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1 Introduction

Temporal Logic (TL) introduced to Computer Science by Pnueli in [8] is a convenient frame-
work for reasoning about “reactive” systems. This has made temporal logics a popular sub-
ject in the Computer Science community, enjoying extensive research in the past 30 years.
In TL we describe basic system properties by atomic propositions that hold at some points
in time, but not at others. More complex properties are expressed by formulas built from the
atoms using Boolean connectives and Modalities (temporal connectives): A k-place modal-
ity M transforms statements ϕ1, . . . , ϕk possibly on ‘past’ or ‘future’ points to a statement
M(ϕ1, . . . , ϕk) on the ‘present’ point t0. The rule to determine the truth of a statement
M(ϕ1, . . . , ϕk) at t0 is called a truth table ofM . The choice of particular modalities with their
truth tables yields different temporal logics. A temporal logic with modalities M1, . . . ,Mk

is denoted by TL(M1, . . . ,Mk).
The simplest example is the one place modality ♦X saying: “X holds some time in the

future.” Its truth table is formalized by ϕ♦(t0, X) := (∃t > t0)X(t). This is a formula of the
First-Order Monadic Logic of Order (FOMLO) - a fundamental formalism in Mathematical
Logic where formulas are built using atomic propositions P (t), atomic relations between
elements t1 = t2, t1 < t2, Boolean connectives and first-order quantifiers ∃t and ∀t. Two
more natural modalities are the modalities Until (“Until”) and Since (“Since”). XUntilY
means that X will hold from now until a time in the future when Y will hold. XSinceY
means that Y was true at some point of time in the past and since that point X was true
until (not necessarily including) now. Both modalities have truth tables in FOMLO. Most
modalities used in the literature are defined by such FOMLO truth tables, and as a result,
every temporal formula translates directly into an equivalent FOMLO formula. Thus, the
different temporal logics may be considered as a convenient way to use fragments of FOMLO.
FOMLO can also serve as a yardstick by which one is able to check the strength of temporal
logics: A temporal logic is expressively complete for a fragment L of FOMLO if every formula
of L with a single free variable t0 is equivalent to a temporal formula.

Actually, the notion of expressive completeness refers to a temporal logic and to a model
(or a class of models), since the question whether two formulas are equivalent depends on the
domain over which they are evaluated. Any (partially) ordered set with monadic predicates
is a model for TL and FOMLO, but the main, canonical, linear time intended models are
the non-negative integers 〈N, <〉 for discrete time and the reals 〈R, <〉 for continuous time.

Kamp’s theorem [7] states that the temporal logic with modalities Until and Since is
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expressively complete for FOMLO over the above two linear time canonical1 models.

This seminal theorem initiated the whole study of expressive completeness, and it
remains one of the most interesting and distinctive results in temporal logic; very
few, if any, similar ‘modal’ results exist. Several alternative proofs of it and stronger
results have appeared; none of them are trivial (at least to most people) [6].

The objective of this paper is to provide a simple proof of Kamp’s theorem.
The rest of the paper is organized as follows: In Section 2 we recall the definitions of the

monadic logic, the temporal logics and state Kamp’s theorem. Section 3 introduces formulas
in a normal form and states their simple properties. In Section 4 we prove Kamp’s theorem.
The proof of one proposition is postponed to Section 5. Section 6 comments on the previous
proofs of Kamp’s theorem.

2 Preliminaries

In this section we recall the definitions of the first-order monadic logic of order, the temporal
logics and state Kamp’s theorem.

Fix a set Σ of atoms. We use P,Q,R, S . . . to denote members of Σ. The syntax and
semantics of both logics are defined below with respect to such Σ.

2.1 First-Order Monadic Logic of Order
Syntax: In the context of FOMLO, the atoms of Σ are referred to (and used) as unary
predicate symbols. Formulas are built using these symbols, plus two binary relation symbols:
< and =, and a set of first-order variables (denoted: x, y, z, . . . ). Formulas are defined by
the grammar:

atomic ::= x < y | x = y | P (x) (where P ∈ Σ)

ϕ ::= atomic | ¬ϕ1 | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ∃xϕ1 | ∀xϕ1

We will also use the standard abbreviated notation for bounded quantifiers, e.g., (∃x)>z(. . . )
denotes ∃x((x > z)∧(. . . )), and (∀x)<z(. . . ) denotes ∀x((x < z)→ (. . . )), and ((∀x)<z2

>z1(. . . )
denotes ∀x((z1 < x < z2)→ (. . . )), etc.
Semantics. Formulas are interpreted over labeled linear orders which are called chains.
A Σ-chain is a triplet M = (T,<, I) where T is a set - the domain of the chain, < is
a linear order relation on T , and I : Σ → P(T ) is the interpretation of Σ (where P is
the powerset notation). We use the standard notationM, t1, t2, . . . tn |= ϕ(x1, x2, . . . xn) to
indicate that the formula ϕ with free variables among x1, . . . , xn is satisfiable in M when
xi are interpreted as elements ti ofM. For atomic P (x) this is defined by: M, t |= P (x) iff
t ∈ I(P ); the semantics of <,=,¬,∧,∨,∃ and ∀ is defined in a standard way.

