
Complexity of Metric Temporal Logics with

Counting and the Pnueli Modalities

Alexander Rabinovich

Sackler Faculty of Exact Sciences, Tel Aviv University, Israel 69978.
rabinoa@post.tau.ac.il

Abstract. The common metric temporal logics for continuous time were
shown to be insufficient, when it was proved in [7, 12] that they cannot
express a modality suggested by Pnueli. Moreover no temporal logic with
a finite set of modalities can express all the natural generalizations of this
modality. The temporal logic with counting modalities (TLC) is the ex-
tension of until-since temporal logic TL(U,S) by “counting modalities”

Cn(X) and
←−
C n (n ∈ N); for each n the modality Cn(X) says that X will

be true at least at n points in the next unit of time, and its dual
←−
C n(X)

says that X has happened n times in the last unit of time. In [11] it
was proved that this temporal logic is expressively complete for a natu-
ral decidable metric predicate logic. In particular the Pnueli modalities
Pnk(X1, . . . , Xk), “there is an increasing sequence t1, . . . , tk of points in
the unit interval ahead such that Xi holds at ti”, are definable in TLC .
In this paper we investigate the complexity of the satisfiability problem
for TLC and show that the problem is PSPACE complete when the index
of Cn is coded in unary, and EXPSPACE complete when the index is
coded in binary. We also show that the satisfiability problem for the
until-since temporal logic extended by Pnueli’s modalities is PSPACE
complete.

1 Introduction

The temporal logic that is based on the two modalities “Since” and “Until” is
popular among computer scientists as a framework for reasoning about a system
evolving in time. By Kamp’s theorem [13] this logic has the same expressive
power as the first order monadic logic of order, whether the system evolves in
discrete steps or in continuous time. We will denote this logic by TL(U,S).

For systems evolving in discrete steps, this logic seem to supply all the ex-
pressive power needed. This is not the case for systems evolving in continuous
time, as the logic cannot express metric properties like: “X will happen within
one unit of time”. The most straightforward extension which allows to express
metric properties is to add modality which says that “X will happen exactly
after one unit of time”. Unfortunately, this logic is undecidable. Over the years
different decidable extensions of TL(U,S) were suggested. Most extensively re-
searched was MITL [2, 1, 5]. Other logics are described in [3, 14, 17, 6]. We intro-
duced the language QTL (quantitative temporal logic) [8–10], which extends the

until-since temporal logic by two modalities: ♦1X and
←−
♦1X. The formula ♦1X

(respectively
←−
♦1X) expresses that “X will be true at some point during the

next unit of time” (respectively, “X was true at some point during the previous
unit of time”). These extensions of TL(U,S) have the same expressive power,
which indicates that they capture a natural fragment of what can be said about
the system which evolve in time. These “first generation” metric extensions of
TL(U,S) can be called simple metric temporal logics.

A. Pnueli was probably the first person to question if these simple logics are
expressive enough for our needs. The conjecture that they cannot express the
property “X and then Y will both happen in the coming unit of time” is usually
referred to as “Pnueli’s conjecture” [2, 17].

In [7, 12] we proved Pnueli’s conjecture, and we strengthened it significantly.
To do this we defined for every natural k the “Pnueli modality” Pnk(X1, . . . ,Xk),
which states that there is an increasing sequence t1, . . . , tk of points in the unit
interval ahead such that Xi holds at ti. We also defined the weaker “Counting

modalities” Ck(X) which state that X is true at least at k points in the unit
interval ahead (so that Ck(X) = Pnk(X, . . . ,X)). To deal with the past we define

also the dual past modality,
←−
Pnk(X1, . . . ,Xk): there is a decreasing sequence

t1, . . . , tk of points in the previous unit interval such that Xi holds at ti, and
←−
C k(X) which state that X was true at least at k points in the previous unit
interval.

This yields a sequence of temporal logics TLPn (n ∈ N), where TLPn is the
standard temporal logic, with “Until” and “Since”, and with the addition of the

k-place modalities Pnk and
←−
Pnk for k ≤ n. Similarly, TLCn is the extension of

TL(U,S) with the addition of modalities Ck and
←−
C k for k ≤ n. We note also

that TLP1 is just the logic QTL and it represents the simple metric logics.

Let TLP be the union of TLPn and TLC be the union of TLCn.

We proved in [7, 12] that:

1. The sequence of temporal logics TLPn is strictly increasing in expressive
power. In particular, Cn+1(X) is not expressible in TLPn

2. TLP and TLC are decidable and have the same expressive power. Moreover
they are expressively equivalent to a natural decidable fragment of first-order
logic.

In this paper we investigate the complexity of the satisfiability problem for TLP

and TLC . In [16] it was shown that TL(U,S) is PSPACE complete. In [7,
10] we provided a polynomial satisfiability preserving translation from QTL to
TL(U,S) and derived PSPACE completeness of QTL.

In this paper we first prove that the satisfiability problem for TLP is PSPACE
complete.

When one write a TLC formula there are two natural possibility: to write
index n of Cn in unary or in binary. We show that the satisfiability problem
for TLC is PSPACE complete when the index of Cn is coded in unary, and
EXPSPACE complete when the index is coded in binary.

Our results holds both when the interpretation of temporal variable is ar-
bitrary and when we assume that they satisfy the finite variability assumption
(FVA) which states that no variable changes its truth-value infinitely many times
in any bounded interval.

