
Non Modularity and Expressibility for Nets of Relations
(Extended Abstract)

Alexander Rabinovich
IBM Research Center

P.O. Box 218, Yorktown lleights, NY 10598

e.maih alikQtvatson.ibm.com

1 Introduction

1.1 M o t i v a t i o n a n d Objec t ives

Data flow deeds with nets of concurrently communicating agents. But unlike other theories of concur-
rency, the main concern here is about the I(nput)-O(u-tput) behavior of a system. The Kahn principle
states that for special dctermlnistic agents the Input-Output behavior of a net can bc obtained from
the I-O behaviors of its components. The I-O behaviors of Kahn agents are sequential functions
and the I-0 behavior of a net over such agents is obtained as the solution of an appropriate system
of equations constructed from the functions computed by its components. One of important conse-
quences of the Kahn principle and the properties of corresponding systems of equations is that nets
over Kahn agents are I-O-su~sli~utive, i.e. if a subnet NI of a given net N is replaced by a net with
the same 1-0 behavior then the I-O behavior of the overall net remains unchanged. In an attempt
to generalize Kahn's results [3] to nondeterministic agents, Brock and Ackerman observed that for
such nets subtitutivity fails. This fa~t was such a surprise when it was first observed in [2] that it is
known as Brock Ackerman anomaly.

Much research in datallow centers around the problems raised by the pioneering works of Kahn
and Brock and Ackerman [1, 6, 11, 12, 15]. In [11] we identified observable relations and nets of
observable relations as appropriate tools for investigation of datallow networks over nondeterministic
agents. Observable relations are behaviors of (in general nondeterministic) datallow agents. Moreover,
semantics of nets of observable relations is the unique semantics which is consistent with the least
fixed point solution of system of equations and with the input-output behavior of datallow agents.
But it turns out that this semantics is not modular, i.e. there are two nets of observable relations
NI, N2 with the same meaning and a context Con[] such that ConiNg] and Con[N2] have different
meanings.

In [11, 12] we showed that the main source of the Brock-Ackerman anomaly is in the semantics of
nets of relations. If one considers nets over a subclass of observable relations, it may happen that
semantics over such nets is modular. We say that a subclass C of relations is modular if nets over
relations in 67 with the same meaning are replaceable by each other in any context over relations in
C. It appears that in nontrivlal cases the following two tasks are reducible to each other [13]:

�9 Find a class of datallow agents which are substitutive.

�9 Find a modular class of relations.

The central objective of this paper is the characterization of modular classes of relations and hence
indirectly of LO-substitutivity for datallow agents. Another major theme which plays a technical
role in this characterization, but is interesting in its own is expressibility for relational nets. The
investigation also reveals the interesting role played by stable functions.

395

Figure h A net N

Figure 2: Nets/Vl and N2

1.2 Nets of Re l a t i ons

For simplicity we consider only finite nets. Let N be a net; its arcs (channels) are divided into input,
output and internal channels.

Fig. 1 suggests itselL Pl, P2 are names for nodes of the appropriate types. For example, Pl has three
input channels (all of them are input channels of the net) and three output channels (two of them are
output channels of the net). ActuMly, such a net is a piece of syntax and one can impose a semantics
on a net via an appropriate interpretation of the nodes. In a relationM net the nodes of the net are
interpreted as an input-output relation between values on the input and output channels of the node.
A semantics assigns to such a net a relation between values on input and output channels of the net;
the vMues on internal channels are hidden, although in computation of a global relation one uses
values on internal channels. The definition of this semantics and its justification will be given in an
appendix. However, few remarks about modularity of net semantics are in order here.

Consider nets NI and N2 in Fig. 2. They have the same type, i.e., the same sets of input and output
channels. NI is a subnet of the net N in Fig. 1. By replacing Nl by N2 in N we obtain the net N '
in Fig. 3.

Figure 3: N' = N[N2/NI]

396

At.15:r.. 6uous

Figure 4: Classification of Relations

Def in i t ion 1: A semantics is called modular iff two nets with the same meaning are replaceable by
each other in every context.