2.2 TL(Until, Since) Temporal Logic
In this section we recall the syntax and semantics of a temporal logic with strict-Until and
strict-Since modalities, denoted by TL(Until,Since).

In the context of temporal logics, the atoms of Σ are used as atomic propositions
(also called propositional atoms). Formulas of TL(Until,Since) are built using these atoms,

1 the technical notion which unifies 〈N, <〉 and 〈R, <〉 is Dedekind completeness.
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Boolean connectives and strict-Until and strict-Since binary modalities. The formulas are
defined by the grammar:

F ::= True | P | ¬F1 | F1 ∨ F2 | F1 ∧ F2 | F1UntilF2 | F1SinceF2,

where P ∈ Σ.
Semantics. Formulas are interpreted at time-points (or moments) in chains (elements of the
domain). The semantics of TL(Until,Since) formulas is defined inductively: Given a chain
M = (T,<, I) and t ∈ T , define when a formula F holds inM at t - denotedM, t |= F :
M, t |= P iff t ∈ I(P ), for any propositional atom P .
M, t |= F ∨G iffM, t |= F orM, t |= G; similarly for ∧ and ¬.
M, t |= F1UntilF2 iff there is t′ > t such that M, t′ |= F2 and M, t1 |= F1 for all
t1 ∈ (t, t′).
M, t |= F1SinceF2 iff there is t′ < t such that M, t′ |= F2 and M, t1 |= F1 for all
t1 ∈ (t′, t).

We will use standard abbreviations. As usual �F (respectively, ←−�F ) is an abbreviation for
¬(TrueUntil(¬F )) (respectively, ¬(TrueSince(¬F ))), and K+(F ) (respectively, K−(F )) is an
abbreviation for ¬((¬F )UntilTrue) (respectively, ¬((¬F )SinceTrue)).
1. �F (respectively, ←−�F ) holds at t iff F holds everywhere after (respectively, before) t.
2. K−(F ) holds at a moment t iff t = sup({t′ | t′ < t and F holds at t′}).
3. K+(F ) holds at a moment t iff t = inf({t′ | t′ > t and F holds at t′}).
Note that K+(True) (respectively, K−(True)) holds at t inM if t is a right limit (respectively,
a left limit) point of the underlining order. In particular, both K+(True) and K−(True) are
equivalent to False in the chains over (N, <),

2.3 Kamp’s Theorem
Equivalence between temporal and monadic formulas is naturally defined: F is equivalent
to ϕ(x) over a class C of structures iff for anyM∈ C and t ∈M: M, t |= F ⇔M, t |= ϕ(x).
If C is the class of all chains, we will say that F is equivalent to ϕ.

A linear order (T,<) is Dedekind complete if for every non-empty subset S of T , if S
has a lower bound in T then it has a greatest lower bound, written inf(S), and if S has an
upper bound in T then it has a least upper bound, written sup(S). The order of the naturals
and of the reals are Dedekind complete, while the order of the rationals is not Dedekind
complete. A chain is Dedekind complete if its underlying linear order is Dedekind complete.

The fundamental theorem of Kamp’s states that TL(Until,Since) is expressively equival-
ent to FOMLO over Dedekind complete chains.

I Theorem 2.1 (Kamp [7]). 1. Given any TL(Until,Since) formula A there is a FOMLO for-
mula ϕA(x) which is equivalent to A over all chains.

2. Given any FOMLO formula ϕ(x) with one free variable, there is a TL(Until,Since) for-
mula which is equivalent to ϕ over Dedekind complete chains.

The meaning preserving translation from TL(Until,Since) to FOMLO is easily obtained by
structural induction. The contribution of our paper is a proof of Theorem 2.1 (2). The
proof is constructive. An algorithm which for every every FOMLO formula ϕ(x) constructs
a TL(Until,Since) formula which is equivalent to ϕ over Dedekind complete chains is easily
extracted from our proof. However, this algorithms is not efficient in the sense of complexity
theory. This is unavoidable because there is a non-elementary succinctness gap between
FOMLO and TL(Until,Since) even over the class of finite chains, i.e., for everym,n ∈ N there
is a FOMLO formula ϕ(x0) of size |ϕ| > n which is not equivalent (even over finite chains) to
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any TL(Until,Since) formula of size ≤ exp(m, |ϕ|), where them-iterated exponential function
exp(m,n) is defined by induction onm so that exp(1, n) = 2n, and exp(m+1, n) = 2exp(m,n).