In [12] we proved that there is no temporal logic L with finitely many modal-
ities definable in the monadic second-order logic expanded by +1 function such
that over the reals L is at leats as expressive as TLC . Our conjecture was that
this result can be extended to the non-negative reals. Our proofs refute this
conjecture.

The paper is divided as follows: In Sect. 2, we recall definitions and previous
results. In Sect. 3, we prove PSPACE completeness for TLP and as a consequence
obtain PSPACE completeness for TLC under the unary coding of indexes. In
Sect. 4, EXPSPACE completeness for TLC under the binary coding of indexes
is proved. Section 5 contains additional complexity results and a discussion on
the expressive power of TLC .

2 Preliminaries

First, we recall the syntax and semantics of temporal logics and how temporal
modalities are defined using truth tables, with notations adopted from [4, 9].

Temporal logics use logical constructs called “modalities” to create a lan-
guage that is free from quantifiers.

The syntax of a Temporal Logic has in its vocabulary a countably infinite
set of propositions {X1,X2, . . .} and a possibly infinite set B = {Ol1

1 , O
l2
2 , . . .} of

modality names (sometimes called “temporal connectives” or “temporal opera-
tors”) with prescribed arity indicated as superscript (we usually omit the arity
notation). TL(B) denotes the temporal logic based on modality-set B (and B is
called the basis of TL(B)). Temporal formulae are built by combining atoms (the
propositions Xi) and other formulae using Boolean connectives and modalities
(with prescribed arity). Formally, the syntax of TL(B) is given by the following
grammar:

φ ::= Xi | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 ↔ φ2 |¬φ1 | Oi(φ1, φ2, . . . , φli)

We will use (in our metalanguage) S,X, Y, Z to range over variables.
A structure for Temporal Logic, in this work, is the non negative real line

with monadic predicates M = 〈R+, <, S1, S2, . . . 〉, where the predicate Si are
the interpretation in M of the variable Si. (All our complexity results can be
easily adopted to the models over the whole real line R.) Every modality O(k)

is interpreted in the structure M as an operator O
(k)
M : [P(R+)]k → P(R+)

which assigns “the set of points where O(k)[A1, . . . , Ak] holds” to the k-tuple
〈A1, . . . , Ak〉 ∈ P(R+)k. (P(R+) denotes the set of all subsets of R

+). Once
every modality corresponds to an operator the semantics is defined by structural
induction:

– for atomic formulas: M, t |= S iff t ∈ S.

– for Boolean combinations the definition is the usual one.
– for O(k)(ϕ1, · · · , ϕk)

M, t |= O(k)(ϕ1, · · · , ϕk) iff t ∈ O
(k)
M (Aϕ1

, · · · , Aϕk
)

where Aϕ = { τ : M, τ |= ϕ }

For the modality to be of interest the operator O(k) should reflect some intended
connection between the sets Aϕi

of points satisfying ϕi and the set of points
O[Aϕ1

, . . . , Aϕk
]. The intended meaning is usually given by a formula in an

appropriate predicate logic:
Truth Tables: A formula O(t,X1, . . . Xk) in the predicate logic L is a Truth

Table for the modality O(k) if for every structureM

OM(A1, . . . , Ak) = {τ : M |= O[τ,A1, . . . , Ak]} .

2.1 Since-Until Temporal Logic

The modalities until and since are most commonly used in temporal logic for
computer science. They are defined through the following truth tables:

– The modality XU Y , “X until Y ”, is defined by

ψ(t0,X, Y) ≡ ∃t1(t0 < t1 ∧ Y (t1) ∧ ∀t(t0 < t < t1 → X(t))).

– The modality XS Y , “X since Y ”, is defined by

ψ(t0,X, Y) ≡ ∃t1(t0 > t1 ∧ Y (t1) ∧ ∀t(t1 < t < t0 → X(t))).

Reynolds [16] proved

Theorem 2.1 The satisfiability problem for TL(U,S) over the reals is PSPACE

complete.

We will use standard abbreviations. E.g., ♦X - sometimes in the future X

holds - abbreviates TrueUX; �X - always in the future X holds - abbrevi-

ates ¬(TrueU¬X); the past modalities
←−
♦X -“X happened in the past”, and

←−
�X - “X have been always true”, are defined similarly. The modality always

acts like the universal quantifier and is defined as

always(X) :
←−
�X ∧X ∧�X.

Llim(X) and Rlim(X) abbreviate the formulas

Llim(X) : ¬
(

¬XSTrue)

Rlim(X) : ¬
(

¬XUTrue)

Llim(X) holds at t if t is a left limit of X, i.e., for every t1 < t there is an X in
the interval (t1, t). Rlim(X) holds at t if t is a right limit of X.

2.2 Three Metric Temporal Logics

We recall the definitions of three temporal logics: Quantitative Temporal Logic
- QTL, Temporal Logic with Counting - TLC and Temporal Logic with Pnueli’s
modalities - TLP .

The logic QTL in addition to modalities U and S has two modalities ♦1X

and
←−
♦1X. These modalities are defined by the tables with free variable t0:

♦1X : ∃t((t0 < t < t0 + 1) ∧X(t))

←−
♦1X : ∃t((t− 1 < t < t0) ∧X(t)))

In [7] it was proved

Theorem 2.2 The satisfiability problem for QTL is PSPACE complete.

