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Abstract. We prove a conjecture by A. Pnueli and strengthen it show-
ing a sequence of “counting modalities” none of which is expressible in
the temporal logic generated by the previous modalities, over the real
line, or over the positive reals. We use this sequence to prove that over
the real line there is no finite temporal logic that can express all the
natural properties that arise when dealing with systems that evolve in
continuous time.

1 Introduction

Temporal Logic based on the two modalities “Since” and “Until” (TL) is a most
popular framework for reasoning about the evolving of a system in time. By
Kamp’s theorem [12] this logic has the same expressive power as the monadic first
order predicate logic. Therefore the choice between monadic logic and temporal
logic is merely a matter of personal preference.

Temporal logic and the monadic logic are equivalent whether the system
evolves in discrete steps or in continuous time, But for continuous time both
logics are not strong enough to express properties like: “X will happen within 1
unit of time”, and we need a better version of the logics.

Following the work R. Koymans, T. Henzinger and others,
[14, 3, 2, 13, 5, 17, 1, 7], and more, we introduced in [9, 11] the logic QTL (Quan-
titative Temporal Logic), which has besides the modalities Until and Since two
metric modalities: ♦1(X) and ←−♦1(X). The first one says that X will happen (at
least once) within the next unit of time, and the second says that X happened
within the last unit of time. We proved:

1. This logic consumes the different metric temporal logics that we found in
the literature, like MITL [2, 1, 7].

2. The validity and satisfiability problem for this logic is decidable, whether
we are interested in systems with finite variability, or in all systems evolving
in time (a system has finite variability if it changes only at finitely many
points, in any finite interval of time).

An important question was not answered: is this logic expressive enough
to express all the important properties about evolving systems? If not, which
modalities should we add?
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A. Pnueli suggested the modality P2(X, Y ): “X and then Y will both occur in
the next unit of time”. P2(X, Y ) was probably thought of as a natural strength-
ening of the metric logics that were presented before. It can serve as a first in
a sequence of extensions of the logic, where for each natural number n, we add
the modality Pn(X1, , . . . , Xn). Pn(X1, , . . . , Xn) says that there is an increasing
sequence of points t1, , . . . , tn in the coming unit interval such that Xi(ti) holds
for i = 1, , . . . , n. It probably seemed pointless to define new modalities when
you cannot prove that they can express something new. Pnueli conjectured that
the modality P2(X, Y ) cannot be expressed in the different (equivalent) metric
logic that we defined above, but he left it at that (we were unable to locate where
this conjecture was first published. It is attributed to Pnueli in later papers like
[2] and [17]).

Here we prove Pnueli’s conjecture: We denote by C2(X) the modality “X
will be true at least twice in the next unit of time”. This is a special case of
P2(X, Y ) where Y = X . We prove:

– C2(X) cannot be expressed in QTL (and the equivalent languages). More-
over:

– For every n let us define the modality Cn(X) that says that X will hold
at least at n points of the next unit interval. Then the modality Cn+1(X)
cannot be expressed in the logic QTL(C1, , . . . , , Cn), which is generated by
QTL, and the extra n modalities QTL(C1(X), , . . . , , Cn(X))

Therefore there is a proper hierarchy of temporal logics, and it is important to
investigate how to extend the logic QTL to a full strength, yet decidable logic.
Counting modalities like Cn(X) are not a natural choice of a modality and it
maybe suspected that a better chosen finite set of modalities together with QTL
is as strong as, or even stronger than QTL with all the modalities Cn. Not so!
We were able to prove:

– No finite temporal logic can express all the statements Cn(X).

The last claim needs to be made exact: No finite temporal logic, whose modal-
ities are defined in a natural monadic predicate logic, can express all the counting
modalities over continuous time, extended in both directions; i.e, over the full
real line. We believe that the same is true also when we consider continuous time
with a first point 0, i.e, positive time line, but the proof will be more difficult.

When stated formally the result seems even stronger: Let L be second order
monadic logic of order, together with the predicate B(t, s) which says that s =
t + 1. The modalities Cn(X) are expressible in this logic, but no temporal logic
with a finite or infinite family of modalities which are defined by formulas with
bounded quantifier depth can express all the modalities Cn(X).