3 ~∃∀ formulas

First, we introduce
−→
∃ ∀ formulas which are instances of the Decomposition formulas of [3].

I Definition 3.1 (
−→
∃ ∀-formulas). Let Σ be a set of monadic predicate names. An

−→
∃ ∀-formula

over Σ is a formula of the form:

ψ(z0, . . . , zm) := ∃xn . . . ∃x1∃x0(
m∧
k=0

zk = xik

)
∧ (xn > xn−1 > · · · > x1 > x0) “ordering of xi and zj”

∧
n∧
j=0

αj(xj) “Each αj holds at xj”

∧
n∧
j=1

[(∀y)<xj

>xj−1βj(y)] “Each βj holds along (xj−1, xj)”

∧ (∀y)>xnβn+1(y) “βn+1 holds everywhere after xn”
∧ (∀y)<x0β0(y) “β0 holds everywhere before x0”

with a prefix of n+ 1 existential quantifiers and with all αj , βj quantifier free formulas with
one variable over Σ. (ψ has m + 1 free variables z0, . . . , zm and m + 1 ≤ n + 1 existential
quantifiers are dummy and are introduced just in order to simplify notations.)

It is clear that

I Lemma 3.2. 1. Conjunction of
−→
∃ ∀-formulas is equivalent to a disjunction of

−→
∃ ∀-formulas.

2. Every
−→
∃ ∀-formula is equivalent to a conjunction of

−→
∃ ∀-formulas with at most two free

variables.
3. For every

−→
∃ ∀-formula ϕ the formula ∃xϕ is equivalent to a

−→
∃ ∀-formula.

I Definition 3.3 (∨
−→
∃ ∀-formulas). A formula is a ∨

−→
∃ ∀ formula if it is equivalent to a dis-

junction of
−→
∃ ∀-formulas.

I Lemma 3.4 (closure properties). The set of ∨
−→
∃ ∀ formulas is closed under disjunction,

conjunction, and existential quantification.

Proof. By (1) and (3) of Lemma 3.2, and distributivity of ∃ over ∨. J

The set of ∨
−→
∃ ∀ formulas is not closed under negation2. However, we show later (see Pro-

position 4.3) that the negation of a ∨
−→
∃ ∀ formula is equivalent to a ∨

−→
∃ ∀ formula in the

expansion of the chains by all TL(Until,Since) definable predicates.
The ∨

−→
∃ ∀ formulas with one free variable can be easily translated to TL(Until,Since).

I Proposition 3.5 (From ∨
−→
∃ ∀-formulas to TL(Until,Since) formulas). Every ∨

−→
∃ ∀-formula

with one free variable is equivalent to a TL(Until,Since) formula.

2 The truth table of PUntilQ is an
−→
∃ ∀ formula (∃x′)>x(Q(x′)∧ (∀y)<x′

>x P (y)), yet we can prove that its
negation is not equivalent to any ∨

−→
∃ ∀ formula.
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Proof. By a simple formalization we show that every
−→
∃ ∀-formula with one free variable is

equivalent to a TL(Until,Since) formula. This immediately implies the proposition.
Let ψ(z0) be an

−→
∃ ∀-formula

∃xn . . . ∃x1∃x0z0 = xk ∧ (xn > xn−1 > · · · > x1 > x0) ∧
n∧
j=0

αj(xj)

∧
n∧
j=1

(∀y)<xj

>xj−1βj(y) ∧ (∀y)<x0β0(y) ∧ (∀y)>xn
βn+1(y)

Let Ai and Bi be temporal formulas equivalent to αi and βi (Ai and Bi do not even use
Until and Since modalities). It is easy to see that ψ is equivalent to the conjunction of

Ak ∧ (Bk+1Until(Ak+1 ∧ (Bk+2Until · · · (An−1 ∧ (BnUntil(An ∧�Bn+1)) · · · ))

and

Ak ∧ (Bk−1Since(Ak−1 ∧ (Bk−2Since(· · ·A1 ∧ (B1Since(A0 ∧
←−
�B0)) · · · )) J

4 Proof of Kamp’s theorem

The next definition plays a major role in the proof of both Kamp’s and Stavi’s theorems [3].
I Definition 4.1. Let M be a Σ chain. We denote by E [Σ] the set of unary predicate
names Σ ∪ {A | A is an TL(Until,Since)-formula over Σ }. The canonical TL(Until,Since)-
expansion ofM is an expansion ofM to an E [Σ]-chain, where each predicate name A ∈ E [Σ]
is interpreted as {a ∈ M | M, a |= A}3. We say that first-order formulas in the signature
E [Σ] ∪ {<} are equivalent over M (respectively, over a class of Σ-chains C) if they are
equivalent in the canonical expansion ofM (in the canonical expansion of everyM∈ C).