The logic TLP is the extension of TL(U,S) by an infinite set of modali-

ties Pnk(X1, . . . ,Xk) and
←−
Pnk(X1, . . . ,Xk). These modalities are defined by the

tables with free variable t0:

Pnk(X1, . . . ,Xk) : ∃t1 . . . ∃tk(t0 < t1 < · · · < tk < t0 + 1 ∧
k

∧

i=1

Xi(ti))

←−
Pnk(X1, . . . ,Xk) : ∃t1 . . . ∃tk(t0 − 1 < t1 < · · · < tk < t0 ∧

k
∧

i=1

Xi(ti))

Finally, the logic TLC - the temporal logic with counting modalities - is the

extension of TL(U,S) by an infinite set of modalities Ck(X) and
←−
C k(X) . These

modalities are defined by the tables with free variable t0:

Ck(X) : ∃t1 . . . ∃tk(t0 < t1 < · · · < tk < t0 + 1 ∧

k
∧

i=1

X(ti))

←−
C k(X) : ∃t1 . . . ∃tk(t0 − 1 < t1 < · · · < tk < t0 ∧

k
∧

i=1

X(ti))

We recall the terminology that is used when comparing the expressive power of
languages.

Let C be a class of structures and let L and L′ be temporal logics.

1. L is at least as expressive as L′ over a class C if for every formula ϕ of L′

there is a formula ψ in L such that for every structureM in C and for every
τ ∈M: M, τ |= ϕ iff M, τ |= ψ.

2. L and L′ are expressively equivalent over C if L is at least as expressive as
L′ over C and L′ is at least as expressive as L over C.

We deal here with the temporal logics over the class of non-negative real numbers.
We will say “L is at least as expressive as (respectively, is expressively equivalent
to) L′ if L is at least as expressive as (respectively, is expressively equivalent to)
L′ over this class.

The following theorem from [12] compares the expressive power of TLP , TLC

and QTL.

Theorem 2.3 (Comparing the Expressive Power) TLP and TLC are ex-

pressively equivalent. TLP and TLC are strictly more expressive than QTL.

2.3 Size of Formulas

Usually the size of a formula is defined as its length (string representation) or
the size of its directed acyclic graph representation (DAG). The logics TLC and
TLP have infinite sets of modalities and therefore we have to agree how to code
the names of modalities. There are two natural possibility: to write index k of
Ck and Pnk in unary or in binary. For TLP formulas this decision affects the
size of the formulas up to a constant factor, and, therefore, it is not important,
For TLC formulas the binary coding might be exponentially shorter than the
unary coding. Our main results show that the satisfiability problem for TLC is
PSPACE complete when the index of Ck is coded in unary, and EXPSPACE
complete when the index is coded in binary.

Note that there might be an exponential gap in the size of a DAG represen-
tation of a formula and its length. Our proofs of upper bounds will be given for
DAG representation (and hence the bounds are valid for string representations).
Our proofs of lower bounds will be given for string representations (and hence
the bounds are valid for DAG representation).

3 TLP is PSPACE Complete

Theorem 3.1 The satisfiability problem for TLP is PSPACE complete.

The PSPACE hardness immediately follows from PSPACE hardness for the sat-
isfiability problem for TL(U,S) which is a subset of TLP . Below we prove that
the satisfiability problem is in PSPACE.

A structureM is called proper if it is an expansion of 〈R+, <,N, Even,Odd〉
by unary predicates. Here N, Even, and Odd are the sets of natural, even and
odd numbers; these sets will be denoted by predicate names N, E, O.

In contrast to the fact that TLP is much more expressive than QTL over
the class of all real structures and over the class of finite variability structures
[7, 9], we are going to show that they are expressively equivalent over the class
of proper structures. Moreover, there is a polynomial meaning preserving (over
the proper structures) translation from TLP to QTL.

Lemma 3.2 1. For every k there is a QTL formula Ψk(X1, . . . ,Xk, N,E,O)
which is equivalent over the proper structures to Pnk(X1, . . . ,Xk). Further-

more, the size of Ψk is less than 100k2.

2. For every k there is a QTL formula
←−
Ψ k(X1, . . . ,Xk, N,E,O) which is equiv-

alent over the proper structures to
←−
Pnk(X1, . . . ,Xk). Furthermore, the size

of Ψk is less than 100k2.

Proof. (1) For i ≤ j ≤ k define formulas φi,j as follows:

φi,i := (¬N)UXi

φi,i+l+1 := (¬N)U
(

Xi ∧ ¬N ∧ φi+1,i+l+1

)

It is clear that the size of φi,j is less than 10(j − i+ 1) and that φi,j holds at t
iff there are t < ti < ti+1 < · · · < tj ≤ n, where n is the smallest integer greater

than t, such that ∧j
l=iXl(tl). Similarly, there are formulas

←−
φ i,j such that

←−
φ i,j

holds at t iff there are t > tj > · · · > ti > n, where n is the largest integer less

than t, and ∧j
l=iXl(tl) holds.

The formula Ψk which is equivalent to Pnk over the proper structures can be
defined as the disjunction of the following formulas:

1. φ1,k - “φ1,k holds at t if there are t < t1 < t2 < · · · < tk ≤ n, where n is the
smallest integer greater than t, such that ∧k

l=1Xl(tl)”.