In predicate logic the expressive power grows with the increasing of the quan-
tifier depth. In temporal logic this is achieved by increasing the nesting depth of
the modalities. Kamp showed that for the simplest logic of order iterating the
modal operations can replace the complex use of quantifier. Our result, together
with previous evidence (see [15]) suggests that this was a lucky peculiarity of
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the first-order monadic logic of linear order, and it cannot be expected to hold
for strong logics.

These results leave open and emphasize even more the main question: Is
the logic QTL enriched by all the modalities Pn(X1, , . . . , Xn) the appropriate
maximal decidable temporal logic? If not, what is its strength, and what is the
appropriate continuous metric temporal logic?

The paper is divided as follows: In section 2 we recall the definitions and
the previous results concerning the continuous time logics. In section 3 we prove
Pnueli’s conjecture and its generalization, that the modalities Ci create a strictly
increasing family of logics. In section 4 we discuss the more general and abstract
result: that no temporal logic based on modalities with finite quantifier depth
can express all the modalities Cn.

2 Monadic Logic and Quantitative Temporal Logic

2.1 MLO - Monadic Logic of Order

The natural way to discuss systems that evolve in time is classical predicate
logic. The language has a name for the order relation of the time line, and a
supply of unary predicate names to denote a properties that the system may or
may not have at any point in time. Hence:

The syntax of the monadic predicate logic of order - MLO has in its
vocabulary individual (first order) variables t0, t1, . . . , monadic predicate vari-
ables X0, X1, . . . , and one binary relation < (the order). Atomic formulas
are of the form X(t), t1 = t2 and t1 < t2. Well formed formulas of the
monadic logic MLO are obtained from atomic formulas using Boolean connec-
tives ¬, ∨, ∧, → and the (first order) quantifiers ∃t and ∀t and the (second-order)
quantifiers ∃X and ∀X . The formulas which do not use ∃X and ∀X are called
first-order MLO formulas (FOMLO). Note that FOMLO formulas may contain
free monadic predicate variables, and they will be assigned to particular predi-
cates in a structure.

A structure for MLO is a tuple M = 〈A, <, P1, . . . , Pn〉, where A is a
set linearly ordered by the relation <, and P1, · · · , Pn, are one-place predicates
(sets) that correspond to the predicate names in the logic. We shall use the
simple notation 〈A, <〉 when the particular predicates are not essential to the
discussion.

The main models are: the continuous canonical model 〈R+, <〉, the non-
negative real line, and the discrete canonical model 〈N, <〉, the naturals.

As is common we will use the assigned formal names to refer to objects in
the meta discussion. Thus we will write:

M |= ϕ[t1, . . . , tk; X1, . . . , Xm]

where M is a structure, ϕ a formula, t1, · · · , tk elements of M and X1, . . . , Xm

predicates in M , instead of the correct but tedious form:

M, τ1, . . . , τk; P1, . . . , Pm |=
MLO

ϕ(t1, . . . , tk; X1, . . . , Xm),
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where τ1, . . . , τk and P1 · · · , Pm are names in the metalanguage for elements and
predicates in M .

2.2 Temporal Logics

Temporal logics evolved in philosophical logic and were enthusiastically em-
braced by a large body of computer scientists. It uses logical constructs called
“modalities” to create a language that is free from variables and quantifiers.
Here is the general logical framework to define temporal logics:

The syntax of the Temporal Logic TL(O(k1)
1 , . . . , O

(kn)
n , . . .) has in its vo-

cabulary monadic predicate names P1, P2, . . . and a sequence of modality names
with prescribed arity, O

(k1)
1 , . . . , O

(kn)
n , . . . (the arity notation is usually omitted).

The formulas of this temporal logic are given by the grammar:

ϕ ::= True| P | ¬ϕ | ϕ ∧ ϕ | O(k)(ϕ1, · · · , ϕk)

A temporal logic with a finite set of modalities is called a finite (base) temporal
logic.