Modularity of relational semantics would imply that if NI and N2 specify equal input-output relations,
then N and/V "~ specify equal relations. As we noted earlier, the semantics for relational nets is not
modular. Modularity reflects Frege principle and is a crucial property of semantics, therefore, two
alternatives are possible:

1. Relations are a wrong structure to apply net composition to [9], therefore, relational semantics
is of a little interest.

2. Relations are widely used in programming. The source of Brock-Ackerman anomaly is in the
semantics of relational nets. It is important to find out for which classes of relations the
semantics is modular.

We explore in this paper the second alternative.

1.3 Overv iew of Resu l t s

We consider relations over stream domains and classify them into functional and nonfunctional. A
continuous function f is represented by its approximating relation RI; i l l (x; y) ~ael](x) >_ y.
Functions also are subdivided into different classes: Sequential C Stable C Continuous. This classifi-
cation is standard and precise definitions will be given later. Relations are classified into ambiguous
and unambiguous. Roughly speaking, R is an ambiguous relation if consistent (in the domain) inputs
may produce inconsistent outputs. All the other relations are unambiguous. The simplest ambiguous
relation is a relation without inputs and with one output channel which may produce on-the output
either 0 or 1. All functional relations are unambiguous but there are unambiguous nonfunctional
relations. For example, let Unam be the relation without inputs and two output channels such that
1 may be produced on the first or on the second channel but not on both. R is unambiguous but
nonfunctional. It is the 'simplest' nonfunctional relation. Another interesting subclass is a subclass of
finite relations. Classification of relations is given in Fig. 4. We will deal only with classes of relations
which have the following properties: First, a class should have a basic computational power. This
amounts to the requirement that a class contains all finite sequential functions. Second, we require
that a class is closed under net construct, i.e., any net over relations in the class specifies a relation
in the class.

We are now ready to state some results of the paper.

1. The class of all functional relations is modular. It is a maximal modular class, but there are
other maximal modular classes.

397

2. No modular class can contain an ambiguous relation.

3. No modular class can contain a nonfunctional relation and an unstable function.

To contrast these results let us note that the class generated by the stable functions and the relation
Urtam is modular [10].

In the sequel the exposition is organized as follows:

Section 2 provides a classification of relations. In section 3 we state expressibility results; we find
the 'simplest' relations in different classes. The expressibility issues are a clasical topic of recursion
theory. Panangaden et. al. [8] were first to promote the topic for dataflow.

In section 4 we demonstrate that classes which contain some simple relations cannot be modular.
Together with expressib~lity results of sections 3 it gives general theorems about the failure of mod-
ularity.

Section 5 discusses some open problems and further work. The definitions of the semantics of nets of
relations is provided in the appendix.

2 R e l a t i o n s

In this section we introduce basic notions. In section 2.2 observable relations are defined and their
connection with multivalued functions is explained. Section 2.3 provides many examples and our
classification of relations.

2.1 S t r e a m Domains

Def in i t ion 2: Let A be an arbitrary set. The stream domain S~ream(A) over A consists of all finite
and infinite strings over ~, including the empty string and is partially ordered by the relation 'z is
a pretlx of y '.

Obviously the set of streams ordered as above is a CPO. We use U for the least upper bound and
13 for the greatest lower bound. We say that z, y are cons is ten t elements if they have an upper
bound.

Let D be a CP0. Recall that an element z of D is called f ini te if it satisfies the following condition:
assume that x < a, where a is the least upper bound (hb) of a sequence al < a2 < . . . ; then z < a ,
for some =.

In the sequel D, D1, D2 range over the stream domain or Catresian products of stream domains.
But most results hold for more general CP0.

2.2 Observable and Approx ima t ing Re la t ions

Def in i t ion 3: [11] Let Dr, D2 be domains. A relation R between elements olD1 and D2 is said to
be an observable I(nput)-O(utput) relation from D1 to D2 iff

1. R may hold only for finite elements

2. For every finite z E D1 there exists y E D2 such that R(~; y).

3. R increases on inputs and decreases on outputs, i.e. for finite z, y, xl, //1
R(X; y), Z ~ Xl, Yl ~_ Y imply R(xl; Yl)

398

Def in i t i on 4: For a continuous function f : DI ~ D2 its approximating relation R ! is defined as
R l (x ; Y) =,t,l] (x) > y and x, y are finite. A relation R is an approximating (or functional) relation
i f it is R 1 for some J.