2.
∨k−1

n=1(¬N)UE ∧ φ1,n ∧♦1((¬N)SE ∧
←−
φ n+1,k) - this covers the case when t

is in an interval [2m−1, 2m] for some integer m. The n-th disjunct says that
∧n

l=1Xl(tl) holds for t < t1 < · · · < tn ≤ 2m and in the interval (2m, 2m+1)
there are tn+1 < · · · < tk < t+ 1 such that ∧k

l=n+1Xl(tl) holds.

3.
∨k−1

n=1(¬N)UO∧φ1,n∧♦1((¬)NSO∧
←−
φ n+1,k) - this is similar to the previous

disjunct, but deals with t in the intervals [2m, 2m+1], where m is an integer.

This proves (1). The proof of (2) is similar. ⊓⊔

Corollary 3.3 TLP and QTL are expressively equivalent over the class of proper

structures. Furthermore, for every TLP formula ϕ there is a QTL formula ψ

which is equivalent to ϕ over the proper structures and |ψ| is O(|ϕ|2).

Proof. We define a meaning preserving translation Tr from TLP to QTL.

1. For variables Tr(X) := X.
2. If op is a Boolean connective Tr(ϕ1opϕ2) := Tr(ϕ1)opTr(ϕ2).
3. For until and since modalities Tr(ϕ1Uϕ2) :=

(

Tr(ϕ1)
)

U
(

Tr(ϕ2)
)

, and

Tr(ϕ1Sϕ2) :=
(

Tr(ϕ1)
)

S
(

Tr(ϕ2)
)

.
4. Tr(Pnk(ϕ1, . . . , ϕk)) is obtained by substitution of Tr(ϕi) instead of Xi

in Ψk; Similarly, Tr(
←−
Pnk(ϕ1, . . . , ϕk)) is obtained by substitution of Tr(ϕi)

instead of Xi in
←−
Ψ k.

It is clear that ϕ is equivalent to Tr(ϕ) over the proper structures. In Ψk and

in
←−
Ψ k every variable appears at most k times, therefore the size (of the DAG

representation) of Tr(ϕ) is O(|ϕ|2). ⊓⊔

The next lemma shows that the set of proper structures is definable by a QTL

formula.

Lemma 3.4 There is a QTL formula PROPER(Y,Z, U) such that R
+, t |=

PROPER(N,E,O) iff N is the set of natural numbers, and E and O are the

sets of even and odd numbers.

Proof. (1) Let Nat(Y) be the conjunction of the following formulas:

1.
←−
�False → Y - “Y holds at zero”.

2. always(Y → �1¬Y) - “If Y holds at t then ¬Y holds at all points in (t, t+1)”.

3. always(¬Y → ♦1Y) - “If Y does not hold at t then Y holds at some point
in (t, t+ 1)”.

It is clear that the set of naturals is unique set that satisfies Nat(Y).

(2) Let EVEN(Y,Z) be the conjunction of

1. Nat(Y) - “Y is the set of the natural numbers”

2. always(Z → Y) - “Z is a subset of the natural numbers”.

3.
←−
�False → Z - “Z holds at zero”.

4. always(Z → (¬Y)U(Y ∧ ¬Z) - “ if Z holds at a natural number n then it
does not hold at the next natural number”.

5. always(¬Z ∧Y → (¬Y)U(Y ∧Z) - “ if Z does not hold at a natural number
n then it holds at the next natural number”.

It is clear that EVEN(N,E) holds iff N is the set of naturals and E is the set
even numbers.

PROPER(Y,Z, U) can be defined as EVEN(Y,Z) ∧ always(U ↔ (Y ∧ ¬Z)).
⊓⊔

Finally, to complete the proof of Theorem 3.1, observe that a TLP formula ϕ is
satisfiable iff ϕ is satisfiable over a proper structure iff PROPER(N,E,O) ∧ ϕ
is satisfiable iff the QTL formula PROPER(N,E,O) ∧ ψ is satisfiable, where ψ
is constructed as in Corollary 3.3. Since, the satisfiability problem for QTL is in
PSPACE we obtain that the satisfiability problem for TLP is in PSPACE and
this completes the proof of Theorem 3.1.

As a consequence we obtain the following corollary.

Corollary 3.5 The satisfiability problem for TLC is PSPACE complete under

the unary coding.

Proof. Note that Ck(X) is equivalent to Pnk(X,X, . . . ,X). The translation from
TLC to TLP based on this equivalence is linear in the size of DAG representa-
tion. Hence, by Theorem 3.1, TLC is in PSPACE.

The PSPACE hardness immediately follows from PSPACE hardness for the
satisfiability problem for TL(U,S) which is a subset of TLC . ⊓⊔

4 EXPSPACE Completeness for TLC

Theorem 4.1 The satisfiability problem for TLC is EXPSPACE complete un-

der the binary coding.

The upper bound immediately follows from Corollary 3.5. Below we prove that
the satisfiability problem is EXPSPACE hard. For every Turing Machine M

which works in space 2n and every input x of length n we construct a TLC

formula AccM,x which is satisfiable iff M accepts x. Moreover AccM,x is com-
putable from M and x in polynomial time. This proves EXPSPACE hardness
with respect to the polynomial reductions.