Note that if A is a TL(Until,Since) formula over E [Σ] predicates, then it is equivalent
to a TL(Until,Since) formula over Σ, and hence to an atomic formula in the canonical
TL(Until,Since)-expansions.

From now on we say that “formulas are equivalent in a chainM” instead of “formulas are
equivalent in the canonical TL(Until,Since)-expansion ofM.” The

−→
∃ ∀ and ∨

−→
∃ ∀ formulas are

defined as previously, but now they can use as atoms TL(Until,Since) definable predicates.
It is clear that all the results stated above hold for this modified notion of ∨

−→
∃ ∀ formulas.

In particular, every ∨
−→
∃ ∀ formula with one free variable is equivalent to an TL(Until,Since)

formula, and the set of ∨
−→
∃ ∀ formulas is closed under conjunction, disjunction and existential

quantification. However, now the set of ∨
−→
∃ ∀ formulas is also closed under negation, due to

the next proposition whose proof is postponed to Sect. 5.
I Proposition 4.2. (Closure under negation) The negation of

−→
∃ ∀-formulas with at most two

free variables is equivalent over Dedekind complete chains to a disjunction of
−→
∃ ∀-formulas.

As a consequence we obtain
I Proposition 4.3. Every first-order formula is equivalent over Dedekind complete chains to
a disjunction of

−→
∃ ∀-formulas.

Proof. We proceed by structural induction.

3 We often use “a ∈M” instead of “a is an element of the domain ofM”
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Atomic It is clear that every atomic formula is equivalent to a disjunction of (even quantifier
free)

−→
∃ ∀-formulas.

Disjunction - immediate.
Negation If ϕ is an

−→
∃ ∀-formula, then by Lemma 3.2(2) it is equivalent to a conjunction of

−→
∃ ∀ formulas with at most two free variables. Hence, ¬ϕ is equivalent to a disjunction of
¬ψi where ψi are

−→
∃ ∀-formulas with at most two free variables. By Proposition 4.2, ¬ψi

is equivalent to a disjunction of
−→
∃ ∀ formulas γji . Hence, ¬ϕ is equivalent to a disjunction

∨i ∨j γji of
−→
∃ ∀ formulas.

If ϕ is a disjunction of
−→
∃ ∀ formulas ϕi, then ¬ϕ is equivalent to the conjunction of ¬ϕi.

By the above, ¬ϕi is equivalent to a ∨
−→
∃ ∀ formula. Since, ∨

−→
∃ ∀ formulas are closed

under conjunction (Lemma 3.4), we obtain that ¬ϕ is equivalent to a disjunction of
−→
∃ ∀

formulas.
∃-quantifier For ∃-quantifier, the claim follows from Lemma 3.4. J

Now, we are ready to prove Kamp’s Theorem:
I Theorem 4.4. For every FOMLO formula ϕ(x) with one free variable, there is a TL(Until,Since)
formula which is equivalent to ϕ over Dedekind complete chains.

Proof. By Proposition 4.3, ϕ(x) is equivalent over Dedekind complete chains to a disjunction
of
−→
∃ ∀ formulas ϕi(x). By Proposition 3.5, ϕi(x) is equivalent to a TL(Until,Since) formula.

Hence, ϕ(x) is equivalent over Dedekind complete chains to a TL(Until,Since) formula. J

5 Proof of Proposition 4.2

Let ψ(z0, z1) be an
−→
∃ ∀-formula

∃xn . . . ∃x1∃x0[z0 = xm ∧ z1 = xk ∧ (x0 < x1 < · · · < xn−1 < xn) ∧
n∧
j=0

αj(xj)

∧
n∧
j=1

(∀y)<xj

>xj−1βj(y) ∧ (∀y)<x0β0(y) ∧ (∀y)>xnβn+1(y)]

We consider two cases. In the first case k = m, i.e., z0 = z1 and in the second k 6= m.
If k = m, then ψ is equivalent to z0 = z1 ∧ ψ′(z0), where ψ′ is an

−→
∃ ∀-formula. By

Proposition 3.5, ψ′ is equivalent to an TL(Until,Since) formula A′. Therefore, ψ is equivalent
to an

−→
∃ ∀-formula ∃x0[z0 = x0 ∧ z1 = x0 ∧A′(x0)].