Structures for TL are again linear orders with monadic predicates M =
〈A, <, P1, P2, . . . , Pn〉, where the predicate Pi are those which are mentioned in
the formulas of the logic. Every modality O(k) is interpreted in every structure
M as an operator O

(k)
M : [P(A)]k → P(A) which assigns “the set of points where

O(k)[S1, . . . , Sk] holds” to the k-tuple 〈S1, . . . , Sk〉 ∈ P(A)k. (Here P is the power
set notation, and P(A) denotes the set of all subsets of A.) Once every modality
corresponds to an operator the semantics is defined by structural induction:

– for atomic formulas: 〈M, t〉 |=
T L

P iff t ∈ P .
– for Boolean combinations the definition is the usual one.
– for O(k)(ϕ1, · · · , ϕk)

〈M, t〉 |=
T L

O(k)(ϕ1, · · · , ϕk) iff t ∈ O
(k)
M (Aϕ1 , · · · , Aϕk

)

where Aϕ = { τ : 〈M, τ〉 |=
T L

ϕ } (we suppressed predicate parameters
that may occur in the formulas).

We are interested in a more restricted case; for the modality to be of interest the
operator O(k) should reflect some intended connection between the sets Aϕi of
points satisfying ϕi and the set of points O[Aϕ1 , . . . , Aϕk

]. The intended meaning
is usually given by a formula in an appropriate predicate logic:

Truth Tables: A formula O(t0, X1, . . .Xk) in the predicate logic L is a Truth
Table for the modality O(k) if for every structure M

OM (A1, . . . , Ak) = {τ : M |=
MLO

O[τ, A1, . . . , Ak]} .

The modalities until and since are most commonly used in temporal logic for
computer science. They are defined through the following truth tables:
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– The modality X U Y , “X until Y ”, is defined by

ψ(t0, X, Y ) ≡ ∃t1(t0 < t1 ∧ Y (t1) ∧ ∀t(t0 < t < t1 → X(t))).

– The modality X S Y , “X since Y ”, is defined by

ψ(t0, X, Y ) ≡ ∃t1(t0 > t1 ∧ Y (t1) ∧ ∀t(t1 < t < t0 → X(t))).

If the modalities of a temporal logic have truth tables in a predicate logic then
the temporal logic is equivalent to a fragment of the predicate logic. Formally:

Proposition 1. If every modality in the temporal logic TL has a truth table
in the logic MLO then to every formula ϕ(X1, . . . , Xn) of TL there corresponds
effectively (and naturally) a formula ϕ(t0, X1, . . .Xn) of MLO such that for every
M , τ ∈ M and predicates P1, . . . , Pn

〈M, τ, P1, . . . , Pn〉 |=
T L

ϕ iff 〈M, τ, P1, . . . , Pn〉 |=
MLO

ϕ .

In particular the temporal logic TL( U , S ) with the modalities “until” and
“since” corresponds to a fragment of first-order MLO (FOMLO).

The two modalities U and S are also enough to express all the formulas
of first-order MLO with one free variable:

Theorem 2. ([12, 6]) The temporal logic TL( U , S ) is expressively complete
for FOMLO over the two canonical structures: For every formula of FOMLO
with at most one free variable, there is a formula of TL( U , S ), such that the
two formulas are equivalent to each other, over the positive integers (discrete
time) and over the positive real line (continuous time).

2.3 QTL - Quantitative Temporal Logic

The logics MLO and TL( U , S ) are not suitable to deal with quantitative
statements like “X will occur within one unit of time”. In [8, 9, 10] we introduced
the Quantitative Temporal Logic, adding to TL the modalities ♦1X (X will
happen within the next unit of time) and ←−♦1X (X happened within the last
unit of time):

Definition 3 (Quantitative Temporal Logic). QTL, quantitative temporal
logic is the logic TL( U , S ) enhanced by the two modalities: ♦1X and ←−♦1X.
These modalities are defined by the tables with free variable t0:

(3) ♦1X : ∃t((t0 < t < t0 + 1) ∧ X(t))

(4) ←−♦1X : ∃t((t < t0 < t + 1) ∧ X(t)) .