A one-tape deterministic Turing machine M is (Q, q0, qacc, qrej , Γ, b, ν),
where Q is the set of states, q0, qacc, qrej ∈ Q are initial, accepting and rejecting
states, Γ is the alphabet, b ∈ Γ is the blank symbol and ν : ((Q\{qacc, qrej})×
Γ)→(Q×Γ ×{−1, 0, 1}) is the transition function. If the head is over a symbol
σ and M is in a state q and ν(q, σ) = 〈q′σ′, d〉, then M replace σ by σ′ changes
its state to q′ and moves d cells to the right (if d = −1 then it moves one cell
left). There is no transition from the accepting and rejecting states.

A configuration (or an instantaneous description) is a member of Γ ∗QΓ+

and represents a complete state of the Turing machine.
Let α = xqσy be a configuration, where σ ∈ Γ, x, y ∈ Γ ∗ and q ∈ Q. We

define tape(α) = xσy, and state(α) = q. It describes that for i ≤ |tape(α)|,
the i-th cell of the tape contains the i-th symbol of tape(α) and all other cells
contain blank; the control state is q and the head is over the symbol σ at the
position |x|+ 1.

We deal with Turing machines which use at most 2n tape cells on inputs
of length n. A configuration α is an n-configuration if tape(α) has 2n symbols.
Hence, a computation ofM on an input x = x1 . . . xn of length n can be described
by a sequence α1α2 . . . of n-configurations, where α1 = q0x1x2 . . . xnb

2n−n is the
initial n-configuration for the input x.

For n-configurations α and β we write α →M β if β is obtained from α

according to the transition function of M . Whenever M is clear from the context
we will write α→ β. Note that if α→β then tape(α) and tape(β) have the same
length.

A computation sequence is a sequence of configurations α1 . . . αk for which
αi → αi+1, 1 ≤ i < k. A configuration β is reachable from a configuration α if
there exists a computation sequence α1 . . . αk with α = α1 and β = αn.

Acceptance conditions. A configuration α is an accepting (respectively, re-
jecting) configuration if state(α) is accepting (respectively, rejecting) state. A
computation sequence α1 . . . αm is accepting (respectively, rejecting) if αm is
accepting (respectively, rejecting).

We are going to encode computations of M over proper structures, i.e., over
expansions of 〈R+, <,N, Even,Odd〉 by monadic predicates. All these predicates
will have finite variability and the EXPSPACE lower bound holds both under
the finite variability and arbitrary interpretations. We will denote by M an
expansion of 〈R+, <,N〉 by unary predicates.

From now on we fix a Turing machine M with the alphabet {0, 1, b} of space
complexity ≤ 2n. W.l.o.g. we assume that M never moves to the left of the first
input cell. All definitions and constructions below will be for this M .

Let α1, . . . , αk be a sequence of n-configurations (not necessary a computa-
tion sequence). The i-th configuration αi will be encoded on the interval (i−1, i)
with integer end-points as follows: The interval will contain 2n points τi,j such
that i− 1 < τi,1 < τi,2 < · · · < τi,2n < i and the predicate T will hold exactly at
these points in the interval. All other predicates described below will be subsets
of T . A0, A1 and Ab will partition T ; τi,j will be in A0 (respectively, in A1 or in
Ab) if the j-th tape symbol of αi is 0 (respectively 1, or blank). Predicates Sq

for q ∈ Q are interpreted in (i − 1, i) as follows: τi,j ∈ Sq if q is the state of αi

and the head is over the j-th tape symbol.

Definition 4.2 Let M be an expansion of 〈R+, <,N〉 by predicates T , A0, A1,

Ab, Sq for q ∈ Q. For i ∈ N, we say that the interval [i, i + 1] of M represents

a legal n-configuration if

1. it contain 2n points in T and all these points are inside (i, i+ 1).
2. A0, A1 and Ab partition T.

3. ∪q∈QSq ⊆ T and there is exactly one q ∈ Q such that Sq ∩ [i, i + 1] is a

singleton and for all q′ 6= q, the set Sq′ ∩ [i, i+ 1] is empty.

The following lemma is easy. We use there
−→
S for the tuple of predicate names

〈Sq : q ∈ Q〉.

Lemma 4.3 1. There is a TLC formula ϕ0(N,T , A0, A1, Ab,
−→
S) which holds

in a structure M iff there is l ∈ N such that for every i < l the interval

[i, i + 1] represents a legal n-configuration, the configuration represented in

the interval [l − 1, l] is accepting or rejecting, and no τ ≥ l is in T ∪ A0 ∪
A1 ∪Ab ∪ ∪q∈QSq. Furthermore, the size of ϕ0 is O(n).

2. For every x = x1 . . . xn ∈ {0, 1}
n, there is a formula INITx which holds in

a structure M iff the interval [0, 1] represents the initial n-configuration σ0

with input x. Furthermore, the size of INITx is O(n).

Our next task is to specify that the configuration represented in an interval
[i, i+ 1] is obtained from the configuration represented in [i− 1, i] according to
the transition function of M . We have to express (1) the head is moved properly
and update the symbols under the head correctly and (2) all other symbols are
unchanged.

The next lemma shows that the cells numbered from 1 to 2n can be succinctly
described by their binary representations.