It is easy to see that approximating relations are observable relations and that J = # iff R ! = Rg.

Termino logy . The terms 'approximating relations' and 'functional relations' are used as synonyms
in the sequel.

C o m m e n t s (1) Observable relations play the same role for multivalued functions as approximating
relations for continuous functions. More exactly: there is an isomorphism between observable relations
from Dl to D2 and continuous functions from D1 into Hoare power domain of D2. (2) We did not
consider processes in this paper. But let us mention that the class of observable relations is the class
of relations implemented by input-output linear processes [11].

Observable relations are ordered by inclusion. Under this ordering the set of observable relations
from D1 to D2 is a CPO.

2.3 Class i f ica t ion of Obse rvab l e R e l a t i o n s

Def in i t ion 5: A relation R is u n a m b i g u o u s if the following holds: z and xl are consistent, R(x ; y)
and R(x l ; Yl) imply that y and Yl are consistent. A relation is a m b i g u o u s i f it is not unambiguous.

Clearly, every approximating (functional) relation (see definition 4) is unambiguous, but the opposite
is wrong (see examples below).

E x a m p l e 1: An approximating relation for the identity function Ax.x is the relation > (x; y) which
holds iff x > y and x, y are finite.

Let Choice~ (; x) be the relation from S t ream ~ to S t ream such that only Choice2(; .I.), Choice2(; 0),
Choice2(; 1) hold. I t is an ambiguous relation. Choice,,(; x) is defined in a similar way. It holds if
x = / or x is any natural number. Clear Choice,, is an ambiguous relation.

Unam(; x, y) is a relation from S t ream ~ to Sr team 2. It holds when x = y = .L or x = .I. and y = 1
or x = 1 and y = .k. It is an unambiguous, but not a functional relation.

We classify approximating relations according to the properties of their corresponding functions.

Def in i t ion 6: Let a and b be elements of a UP0. The step function a ~ b is defined by

(a--,b)x={ b ifa<x
.1_ otherwise

Note that a ~ b is a finite iff a and b are finite elements. We say that a relation is f in i te if it is the
least upper bound of a finite set of finite step functions. The finite relations are the finite elements
in the domain of observable relations. Choice2 and U n a m are finite relations, Ghoieew is not finite.
The relation > is functional but not finite.

Assume that] (x l , x2, . . .x~)=< yl, Y~,...Y,~ >. A function] is s e q u e n t i a l a t s if for every j there
is i such that Y1 cannot be increased without increasing x~. Formally, let ~7 = < zl, z2, ...z~ > be
greater than < xl , x2,...x~ >. Assume that](z~ = < el, v2, . . , v= >. Then either zi > x~ or v i = y./.
A function J is s equen t i a l if it is sequential at every a~ [4].

Clearly, every step function is a sequential function. The definition of sequenfiality ~bove is not
preserved under domain isomorphisms. It is only well defined for cor~crete domains (these are domains
which have notions of argument places [4, 17]). Stable functions were introduced by Berry and
are a generalization of sequential functions and the notion of stability is invariant under domain
isomorphlsms.

399

Defini t ion "I: A function J is stable iff J (z , [1 x~) = / (z ,) n](x~) for consistent z , , z2.

Every sequential function is stable, but there are nonsequentlal stable functions.

Example 2: Par : Stream 2 --* Stream is defined as follows:

1 i f z > l
Par(z,~t) = 1 if y > 1

.I. otherwise

Par is not a stable function, because Par(,l, 1) = Par(l , .1_) = 1 = Pa r (4 , . 1) 13 Par(l , _L) #
4 = Par(< 4 , 1 > rq < 1, .L >). Par is finite; it is the least upper bound of < I, 4 > ~ 1 and
< 4 , 1 >--* 1.

The relation F A I L given in the following example plays an important role for our nonmodularity
results.

Example 3: Let F A l l be a relation from Stream 2 to Stream 3 which is des by the table below
as follows: if a tapir < a,, a~, bl, bz, ba > appears in the table, and ai' > ai and bj' > bj then
FAIL(a , ' , a2'; b,', b2, bz') holds.