If k 6= m, w.l.o.g. we assume that m < k. Hence, ψ is equivalent to a conjunction of

1. ψ0(z0) defined as:
∃x0 . . . ∃xm−1∃xm[z0 = xm ∧ (x0 < x1 < · · · < xm) ∧

∧m
j=0 αj(xj)

∧
m∧
j=1

(∀y)<xj

>xj−1βj(y) ∧ (∀y)<x0β0(y)

2. ψ1(z1) defined as:
∃xk . . . ∃xk+1∃xn[z1 = xk ∧ (xk < xk+1 < · · · < xn) ∧

∧n
j=k αj(xj)

∧
n∧

j=k+1
(∀y)<xj

>xj−1βj(y) ∧ (∀y)>xn
βn+1(y)]
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3. ϕ(z0, z1) defined as:
∃xm . . . ∃xk[(z0 = xm < xm+1 < · · · < xk = z1) ∧

∧k
j=m αj(xj)

∧
k∧

j=m+1
(∀y)<xj

>xj−1βj(y)

The first two formulas are
−→
∃ ∀-formulas with one free variable. Therefore, (by Proposition

3.5) they are equivalent to a TL(Until,Since) formulas (in the signature E [Σ]). Hence,
their negations are equivalent (over the canonical expansions) to atomic (and hence to

−→
∃ ∀)

formulas.
Therefore, it is sufficient to show that the negation of the third formula is equivalent

over Dedekind complete chains to a disjunction of
−→
∃ ∀-formulas. This is stated in the the

following lemma:
I Lemma 5.1. The negation of any formula of the form

∃x0 . . . ∃xn[(z0 = x0 < · · · < xn = z1) ∧
n∧
j=0

αj(xj) ∧
n∧
j=1

(∀y)<xj

>xj−1βj(y)] (1)

where αi, βi are quantifier free, is equivalent (over Dedekind complete chains) to a disjunction
of
−→
∃ ∀-formulas.

In the rest of this section we prove Lemma 5.1.
First, we introduce some helpful notations.

I Notations 5.2. We use the abbreviated notation [α0, β1 . . . , αn−1, βnαn](z0, z1) for the
−→
∃ ∀-formula as in (1).
In this notation Lemma 5.1 can be rephrased as ¬[α0, β1 . . . , αn−1, βnαn](z0, z1) is equivalent
(over Dedekind complete chains) to a ∨

−→
∃ ∀ formula.

We start with the instance of Lemma 5.1 where all βi are True.
I Lemma 5.3. ¬∃x1 . . . ∃xn (z0 < x1 < · · · < xn < z1)∧

∧n
i=1 Pi(xi) is equivalent over Dede-

kind complete chains to a ∨
−→
∃ ∀ formula On(P1, . . . , Pn, z0, z1).

Proof. We proceed by induction.
Basis: ¬(∃x1)<z1

>z0P1(x1) is equivalent to (∀y)<z1
>z0¬P1(y).

Inductive step: n 7→ n+1. We assume that a ∨
−→
∃ ∀ formula On was defined and construct

a ∨
−→
∃ ∀ formula On+1.
Observe that if the interval (z0, z1) is non-empty, then one of the following cases holds:

Case 1 There is no occurrence of P1 in (z0, z1), i.e. (∀y)<z1
>z0¬P1(y). In this case On+1(P1, . . . , Pn+1, z0, z1)

should be equivalent to True.
Case 2 If case 1 does not hold then let r0 = inf{z ∈ (z0, z1) | P1(z)} (such r0 exists by

Dedekind completeness. Note that r0 = z0 iff K+(P1)(z0). If r0 > z0 then r0 ∈ (z0, z1)
and r0 is definable by the following ∨

−→
∃ ∀ formula:

INF(z0, r0, z1, P1) :=z0 < r0 < z1 ∧ (∀y)<r0
>z0¬P1(y)∧

∧ (P1(r0) ∨K+(P1)(r0)) (2)

Subcase r0 = z0 In this subcase On(P2, . . . , Pn, z0, z1) and On+1(P1, . . . , Pn+1, z0, z1)
should be equivalent.

Subcase r0 ∈ (z0, z1) In this subcase On(P2, . . . , Pn, r0, z1) and On+1(P1, . . . , Pn+1, z0, z1)
should be equivalent.