Lemma 4.4 There is a formula ϕ1(N,T , B1, . . . , Bn) such that if for every i ∈
N the interval (i, i+1) contains at most 2n points from T thenM, 0 |= ϕ1 iff for

every i ∈ N and τ ∈ (i, i+1): if τ is the j-th occurrence of T in this interval then

τ ∈ Bl iff the l-th bit of the binary representation of j − 1 is one. Furthermore,

the size of ϕ1 is O(n2).

Proof. ϕ1 is always(ψ1), where ψ1 is the conjunction of

1. ∨Bl→(T ∧ ¬N) - Bl are subsets of T \ N.
2. N ∧ (¬N)U(T ∧¬N)→

(

(¬N)U(T ∧
∧n

l=1 ¬Bl)
)

- the first occurrence of T

in (i, i+ 1) has binary representation 00 . . . 0, i.e., is not in ∪Bl.
3. T ∧ ¬N ∧ (¬N)U(T ∧ ¬N)→

∨

k γk, where γk is

(¬Bk ∧
∧n

m=k+1Bm)→
(

(¬T)U(T ∧ (Bk ∧
∧n

m=k+1 ¬Bm) ∧
∧k−1

m=1(Bm→(¬T)U(T ∧Bm)
)

The formula expresses that if τ is not the last occurrence of T in (i, i + 1)
and its binary code has 0 at k-th place and 1 at places k + 1, . . . n then
the code of the next occurrence of T has 1 at k-th place and zero at places
k + 1, . . . ,m and both occurrences have the same bit in the binary code at
places 1, . . . , k − 1. ⊓⊔

Now we can express that the head moves properly, state is updated correctly
and the type symbol under the head is updated correctly.

Lemma 4.5 There is a formula ϕ2 such that if M represents a terminating

sequence of configurations α1, . . . , αl and M, 0 |= ϕ1, then1 M, 0 |= ϕ2 iff

for every i < l if in αi the head is over symbol σ at position j and the

state is q and ν(q, σ) = 〈q′.σ′, d〉 then the state in the αi+1 is q′ the head

is at the position j + d, the symbol at position j is σ′.

Furthermore, the size of ϕ2 is O(n2).

Proof. Let ν(q, σ) = 〈q′.σ′, 1〉 and let S := ∨q1∈QSq1

Let ψq,σ be the conjunction of

1. the heads moved one position to the right: Sq ∧ Aσ→
∨n

k=1 γ
′
k where γ′k is

obtained from γk after substitution of S instead T (see proof of Lemma 4.4).
2. The state and the symbols under the head were updated correctly: Sq ∧
Aσ→(¬ ∨q1∈Q Sq1

)U(Sq′ ∧ (¬T)SAσ′)

When ν(q, σ) = 〈q′.σ′, 0〉 and ν(q, σ) = 〈q′.σ′,−1〉 the formula ψq,σ is defined
similarly.

The desirable formula ϕ2 can be defined as always(
∧

q 6∈{qa,qr}

∧

σ ψq,σ). ⊓⊔

The creative part of our proof is to show how to express succinctly that the
symbols not under the head are unchanged. In order to do this we introduce the
following notion.

Assume thatM represent a terminating sequence of configuration α1, . . . , αl.
Recall that τi,j ∈ R

+ is the j-th occurrence of T in the interval (i − 1, i). We

1 Until the end of this section ϕ1 is the formula from Lemma 4.3. The scope of the
definition of ϕ2 from this lemma and formulas ϕ3 and ϕ4 from the following lemmas
extends to the end of this section.

denote by tape(αi)[j] the j-th symbol of tape(αi). We say thatM is well-timed

if for all i < l and j ≤ 2n and some positive ǫi,j , δi,j :

τi+1,j =







1 + τi,j + ǫi,j if tape(αi)[j] is 0
1 + τi,j − δi,j if tape(αi)[j] is 1
1 + τi,j if tape(αi)[j] is blank

(Eq . WT)

First observe

Lemma 4.6 if α1 . . . αl, is a terminating sequence of n-configuration, then there

is a well-timed M which represents this sequence.

Proof. Just choose τ1,j as j
2n+1 (for j = 1, . . . 2n) and choose ǫi,j = δi,j as

1
3l×(2n+1) . Define τi+1,j as in Eq . WT . Our choice of ǫi,j , δi,j ensures that i−1 <

τi,1 < τi,2 < · · · < τi,2n < i for all i ≤ l. ⊓⊔

Lemma 4.7 There is a formula ϕ3 such that M |= ϕ3 iff M is a well-timed

sequence of n-configurations. Furthermore, the size of ϕ3 is O(n).

Proof. Let ψ be the conjunction of the following formulas

1. Ab→(C2n−1(T) ∧ Llim(C2n−1(T)) ∧ Rlim(C2n−1(T)))
2. A1→(C2n(T) ∧ Llim(C2n+1(T)) ∧ Rlim(C2n(T)))
3. A0→(C2n−1(T) ∧ Llim(C2n(T)) ∧ Rlim(C2n−1(T)))

(Recall that Llim(X) (respectively, Rlim(X)) holds at t iff t is a left limit (re-
spectively, a right limit of X), see Sect. 2.2)

LetM′ represents an n-configuration αi in [i.i+1] and has 2n occurrences of
T in [i+ 1, i+ 2] all the occurrences inside (i+ 1, i+ 2). The crucial observation
is that Eq . WT holds iff M′, τ |= ψ for every τ ∈ [i, i+ 1].

