the many-sorted logic.

In [3] we extended our results to a logic which allows a restricted use of the transitive
closure. We succeeded in formalizing some of Alloy specifications by formulas of this
logic; however, the vast majority of Alloy examples that contain the transitive closure
are not covered by this fragment. Future work is needed to evaluate its usefulness and
to find its decidable extensions.

Acknowledgments

We are grateful to the anonymous referees for their suggestions and remarks. We also
thank Tal Lev-Ami and Greta Yorsh for their comments.

References

1. The alloy analyzer home page: http://alloy.mit.edu
2. http://alloy.mit.edu/case-studies.php
3. Abadi, A.: Decidable fragments of many-sorted logic. Master’s thesis, Tel-Aviv University

(2007)
4. Beauquier, D., Slissenko, A.: Verification of timed algorithms: Gurevich abstract state ma-

chines versus first order timed logic. In: Proc. of ASM 2000 International Workshop (March
2000)

http://alloy.mit.edu
http://alloy.mit.edu/case-studies.php

Decidable Fragments of Many-Sorted Logic 31

5. Beauquier, D., Slissenko, A.: Decidable verification for reducible timed automata specified
in a first order logic with time. Theoretical Computer Science 275, 347–388 (2002)

6. Beauquier, D., Slissenko, A.: A first order logic for specification of timed algorithms: Basic
properties and a decidable class. Annals of Pure and Applied Logic 113, 13–52 (2002)

7. Borger, E., Gradel, E., Gurevich, Y.: The Classical Decision Problem. Springer, Heidelberg
(1997)

8. Clarke, E.M., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfiability
solving. Formal Methods in System Design 19(1), 7–34 (2001)

9. Goldfarb, W.D.: The unsolvability of the godel class with identity. The Journal of Symbolic
Logic 49(4), 1237–1252 (1984)

10. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw. Eng.
Methodol. 11(2), 256–290 (2002)

11. Jackson, D.: Micromodels of software:lightweight modelling and analysis with alloy. Tech-
nical report, MIT Lab for Computer Science (2002)

12. Lev-Ami, T., Immerman, N., Reps, T.W., Sagiv, M., Srivastava, S., Yorsh, G.: Simulating
reachability using first-order logic with applications to verification of linked data structures.
In: CADE, pp. 99–115 (2005)

13. Mortimer, M.: On languages with two variables. Zeitschr. f. math. Logik u. Grundlagen d.
Math., 135–140 (1975)

14. Riazanov, A., Voronkov, A.: The design and implementation of vampire. AI Communica-
tions 15(2-3), 91–110 (2002)

15. Spivey, J.M.: The Z notation: a reference manual. Prentice-Hall, Englewood Cliffs (1992)
16. Weidenbach, C., Gaede, B., Rock, G.: Spass & flotter version 0.42. In: CADE-13. Proceed-

ings of the 13th International Conference on Automated Deduction, pp. 141–145. Springer,
Heidelberg (1996)

	Decidable Fragments of Many-Sorted Logic
	Introduction
	Three Fragments of Many-Sorted First-Order Logic
	St_0 Class
	St_1 Class
	Examples
	St_2 Class

	Decidability of Validity Problem
	Basic Definitions
	Sufficient Semantical Conditions for Decidability
	Syntactical Conditions for Decidability

	Some Fragments of Many-Sorted Logic
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