QTL was the latest in a list of metric logics for continuous time, developed over
approximately 15 years. When interpreted carefully all these logics are equiva-
lent. For completeness we list the two main modalities that were suggested before
QTL together with their natural truth table:
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1. The logic MITL [2] has as modalities X until(m,n)Y with natural numbers
m < n, which holds at t0 iff

∃t1[(t0 + m < t1 < t0 + n) ∧ Y (t1) ∧ ∀t(t0 < t < t1 → X(t))].

Other modalities with closed and half closed intervals as indices, and dual
modalities with ”since” replacing ”until” are defined similarly.

2. Manna and Pnueli [13] base their logic on modalities [Γ (X) > n] which holds
at t0 iff

∀t(t0 − n < t < t0 → X(t)).

The dual modality for the future is defined similarly. To these they add
modalities [Γ (X) = n] saying that X started exactly n units of time ago.

We proved in [9] and [11] that:

1. The logic QTL can express more liberal bounds in time like: “X will happen
in the future, within the period that starts in m units of time, and ends in n
units of time” (m < n). We may also include or exclude one of both of the
endpoints of the period.

2. QTL consumes the different decidable metric temporal logics that we found
in the literature, including MITL and the Manna-Pnueli logic described
above.

3. There is a natural fragment QMLO (quantitative monadic logic of order),
of the classical monadic logic of order with the +1 function, that equals in
expressive power to QTL.

4. The validity and satisfiability problem for this logic is decidable, whether we
are interested in systems with finite variability, or in all systems evolving
in time (a system has finite variability if it changes only at finitely many
points, in any finite interval of time).

The advantages of the logic QTL were the subject of [8, 9, 10, 11]. In particular,
it is decidable. Here we investigate the limitations of its expressive power.

3 Modalities Which Are Not Expressible in QTL

We start the investigation of the limitations of the temporal logic proving Pnueli’s
conjecture:

Theorem 4. The modality C2(X) is not expressible in QTL.

Proof. Let M be the real non negative line with the predicate P (t) that is true
exactly at the points n · 2

3 for all natural numbers n. Let us call the following four
predicates: P, ¬P, T rue, False the trivial predicates. We show by structural
induction that for every statement ϕ of QTL there is a point tϕ such that from
this point on ϕ is equivalent to one of the trivial predicates.
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– This is trivially true for atomic statements.
– The collection of truth sets for the four trivial predicates is closed under

Boolean combinations. Therefore the set of formulas satisfying our claim is
closed under the Boolean connectors.

– Assume now that ϕ = (θ Untill ψ) and t0 is a point beyond which both θ
and ψ are equivalent to one of the trivial predicates. We check the different
possibilities for the truth value of ϕ at a point t beyond t0. If θ is equivalent
to P or to False then ϕ is false. If θ is equivalent to ¬P or to True then ϕ
is true if ψ is equivalent to either of P ,¬P or True, and ϕ is false if ψ is
equivalent to False. In every case ϕ is equivalent either to True or to False.

– For ϕ = (θ Since ψ) we need only a minor modification: Let t1 be an even
integer beyond t0 (so that P is true at t1). Then for points beyond t1 ϕ is
true if θ ≡ True and ψ occurred at t1 or earlier, or if θ ≡ ¬P and ψ is
equivalent to any of the special predicates except False (the choice of t1
ensures the case that ψ ≡ P ) in all other cases ϕ ≡ False.

– Assume that ϕ = ♦1θ and from t0 on θ is equivalent to one of the four trivial
predicates. If θ is equivalent to False then ϕ is equivalent to False from t0
on. In the other three cases ϕ is equivalent to True from t0 on.

– A similar argument works when ϕ = ←−♦1θ.

On the other hand the statement C2(P ) is false at any point in the interval
(n, n + 1/3) if n is even and it is true at any point in the interval (n, n + 1/3) if
n is odd. This shows that C2(P ) is not equivalent to any QTL formula.

The method of the proof can be modified to produce a hierarchy of temporal
logics, each stronger than the previous.

Definition 5. The counting modalities are the modalities Cn(X) for every n
which state that X will be true at least at n points within the next unit of time.

Theorem 6. The modality Cn+1(X) is not expressible in QTL(C1 · · · , Cn).