From ψ it is easy to construct ϕ3. Just express that ϕ0 holds, and ψ holds
at all points except the points of the interval where the last configuration is
represented. ⊓⊔

We are now ready to specify that if a symbols is not under the head then in the
next configuration it will be unchanged.

Lemma 4.8 There is a formula ϕ4 such that ifM represents a well-timed termi-

nating sequence of n-configurations α1, . . . , αl and M, 0 |= ϕ1, then M, 0 |= ϕ4

iff

for every i < l if in αi the head is at position j, then tape(αi)[m] =
tape(αi+1)[m] for every m 6= j.

Furthermore, the size of ϕ4 is O(n).

Proof. Let ψ be the conjunction of the following formulas

1. Ab→(
←−
C 2n−1(T) ∧ Llim(

←−
C 2n−1(T)) ∧ Rlim(

←−
C 2n−1(T)))

2. A1→(
←−
C 2n(T) ∧ Rlim(

←−
C 2n+1(T)) ∧ Llim(

←−
C 2n(T)))

3. A0→(
←−
C 2n−1(T) ∧ Rlim(

←−
C 2n(T)) ∧ Llim(

←−
C 2n−1(T)))

Assume thatM is well-timed. Hence, Eq . WT holds. Then ψ holds at τi+1,m iff
tape(αi)[m] = tape(αi+1)[m].

The head is at position m in σi iff at τi+1,m the following formula γ holds:

γ :=
∧

k

(Bk ↔ ((¬N)S(N ∧ ((¬N)S(∨q∈QSq ∧Bk)))

Indeed, this formula says that Bk holds at τ iff in the previous interval Bk holds
at the (unique) position where ∨q∈QSq holds (this is the position of the head in
the configuration σi). Hence, T → ((¬γ)→ψ) holds in every point of the interval
[i+ 1, i+ 2] iff tape(αi)[m] = tape(αi+1)[m] for every m different from the head
position in σi.

Finally, ϕ4 should express thatT → ((¬γ)→ψ) holds at all points except the

points of the interval [0, 1]. Note that t ∈ [0, 1] iff
←−
♦(N ∧

←−
♦N) holds at t. Hence,

ϕ4 can be defined as follows: ϕ4 :=
(←−
♦(N ∧

←−
♦N)

)

→
(

T → ((¬γ)→ψ)
)

⊓⊔

From Lemmas 4.3, 4.4, 4.5, 4.7, 4.8 we obtain:

Lemma 4.9 For every x ∈ {0, 1}n let AccM,x be INITx ∧ ϕ0 ∧ ϕ1 ∧ ϕ2 ∧ ϕ3 ∧
ϕ4 ∧ ♦qacc. Then M, 0 |= AccM,x iff M represents a well-timed accepting com-

putation sequence of M on x.

The size AccM,x is polynomial in the size of x, therefore this lemma together
with Lemma 4.6 imply EXPSPACE hardness of the satisfiability problem for
TLC .

5 Further Results

Often in the literature the temporal logics with modalities ♦(m,n)(X) for integers
m < n are considered. These modalities are defined by the truth tables:

♦(m,n)(X) : ∃t((t0 +m < t < t0 + n) ∧X(t))

The logic QTLI in addition to modalities U and S has infinity many modalities
♦(m,n)(X) for all integers m < n. The logic QTLI0 is a fragment of QTLI ; it
has in addition to modalities U and S the modalities ♦(0,n)(X), ♦(−n,0)(X) for
all natural n.

The logics QTL, QTLI0 and QTLI have the same expressive power (under
arbitrary interpretations) and are equivalent to the logic MITL introduced in
[1]. However, there is an exponential succinctness gap (under the binary coding)
between QTL and QTLI0 and between QTLI0 and QTLI . The next theorem
characterize the complexity of these logics [1].

Theorem 5.1 1. The satisfiability problem for QTLI0 is PSPACE complete

under the binary coding.

2. The satisfiability problem for QTLI is EXPSPACE complete under the bi-

nary coding.

The theorem was proved for the finite variability interpretation in [1] and for
arbitrary interpretation in [8, 15].

In this section we consider temporal logics with the modalities C
(n,m)
k (X)

and Pn
(m,n)
k (X1, . . . ,Xk) for the integers m < n. These modalities are defined

by the truth tables with free variable t0:

Pn
(m,n)
k (X1, . . . ,Xk) : ∃t1 . . . ∃tk(t0 +m << t1 < · · · < tk < t0 +n∧

k
∧

i=1

Xi(ti))

C
(m,n)
k (X) : ∃t1 . . . ∃tk(t0 +m < t1 < · · · < tk < t0 + n ∧

k
∧

i=1

X(ti))

Note that Pnk is equivalent to Pn
(0,1)
k and Ck is equivalent to C

(0,1)
k

We consider the following temporal logics:

TLPI := TL(U,S, {Pn
(m,n)
k : m < n})

TLPI0 := TL(U,S, {Pn
(0,n)
k ,Pn

(−n,0)
k : 0 < n})

TLCI := TL(U,S, {C
(m,n)
k : m < n})

TLCI 0 := TL(U,S, {C
(0,n)
k , C

(−n,0)
k : 0 < n})

All these logics are expressively equivalent to TLC [11]. We investigate the
complexity of the satisfiability problems for these logics under the unary and
binary codings. Under the unary (respectively, binary) coding all the numbers
which occur in the superscripts and subscripts of these modalities are coded in
unary (respectively, in binary). The full version of this paper contains proofs of
the results summarized in the following table:

Logic unary coding binary coding

TLPI0 PSPACE complete PSPACE complete

TLPI PSPACE complete EXPSPACE complete

TLCI 0 PSPACE complete EXPSPACE complete

TLCI PSPACE complete EXPSPACE complete

Table 1. The complexity of the satisfiability problem

We conclude by a comparison of the expressive power of TLC and the expressive
power of temporal logics with finitely many modalities.