8 A Proof of Kamp’s theorem

Hence, On+1(P1, . . . , Pn+1, z0, z1) can be defined as the disjunction of “(z0, z1) is empty”
and the following formulas:
1. (∀y)<z1

>z0¬P1((y)
2. K+(P1)(z0) ∧On(P2, . . . , Pn, z0, z1)
3. (∃r0)<z1

>z0

(
INF(z0, r0, z1, P1) ∧On(P2, . . . , Pn, r0, z1)

)
The first formula is a ∨

−→
∃ ∀ formula. By the inductive assumptions On is a ∨

−→
∃ ∀ for-

mula. K+(P1)(z0) is an atomic (and hence a ∨
−→
∃ ∀) formula in the canonical expansion, and

INF(z0, r0, z1, P1) is a ∨
−→
∃ ∀ formula. Since ∨

−→
∃ ∀ formulas are closed under conjunction,

disjunction and the existential quantification, we conclude that On+1 is a ∨
−→
∃ ∀ formula. J

As a consequence we obtain
I Corollary 5.4. 1. ¬(∃z)<z1

>z0 [α0, β1, α1, β2, . . . , αn−1, βn, αn](z0, z) is equivalent over Dede-
kind complete chains to a ∨

−→
∃ ∀ formula.

2. ¬(∃z)<z1
>z0 [α0, β1, α1, β2, . . . , αn−1, βn, αn](z, z1) is equivalent over Dedekind complete chains

to a ∨
−→
∃ ∀ formula.

Proof. (1) Define

Fn := αn

Fi−1 := αi−1 ∧ βiUntilFi for i = 1, . . . , n

Observe that there is z ∈ (z0, z1) such that [α0, β1, α1, β2, . . . , αn−1, βn, αn](z0, z) iff F0(z0)
and there is an increasing sequence x1 < · · · < xn in an open interval (z0, z1) such that
Fi(xi) for i = 1, . . . , n. Indeed, the direction ⇒ is trivial. The direction ⇐ is easily proved
by induction.

The basis is trivial.
Inductive step: n 7→ n+ 1. Assume F0(z0) holds and that (z0, z1) contains an increasing

sequence x1 < · · · < xn+1 such that Fi(xi) for i = 1, . . . , n+1. By the inductive assumption
there is y1 ∈ (z0, xn+1) such that

[α0, β1, α1, β2, . . . , βn−1αn−1, βn, (αn ∧ βn+1Untilαn+1)](z0, y1).

In particular, y1 satisfies (αn ∧ βn+1Untilαn+1). Hence, there is y2 > y1 such that y2
satisfies αn+1 and βn+1 holds along (y1, y2).

If y2 ≤ xn+1 then the required z ∈ (z0, z1) equals to y2, and we are done. Otherwise,
xn+1 < y2. Therefore, xn+1 ∈ (y1, y2) and βn+1 holds along (y1, xn+1). Hence, the required
z equals to xn+1.

From the above observation and Lemma 5.3, it follows that ¬F0(z0)∨On(F1, . . . , Fn, z0, z1)
is a ∨

−→
∃ ∀ formula that is equivalent to ¬(∃z)<z1

>z0 [α0, β1, α1, β2, . . . , αn−1, βn, αn](z0, z).
(2) is the mirror image of (1) and is proved similarly. J

Now we are ready to prove Lemma 5.1, i.e.,

¬[α0, β1 . . . , βn−1, αn−1, βn, αn](z0, z1) is equivalent
over Dedekind complete chains to a ∨

−→
∃ ∀ formula.

If the interval (z0, z1) is empty then the assertion is immediate. We assume that (z0, z1) is
non-empty. Hence, at least one of the following cases holds:
Case 1 ¬α0(z0) or ¬αn(z1) or ¬(β1Untilα1)(z0) or ¬(βnSinceαn−1)(z1).
Case 2 α0(z0), and β1 holds along (z0, z1).
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Case 3 1. α0(z0) ∧ (β1Untilα1)(z0), and
2. there is x ∈ (z0, z1) such that ¬β1(x).

For each of these cases we construct a ∨
−→
∃ ∀ formula Condi which describes it (i.e., Case i

holds iff Condi holds) and show that if Condi holds, then ¬[α0, β1 . . . , βn−1, αn−1, βn, αn](z0, z1)
is equivalent to a ∨

−→
∃ ∀ formula Formi. Hence, ¬[α0, β1 . . . , βn−1, αn−1, βn, αn](z0, z1) is

equivalent to ∨i[Condi ∧ Formi] which is a ∨
−→
∃ ∀ formula.

Case 1 This case is already explicitly described by the ∨
−→
∃ ∀ formula (in the canonical

expansion). In this case ¬[α0, β1 . . . , βn−1, αn−1, βn, αn](z0, z1) is equivalent to True.
Case 2 This case is described by a ∨

−→
∃ ∀ formula α0(z0) ∧ (∀z)<z1

>z0β1. In this case
¬[α0, β1 . . . , βn−1, αn−1, βn, αn](z0, z1) is equivalent to “there is no z ∈ (z0, z1) such that
[α1, β2 . . . , βn, αn](z, z1).” By Corollary 5.4 this is expressible by a ∨

−→
∃ ∀ formula.