Proof. Let M be the real non negative line with the predicate P (t) that is true
exactly at the points k · 2

n+1 for all natural numbers k. Call again the following
four predicates: P, ¬P, T rue, False the trivial predicates, and as before show
that every formula of QTL(C1 · · · , Cn) is equivalent from some point on to a
trivial predicate. On the other hand Cn+1(P ) is always true on the interval
(k, k + 1

n+1 ) if k is even, and false on the interval if k is odd.

4 No Finite Temporal Logic Is Fully Expressive

The hierarchy

TL < QTL < QTL(C2) < · · · < QTL(C1 · · · , Cn) < · · ·

raises the suspicion that it will be difficult to find a finite temporal logic that
includes all these logics. We showed that it is not difficult. It is impossible. To
be precise:
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Theorem 7. Let L be the second order monadic logic of order, with an extra
predicate B(t, s) that is interpreted on the real line as s = t + 1. Let L1 be a
temporal logic with possibly infinitely many modalities, for which there is a nat-
ural number m such that all the modalities have truth tables in L, with quantifier
depth not larger than m. Then there is some n such that Cn(X) is not equivalent
over the real line to any L1 formula.

The proof is quite technical, yet close in spirit to the proof of theorem 6: We
define an infinite family of very uniform models, with P their only unary pred-
icate. We define for each integer k > 0 the model Mk to be the full real line R
with P (t) occurring at the points m 1

k for every integer m (positive, negative or
zero). We show that any pair of models in this class that can be distinguished
by some formula in L1, can also be distinguished by one of finitely many simple
formulas. It follows that there is an infinite subfamily of models that satisfy the
same formulas of L1. On the other hand for large n < k the model Mn satisfies
Cn(P ) and the model Mk does not. Hence the formula Cn(X) is not definable
in L1.

Discussion:

1. The theorem says both more and less than what the title of the section says.
Less because we confined ourselves to temporal logics with truth tables in
the second order monadic logic of order with the addition of the +1 func-
tion. Allowing more arithmetical operations would produce more modalities.
Moreover, modalities need not have truth tables in any predicate logic, and
the following is a natural question:

Is there a finite temporal logic that includes all the modalities
Pn(X1, , . . . , Xn), if we do not require that the modalities are are defined

by truth tables?

On the other hand we prove more than is claimed because we prove that no
infinite temporal logic can express all the counting modalities Cn(X) if the
truth tables of the modalities are of bounded quantifier depth.

2. Second order monadic logic of order with the +1 function is a much stronger
logic than is usually considered when temporal logics are defined. All the
temporal logics that we saw in the literature are defined in a fragment of
monadic logic, with a very restricted use of the +1 function. All the decidable
temporal logics in the literature remain decidable when we add the counting
modalities Cn(X) [10]. On the other hand second order monadic logic is
undecidable over the reals even without the +1 function [16]. When the +1
function is added even a very restricted fragment of first order monadic logic
of order is undecidable over the positive reals.

3. A natural way to strengthen the predicate logic is by adding predicates
Bq(t, s) for every rational umber q, to express the relation s = t+ q. We call
this logic LQ. The proof of the theorem will not apply if we replace L by
LQ, and even modalities with truth tables of quantifier depth 2 distinguish
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any two models Mk and Mr in our class. On the other hand just as before
no finite temporal logic defined in this logic can express all the counting
modalities. This leaves open the question:

Is the theorem above true when the predicate logic L is replaced by LQ?

4. It is well known that to say in predicate logic ”there are at least n elements
with a given property” requires quantifier depth that increases with n. We
emphasize again that the theorem is much more significant than that. Tem-
poral logics do not have quantifiers, and the expressive power is achieved by
deeper nesting of the modalities. Thus to say that P will not occur in the
next n units of time requires formulas of predicate logic with quantifier depth
that increases with n. On the other hand QTL itself suffices to claim it for
any n (with increasing modality nesting), although all the modalities of QTL
have very simple truth tables with quantifier depth at most 2. Therefore it
is far from obvious that no finite temporal logic expresses all the modalities
Cn using unlimited modality nesting.
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