Let B = {Ol1
1 , O

l2
2 , . . .} be a finite set of modality names, and assume that

every modality in B has a truth table definable in the monadic second-order logic
of order with λx.x+ 1 function (we denote this logic by MLO+1). MLO+1 is a
very expressive (and undecidable) logic, and most of the modalities considered
in the literature can be easily formalized in it. We proved in [12] that there is n
(which depends on B) such that Cn is not expressible over the reals by a TL(B)

formulas. Hence, there is no temporal logic L which is at least as expressive as
TLC over the reals, which has a finite set of modalities with truth tables in
MLO+1.

Our conjecture was that this result can be extended to the non-negative real
line. However, the results of Sect. 3 refute this conjecture.

Indeed, let L be the temporal logic with the modalities U, S, ♦1
←−
♦1, nat

and even, where nat and even are zero-arity modalities interpreted as the sets
of natural and even numbers respectively Corollary 3.3 shows that TLP , TLC

and QTL are expressively equivalent over the class of proper structures, i.e., over
the expansions of 〈R+, <,N, Even,Odd〉 by unary predicates.

Hence, L is at least as expressive (over the class of non-negative real struc-
tures) as TLC . Over the non-negative reals, the modalities nat and even are
easily definable by truth tables in MLO+1 (see Lemma 3.4). This refutes the
conjecture.

Similarly to Corollary 3.3 one can show that TLP , TLC and QTL are ex-
pressively equivalent over the class of the expansions of 〈R, <,Z, Even〉 by unary
predicates, where Z and Even are the sets of integers and even numbers. Hence,
QTL with two additional zero-arity modalities for the set of integers and for the
set of even numbers is at least as expressive as TLC . However, over the reals,
these two modalities are not definable by truth tables in MLO+1.

Acknowledgments

I am grateful to Yoram Hirshfeld for his insightful comments.

References

1. R. Alur, T. Feder, T.A. Henzinger. The Benefits of Relaxing Punctuality.
Journal of the ACM 43 (1996) 116-146.

2. R. Alur, T.A. Henzinger. Logics and Models of Real Time: a survey. In Real
Time: Theory and Practice. Editors de Bakker et al. LNCS 600 (1992) 74-106.

3. Baringer H. Barringer, R. Kuiper, A. Pnueli. A really abstract concurrent
model and its temporal logic. Proceedings of the 13th POPL (1986), 173-183.

4. D.M. Gabbay, I. Hodkinson, M. Reynolds. Temporal Logics volume 1. Claren-
don Press, Oxford (1994).

5. T.A. Henzinger It’s about time: real-time logics reviewed. in Concur 98,
Lecture Notes in Computer Science 1466, pp. 439-454. 1998.

6. T.H Henzinger, J.F Raskin, P.Y Schobbens. The regular real time languages.
ICALP 1998. pp 580-591.

7. Y. Hirshfeld and A. Rabinovich, A Framework for Decidable Metrical Logics.
In Proc. 26th ICALP Colloquium, LNCS vol.1644, pp. 422-432, 1999.

8. Y. Hirshfeld and A. Rabinovich. Quantitative Temporal Logic. In Computer
Science Logic 1999, LNCS vol. 1683, pp. 172-187, Springer Verlag 1999.

9. Y. Hirshfeld and A. Rabinovich, Logics for Real Time: Decidability and Com-
plexity. Fundam. Inform. 62(1): 1-28 (2004).

10. Y. Hirshfeld and A. Rabinovich, Timer formulas and decidable metric tem-
poral logic. Information and Computation Vol 198(2), pp. 148-178, 2005.

11. Y. Hirshfeld and A. Rabinovich. An Expressive Temporal Logic for Real
Time. In MFCS 2006, Springer LNCS 4162, 492-504, 2006.

12. Y. Hirshfeld and A. Rabinovich, Expressiveness of Metric modalities for con-
tinuous time. Logical methods in computer science Volume 3, ISSUE 1, 2007

13. H. Kamp. Tense Logic and the Theory of Linear Order. Ph.D. thesis, Uni-
versity of California L.A. (1968).

14. Z. Manna, A. Pnueli. Models for reactivity. Acta informatica 30 (1993) 609-
678.

15. C. Lutz, D. Walther and F. Wolter: Quantitative temporal logics over the
reals: PSPACE and below, Information and Computation, 205(1):99-123
(2007).

16. M. Reynolds. The complexity of the temporal logic with until over general
linear time, manuscript 1999.

17. T. Wilke. Specifying Time State Sequences in Powerful Decidable Logics and
Time Automata. In Formal Techniques in Real Time and Fault Tolerance
Systems. LNCS 863 (1994), 694-715.