Case 3 The first condition of Case 3 is already explicitly described by a ∨
−→
∃ ∀ formula.

When the first condition holds, then the second condition is equivalent to “there is (a
unique) r0 ∈ (z0, z1) such that r0 = inf{z ∈ (z0, z1) | ¬β1(z)}” (If β1Untilα1 holds at z0 and
there is x ∈ (z0, z1) such that ¬β1(x), then such r0 exists because we deal with Dedekind
complete chains.) This r0 is definable by the following ∨

−→
∃ ∀ formula, i.e., it is a unique z

which satisfies it4:

INF¬β1(z0, z, z1) := z0 < z < z1 ∧ (∀y)<z>z0
β1(y) ∧ (¬β1(z) ∨K+(¬β1)(z)) (3)

Hence, Case 3 is described by α0(z0)∧ (β1Untilα1)(z0)∧ (∃z)<z1
>z0INF¬β1(z0, z, z1). Since the

set of ∨
−→
∃ ∀ formulas is closed under conjunction, disjunction and ∃, this case is described

by a ∨
−→
∃ ∀ formula.

It is sufficient to show that (∃z)<z1
>z0INF¬β1(z) ∧ ¬[α0, β1, α1, . . . , βn+1, αn+1](z0, z1) is

equivalent to a ∨
−→
∃ ∀ formula.

We prove this by induction on n.
The basis is trivial.
Inductive step n 7→ n+ 1.
Define:

A−i (z0, z) :=[α0, β1, . . . , βi, αi](z0, z) i = 1, . . . , n
A+
i (z, z1) :=[αi, βi+1, . . . βn+1αn+1](z, z1) i = 1, . . . , n

Ai(z0, z, z1) :=A−i (z0, z) ∧A+
i (z, z1) i = 1, . . . , n

B−i (z0, z) :=[α0β1, . . . , βi−1, αi−1, βi, βi](z0, z) i = 1, . . . , n+ 1
B+
i (z, z1) :=[βi, βi, αiβi+1αi+1, . . . , βn+1, αn+1](z, z1) i = 1, . . . , n+ 1

Bi(z0, z, z1) :=B−i (z0, z) ∧B+
i (z, z1) i = 1, . . . , n+ 1

If the interval (z0, z1) is non-empty, these definitions imply

[α0, β1, α1, . . . , βn+1, αn+1](z0, z1)⇔ (∀z)<z1
>z0

( n∨
i=1

Ai ∨
n+1∨
i=1

Bi
)

[α0, β1, α1, . . . , βn+1, αn+1](z0, z1)⇔ (∃z)<z1
>z0

( n∨
i=1

Ai ∨
n+1∨
i=1

Bi
)

4 We will use only existence and will not use uniqueness.



10 A Proof of Kamp’s theorem

α0 α1 α2 α3z

z0 z1

β1 β2 β3

Figure 1 B2(z0, z, z1) := [α0, β1, α1, β2, β2](z0, z) ∧ [β2, β2, α2, β3, α3](z, z1)

Hence, for every ϕ

(∃z)<z1
>z0ϕ(z) ∧ ¬[α0, β1, α1, . . . , βn+1, αn+1](z0, z1)

is equivalent to

(∃z)<z1
>z0

(
ϕ(z) ∧

n∧
i=1
¬Ai ∧

n+1∧
i=1
¬Bi

)
In particular,

(∃z)<z1
>z0INF¬β1(z) ∧ ¬[α0, β1, α1, . . . , βn+1, αn+1](z0, z1)

is equivalent to

(∃z)<z1
>z0

(
INF¬β1(z) ∧

n∧
i=1
¬Ai ∧

n+1∧
i=1
¬Bi

)
,

where INF¬β1(z) was defined in equation (3).
By the inductive assumption

(a) ¬Ai is equivalent to a ∨
−→
∃ ∀ formula for i = 1, . . . , n.

(b) ¬Bi is equivalent to a ∨
−→
∃ ∀ formula for i = 2, . . . , n.

Recall B1 := B−1 ∧B
+
1 and Bn+1 := B−n+1 ∧B

+
n+1.

(c) ¬B−1 and ¬B+
n+1 are equivalent to ∨

−→
∃ ∀ formulas, by the induction basis.