Input Output
zl z2 W Y~ Ya
4 4 4 1 2_
4 1 1 1 4
1 .I. 1 2_ I

It is clear that F A I L is a finite unambiguous relation. F A I L is not an approximating relation, since
F A I L (l , 4; 1, 4, 1) and F A I L (l , 4; ,l, 1, 4), but not F A I L (l , 4; 1, 1, 1).

3 Expressibility

A relational net is a net together with an environment which maps the nodes of the net into observable
relations. The semantics of nets of relation~ is defined in the appendix. We say that a net of relations
N specifies a relation R if R is the relation assigned to N by the semantics.

For a set of relations S and a relation R we denote by Exp(S; R) the set of relations which are
specified by nets over S O R; R' is weakly S-expressible from R iff R' E Ezp(S; R). We say that R' is
strongly S-expressible (or just S-expressible) from R iff there is a net N over relations in R U S such
that for every context C[] the nets C[R'] and C[N] specify the same relations.

Strong S-expresslbility defines preorder <s on relations. R' <s R if R' is strongly S- expressible
from R. We say that R and R' have the same S-degree iff R _<s R I and R' _<s R. Since tile semantics
is not modular, weak S-expressibility does not define preorder. It may happen that R' is weakly
S-expressible from R and R" is weakly S-expressible from R' but R" is not weakly S-expressible
from R.

When S is the class of approximating relations of finite sequential functions we will say 'expressibility'
instead 'S-expressibility', 'degree' instead 'S-degree', etc..

C la im 3.1: (Minimal degrees).

1. Ghoiee2 is expressible from,any ambiguous relation. I~ is the minimal degree among ambiguous
relations.

400

2. Ur~am is expressible from any unambiguous nonfunctional relation. I t is the minimal degree
among unambiguous nonfunctional relations.

3. Par is expressible from any unstable functional relation. It is the minimal degree among
unstable functional relations. Par is not expressible from Unam.

We will use the following lemmas in the next section.

L e m m a 3 .2 :Choice2 has the maximal degrees among the finite relations.

L e m m a 3.3: T/re degree of F A I L is less than the/east upper bound of the degrees of Par and

4 N o n M o d u l a r C l a s s e s

In the appendix A5 we construct two nets Nl and N2 over relation F A I L (see Example 3), approx-
imating relations of finite sequential functions and a context Con[] over approximating relations of
finite sequential functions such that Nt and N~ specify the same relation but Con[N1] and Gon[N2]
specify different relations.

Recall that a set C of relations is called cla~8 if it has the following properties:

1. C has a basic computational power. This amounts to the requirement that it contains all the
approximating relations of the finite sequential functions.

2. (7 is closed under net construct, i.e., any net over relations in the class specifies a relation in
the class.

Therefore it follows

L e m m a 4.1: No modular class contains relation F A I L .

~ecall that F A I L is a finite relation, therefore, by]emma 3.2 it is expressible from (Thoice~. Hence
by claim 3.1 (1) we get

T h e o r e m 4.2: No modular class contains an ambiguous relation.

Par is the minimal degree among unstable functions, Ur~am is the minimal degree among nonfunc-
tional relations. Hence by 3.3 and 4.1

T h e o r e m 4.3: No modular class contains both an unstable function and a nonfunctional relation.

C o r o l l a r y 4.4: H a modular class contains an unstable functlon~ then it is a subclass of functional

relations.

Since the class of functional relation is modular [Ill it follows

T h e o r e m 4.5: The class of functional relations is a maximal modular class.

The da,ss of stable functions plays an unexpected role when the above results are contrasted with the
following theorem which will be proved in [10].

T h e o r e m 4.6: The class generated by the stable functions and Unam is modular.

401

5 Conclusion and Further Work

5.1 The Structure of Degrees

It is interesting to investigate the structures of degrees. It is clear that for any two relations there
exists the least upper bound of their degrees. One can also show

C l a i m 5.1: Choice~, Unam and _L are the only degrees for the tlnlte relations without inputs.

As in the case of degrees of parallelism [14, 16] there are infinite decreasing chains of degrees. Many
questions about the structure of degrees have not yet been investigated. For example, we do not know
whether there are infinite increasing chains of degrees. We considered degrees wrt finite sequential
functions. The structures of degrees wrt the sequential functions, the stable functions and all functions
are also important.

5.2 N o n M o d u l a r Classes

We proved that the specific relation FAIL cannot belong to any modular class. We have the following
C o n j e c t u r e : There is a finite set of relations/~1 .- . Rt, such that class C is modular iff it does not
contain any of 174.

5.3 Reasoning

The reasoning about relational nets has to be further developed. We are working on this subject and
have already made some initial steps. Some laws and the connection between relational semantics and
conjunction of relations, the least fixed point operator on functions and synchronization of concurrent
processes can be found in [5, 12, 13].

5 .4 F r o m S t r e a m s to m o r e Gene ra l C P O s

Though the theory which we are investigating is inspired by (and mainly developed for) stream
processing, there is no reason to focus on specific stream domains. A generalization of the results in
the paper for more general CPOs is given in [10].

Acknowledgments

I am very grateful to B. A. Trakhtenbrot for his encouragements while writing this paper; its contents
were very much influenced by his ideas.

References

[1] S. Abramsky. A generalized Kahn principle for abstract asynchronous networks. In Mathe-
matical Foundations o.f Programming Languages Semantics, volume 442 of LNCS, Springer
Verlag, 1990.

[2] J. D. Brock and W. B. Ackerman. Scenarios: A model of non-determinate computation. In
Formalization of Programmin# Concepts, volume 107 of LNCS, Springer Verlag, 1981.

[3] t3. Kahn. The semantics of a simple language for parallel programming. In lnJorrnation
Processin# 74. North Holland Publ. Co., 1974.

402

[4] G. Kahn and G. Plotldn, Concrete Domains, Technical Report 1978.

[5] A. Mazurkiewicz, A. Rabinovich, and B. A. Trakhtenbrot. Connectedness and synchroniza-
tion. In Images of Programming. North Holland Publ. Co., 1991.

[6] J. Misra. Equational reasoning about nondeterminlstic processes. In Proceeding8 of 8th A GM
Symposium on Principles o] Distributed Computing, 1989.

[7] D. Park. The fairness problem and nondeterministic computing networks. In Proceedings,
.~th Advanced Couree on Theoretical Computer Science. Mathematisch Centrum, 1982.

[8] P. Panangaden, and V. Shanbhogue Mccarthy's arab cannot implement fair merge. In
Proceedings, 8th FSTTSC Conference, 1988.

[9] V. R.. Pratt. e.mail correspondence, 1988.

[10] A. R.abinovich, Modularity and Expressibility for Nets of Relations. To appear in An
International Symposium on Theoretical Computer Science in honor o.f B. A. Trakhtenbrot

[11] A. B.abinovich and B. A. Trakhtenbrot. Nets and data flow interpreters. In the Proceedings
of the Fourth Symposium on Logic in Computer Science, 1989.

[12] A. Rablnovich and B. A. Trakhtenbrot. Communication among relations. In ICALP90,
volume 443 of LNCS. Springer Verlag, 1990.

[13] A. B.abinovich and B. A. Trakhtenbrot. On Nets, Algebras and Modularity. In International
Conference on Theoretical A~pect~ of Computer Software, volume 526 of LNCS. Springer
Verlag, 1991.

[14] V. Yu. Sazonov, Expressibility of Functions in Scott's LCF Language, Algebra and Logic,
Vol. 15, No 3, 1976.

[15] E. W. Stark. A simple generalization of Kahn's principle to indeterminate datatlow networks.
In Semantie~]or concurrency, Workshops in Computing. Springer Verlag, 1990.

[16] M. B. Trakhtenbrot, Relationship between Classes of Monotonic Functions, Theoretical
Computer Science, 1976.

[17] G. Winskel, Events in Computations, Ph. D. Thesis, CS Dept, Edinburgh Univ., 1980.

A . A p p e n d i x

The appendix contains background material about nets. In section A.1 we consider nets as syntactical
objects. Section A.3 defines nets of functions as a solution of the corresponding systems of equations.
In section A.4 semantics of nets of observable relations is defined as a natural extension of semantics
of nets of functions. This material is based on [11, 12]. Section A.5 shows that no modular class
contains relation FAIL.