(d) INF¬β1(z) ∧ ¬B+
1 (z, z1) is equivalent to INF¬β1(z), because if INF¬β1(z), then for no

x > z, β1 holds along [z, x).
(e) INF¬β1(z) ∧ ¬B−n+1(z0, z) is equivalent to INF¬β1(z) ∧ (“β1 holds on (z0, z)” ∧
¬B−n+1(z0, z)). Since, by case 2, “β1 holds on (z0, z)” ∧ ¬B−n+1(z0, z) is equivalent to
a ∨
−→
∃ ∀ formula, and INF¬β1(z) is a ∨

−→
∃ ∀ formula, we conclude that INF¬β1(z) ∧

¬B−n+1(z0, z) is equivalent to a ∨
−→
∃ ∀ formula.

Since the set of ∨
−→
∃ ∀ formulas is closed under conjunction, disjunction and ∃, by (a)-(e) we

obtain that (∃z)<z1
>z0

(
INF¬β1(z) ∧

∧n
i=1 ¬Ai ∧

∧n+1
i=1 ¬Bi

)
is equivalent to a ∨

−→
∃ ∀ formula.

Therefore, (∃z)<z1
>z0INF¬β1(z) ∧ ¬[α0, β1, α1, . . . , βn+1, αn+1](z0, z1) is also a ∨

−→
∃ ∀ formula.

This completes our proof of Lemma 5.1 and of Proposition 4.2.
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6 Related Works

Kamp’s theorem was proved in
1. Kamp’s thesis [7] (proof > 100pages).
2. Outlined by Gabbay, Pnueli, Stavi and Shelah [3] (Sect. 2) for N and stated that it can

be extended to Dedekind complete orders using game arguments.
3. Was proved by Gabbay [1] by separation arguments for N, and extended to Dedekind

complete order in [2].
4. Was proved by Hodkinson [4] by game arguments and simplified in [5] (unpublished).
A temporal logic has the separation property if its formulas can be equivalently rewritten
as a boolean combination of formulas, each of which depends only on the past, present or
future. The separation property was introduced by Gabbay [1], and surprisingly, a temporal
logic which can express � and ←−� has the separation property (over a class C of structures)
iff it is expressively complete for FOMLO over C.

The separation proof for TL(Until,Since) over N is manageable; however, over the real
(and over Dedekind complete) chains it contains many rules and transformations and is not
easy to follow. Hodkinson and Reynolds [6] write:

The proofs of theorems 18 and 19 [Kamp’s theorem over naturals and over reals,
respectively] are direct, showing that each formula can be separated. They are tough
and tougher, respectively. Nonetheless, they are effective, and so, whilst not quite
providing an algorithm to determine if a set of connectives is expressively complete,
they do suggest a potential way of telling in practice whether a given set of connectives
is expressively complete – in Gabbay’s words, try to separate and see where you get
stuck!

The game arguments are easier to grasp, but they use complicated inductive assertions. The
proof in [5] proceeds roughly as follows. Let Lr be the set of TL(Until,Since) formulas of
nesting depth at most r. A formula of the form: ∃x̄∀yχ(x̄, y, z̄) where x̄ is an n-tuple of
variables and χ is a quantifier free formula over {<,=} and Lr-definable monadic predicates
is called 〈n, r〉-decomposition formula. The main inductive assertion is proved by “unusual
back-and-forth games” and can be rephrased in logical terms as there is a function f :
N → N such that for every n, r ∈ N, the negation of positive Boolean combinations 〈n, r〉-
decomposition formula is equivalent to a positive Boolean combination of 〈f(n), (n + r)〉-
decomposition formulas.

Our proof is inspired by [3] and [5]; however, it avoids games, and it separates general
logical equivalences and temporal arguments.

Many temporal formalisms studied in computer science concern only future formulas -
whose truth value at any moment is determined by what happens from that moment on.
A formula (temporal, or monadic with a single free first-order variable) F is (semantically)
future if for every chainM and moment t0 ∈M:

M, t0 |= F iffM|≥t0 , t0 |= F,

where M|≥t0 is the subchain of M over the interval [t0,∞). For example, PUntilQ and
K+(P ) are future formulas, while PSinceQ and K−(P ) are not future ones.

It was shown in [3] that over the discrete chains Kamp’s theorem holds also for future
formulas of FOMLO:
I Theorem 6.1. Every future FOMLO formula is equivalent over discrete orders (Natural,
Integer, finite) to a TL(Until) formula.
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Theorems 6.1 can be easily obtained from our proof of Kamp’s theorem.
The temporal logic with the modalities Until and Since is not expressively complete for

FOMLO over the rationals. Stavi introduced two additional modalities Untils and Sinces

and proved that TL(Until,Since,Untils,Sinces) is expressively complete for FOMLO over all
linear orders [2]. In the full version of this paper we prove Stavi’s theorem. The proof is
similar to our proof of Kamp’s theorem; however, it treats some additional cases related to
gaps in orders, and replaces

−→
∃ ∀-formulas by slightly more general formulas.
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