A.1. Nets as Syn tax

A net is a bipartite directed graph with nodes of two kinds, pictured as circles and boxes which are
called respectively places and ports (see Fig. 5). The edges of a net are called channels. If there is a
channel from port p to place pl then p is called an input port of pl. If there is a channel to port p
from place pl then p is called an output port of pl. The type of place pl is the pair < P; Q > where
P is the set of input ports of pl and Q is the set of output ports of pl.

The ports of a net arc partitioned into input (ports with no entering channel), otitput (ports with no
exiting channel) and internal (all the other ports). The type of a net is the pair < I; O > where I

403

Figure 5:

is the set of input ports and 0 is the set of output ports of thc net. In d~t~flow there is g further
restriction on the topology of nets: cgch port has at most one incoming and gt most one outcomJng
edge. For simplicity, we consider only nets which satisfy such a restriction. In this case one can use
the following shorthand for nets: delete all ports and assign their names to channels which touch
them. Thcsc shorthands were used in the prcvious figures.

A . 2 N o t a t i o n s

Let D be a Set of data and P be ~ set of (ports) n~mes. An element x of D P with P = {pt,...V~)
is n~turally cocrced to a tnple < xw, ..., xp~ > with elements of D indexed by the corresponding
port n~mcs. Accordingly, ~ relation R C D (pt'''''~d is uniquely a.ssoci~ted witk ~ relatio.a r C D ~
such that ~I ~ iri "~ r(~(p~), ...r/(p~)); the same remarks hold for the mutual coercion between a port
function F : D e --} D ~ and thc corresponding function J : D ~ --~ D ~. In the sequel we rely often
on these coercions without mentioning them explicitly. Through this abuse of notations we avoid
cumbersome expressions, hopefully, in a harmless way. Let P, Q be sets of ports. We s~y that a
function [is ~ function of type <~ Pi Q) if it maps D e into D~; we s~y th~-t ~ relation is of type
< P; Q > if it is ~n observable relation from D P to D q.

A .3 N e t s o f F u l l c t i o n s

We recall definitions frora 112]. A net os functions is ~ pair < N, ~ > where N is a net and ~ a
functional environment which maps places of N into continuous functions of the same type. We define
below the semantics FUN(N, q~) a.s the solution of ~n appropriate system of equations r.(N, ~). This
definition is quite standard but note the hiding of internal porl~ in Step 3 below.

We associate a function ./ : D P ~ D {qL,''',q- } with the set ofm functions f~, : D P -~ D ~ i = 1,...m.

Step I. Conslruclin9 lhe system ~(N,~). To every local (i.e., internal or output) port q there
corresponds an equation in the system ~(N,~). Let q be a loc~ port. Assume that the unique
place pl from which there is a channel to q is mapped to f. Let Pt, ..., P~: be input ports of pl. Then
xq = fq(~:w,'"xp~) is the equation which corresponds to the port q.

Step 2. Takin9 lhe minimal #olulion of Z(N, ~) for fired inputs.

In this way, abstracting from the inputs, one defines in ~ routine way a function F of type D t~v*c --}
Dfior gl"

Step 3. Ifidin9 inlgrnals. Since the semantics of the net sltould h~ve the ~ame type as the net we
hide in/2 intern~l ports and obtain the functional G of type D z'p*t --~ D ~ which by definition
is ruJv(N, ~).

404

E x a m p l e 4: Let ~ assigns j l ,]2, f3 to the places pll, pl2, pl3 of the net in Fig. 5. Below is the
corresponding system of eq uatlons:

{ cl =]l(z, y, c~)
c~ =]~(~)
c~ = /~ (C l , ~)

= / ~ (~ , ,)

A.4 S e m a n t i c s for N e t s o f l t e l a t i o n s

In this section we define semantics for nets of relations in an axiomatic way.

A net of relations is a pair < N, p > where N is a net and p is a relational environment which
maps places of N into observable relations of the same type. We say that a relational net < N, p >
approximates a functional net < N, ~b > if for every place pl of N the relation assigned to pl by p is
the approximating relation of the function assigned to pl by ~.

Relational semantics is a mapping sere from nets of relations into observable relations. Let us
formulate some properties that are expected from relational semantics.

1. sere respects type, i.e, for a net N with input p o r t s / a n d output ports (~ and for every relational
environment p semantics should assign to < N, p > an observable relation of type </~ ~ >.

2. sere is continuous on the GPO o] observable relations, i.e. Ap.sem(N, p) is continuous for every
N.

3. sere is consistent with semantics of nets o]]unctions, i.e. if < N, p > approximates < N, ~b >
then sem(N, p) is the approximating relation of the function FUN(N, r

T h e o r e m A . I : [12]. Among mappings which satiMy (1)-(3) there exists the mialmal mappiag.

Def in i t ion 8: RelationM semaatics is tim minimal mapping which satisfies (i)-(3) above.

A.5 No M o m u l a r Class C o n t a i n s I t e l a t i o n FAIL

In this section we show that no modular class contains relation FAIL from example 3 (section 2).
To demonstrate this fact, we consider net N1 in Fig. 6 and find the relation R' which is specified by
it; N2 (see Fig 6) is the net with one place to which the environment assigns this very relation R'.
Then we substitute Nl and N2 in the context Con[] in Fig. 7 and show that the relations assigned
to the nets Con[N1] and Con[N2] are different observable relations. Therefore, modularity fails for a
class which contains FAIL.

Below we compute the relations specified by the nets NI, Con[N~] and Con[N2].

Definition 8 provides an axiomatic characterization of semantics for nets of relations. In order to find
the relations assigned by the semantics to the nets in Fig 6 and in Fig 7 we need a more constructive
definition of semantics for nets of relations which is provided in theorem A.2 below.

First, let us introduce some notations, l~ccall that we write R1 _< R2 if relation R1 is a subset of
relation R2. We also denote by _< the extensional order of the continuous functions. For a function
] and an observable relation R we write / _< R if the approximating relation R 1 of / is a subset
of R. Similarly, for a functional environment ~b and a relational environment p we write r < p if
~(pl) < p(pl) for every place pl. We use REL(N, p) (FUN(N, r for the relation (function) assigned
by the relational (functional) semantics to the net of relations (functions) < N, p > (< N, r >).
Using the above notation we state

405

:)Ca 2 z = a ' ~ ._T_.- &

Figure 6: Nets Nl , N2; the relation Ra is the approximating relation of I ~ 1

- ~ 4 ~ :::~4

De-4

Figure 7: Co=II and nets Co.IN, l, Co=[N~].

T h e o r e m A.2 : REL(N, p) = U{R 9 : 9 = FUN(N, @) and ~ <_ p}.

Let hi and h 2 be functions from STREAM {'`t, ~2} into STREAMOn, Y~, Y'} defined as follows:

hl =<i, i>--*< i, i, i>U <i, I>--4< I, I, i>
h= =< I, .1. >-~< I, i, I >

Relation FAIL from example 3 (section 2) is the least upper bound of the approximating relations
for ht and h2. Moreover, one can prove

F a c t A .3 : H J is a function and .[< FAIL then] < hi or] < h2.

Let us first find the relation R' (x , ; yt, y3) which is specified by net N~ in Fig 6. (1) From monotonicity
of semantics, theorem A.2 and fact A.3 it follows that R' = Rg t U Rg~, where gl = FUN(N~, @1),
92 = FUN(NI, r both Cj and @u assign function h = 1 --4 1 to the place pll of Nt, and q~t assigns
hi to the place pl2 and @2 assigns h~ to the plaze pl2. (2) Using the definitions of semantics for nets
of functions (section A3) one can find that g~ = J_ --*< 1, .1_ > and #~ -= 1 ---,< 1, 1 >. (3) Note
that Rut U Rg~ is the approximating relation of the function m = .L --4< 1, .1_ > U1 --.< 1, 1 >.
Hence R* is the approximating relation of m.

Similar arguments show that net Gort[Nl] specifies relation Qt(; yz) which holds iff y3 = J-.

Note that the environment assigns the approximating relations to all places of net CoTt[N:]. Ti~e
corresponding net of functions specifies constant function I 0 = 1. Therefore, the relation Q2(;yz)
which is specified by Con[N2] is the approximating relation of I. Hence Q2(; yz) iff y3 = 1 or y3 = .L.

To summarize, our example shows that the semantics assigns to NI and N2 the same relations.
However, the relations assigned to nets Con[N~] and Con[N2] are different. The relations used in
the above example are the approximating relations of finite sequential functions and relation FAIL.
Therefore, no modular class can contain FAIL.

