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Abstract

A predicate logic of probability, close to the logics of probability of Halpern et al., is introduced. Our main result

concerns the following model-checking problem: deciding whether a given formula holds on the structure defined by

a given finite probabilistic process. We show that this model-checking problem is decidable for a rather large subclass

of formulas of a second-order monadic logic of probability. We discuss also the decidability of satisfiability and

compare our logic of probability with the probabilistic temporal logic pCTL*.
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1 Introduction

Logics with probabilities were considered in different contexts; on the one hand, in artificial

intelligence for reasoning about uncertainty in expert systems, and on the other hand, for

specification and verification of systems which exhibit some uncertainty, such as fault-tolerant

or randomized systems.
One can distinguish two families of logical approaches for reasoning about probabilities:

(i) the first one extends the predicate logics and (ii) the second one extends temporal logics.
A fundamental contribution to the study of predicate logics of probability was made in

[6, 9], mainly motivated by the problems of artificial intelligence. Reference [9] contains an

excellent survey and analysis of previous works on predicate logics of probability. There have

been very interesting works on extensions of predicate logic by probability quantifiers in

model theory (see survey in [14]). The models considered there are different from the one

considered in this article, and these works seem to be unrelated to our.
Most of the work related to the verification uses probabilistic extensions of temporal logics.

The first applications of temporal logic to probabilistic systems were considered while

studying which temporal properties are satisfied with probability 1 by systems modeled as

finite Markov chains [17]. Later, references [12, 2] introduced pCTL and pCTL* logics that

can express quantitative bounds on the probability of system evolutions. This approach is
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surveyed, e.g., in [11, 4, 19]. One of the main problems addressed in these works is the model-
checking problem, to decide whether a given formula holds on the structure defined by a given
finite Markov chain.

In this article we are interested in the verification of probabilistic systems. However,
unlike previous works on verification, we take as a specification formalism a probabilistic
extension of predicate logics. Predicate logics offer some advantages (over modal and
temporal logics) because of their expressiveness and convenience for formalization of
complicated properties.

We follow the general setting of [6, 9, 1] to introduce a rather expressive predicate logic of
probability. The main syntactical mechanism of extension of the predicate logic to predicate
logic of probability (used in [6, 9]) is by introducing formulas of the form Prob>xð’Þ with the
intended meaning ‘the probability of ’ is greater than x’. Here x is a real value variable that
ranges over the interval ½0, 1�. In these works it is allowed to quantify both over-the-domain
variables and the real-value variables; moreover, the standard addition and multiplication
functions can be applied to the real-value variables. Our probabilistic logic is much weaker.
It extends the predicate logic by formulas of the form Prob>qð’Þ, where q is a rational number
(and not a variable); we do not allow to apply arithmetic operations or predicates to the
rationals. The property ‘’1 and ’2 have the same probability’ is easily expressible in the logics
considered in [9, 1]; however, it cannot be expressed in our probabilistic logic.

Abadi and Halpern [1] extensively studied the complexity of the satifiability problem for the
logic of probability and demonstrated that it takes very little to make reasoning
about probability highly undecidable. It turns out that the satisfiabilty problem for this
logic with only one constant symbol is at least as hard as that of elementary analysis. We will
show that our (much weaker) logic is undecidable for the language that contains only unary
predicates.

Our main result shows that the model checking problem is decidable for the logic of
probability. The technique used to prove this result significantly extends the technique
developed for the proofs of decidability of the model checking problem for probabilistic
temporal logics [4]. The expressive power of our logic is incomparable to the expressive
power of probabilistic temporal logics. The property ‘there is a moment at which Q holds
with probability one’ is easily formalized in our logic of probability, yet we will show
that it cannot be expressed in probabilistic temporal logics. On the other hand, our
logic cannot express ‘branching properties’ which are easily formalized in probabilistic
temporal logics.

The article is organized as follows. In Section 2 the syntax and semantics of our logic of
probability is presented. In Section 3 we show that monadic predicate logic of probability is
undecidable and does not have finite model property. Section 4 contains the statement of our
main results about a fragment of probabilistic monadic logic of order with decidable model
checking. Section 5 is devoted to the proof of these results. In Section 6 we extend decidable
model checking to formulas with nested probabilistic operators. Section 7 provides a detailed
comparison of our logic with probabilistic temporal logic pCTL*. In the last section we
describe some extensions of the main results and list open problems.

2 Logic of probability

We follow Halpern’s presentation of logic of probability [9]. There, arithmetic operations on
probabilities are allowed. Probabilities may be variables that are quantified. In our setting,
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we only compare probabilities with rational constants. However, we consider second-order
logics, while [9] confines itself to first-order ones.

We consider a language that consists of a collection � of predicate symbols of various
arities. We also have a collection of predicate variables of various arities. Given formulas ’
and  in the logic, we allow formulas of the form Prob>qð’Þ and Prob>qð’j Þ, where q is a
rational number that can be read as ‘the probability of ’ is greater than q’ and ‘the probability
of ’ under the condition  is greater than q’, respectively in the two formulas.

2.1 Syntax

More formally, we define the syntax as follows. The vocabulary consists of a set of
deterministic predicate symbols, a set of probabilistic predicate symbols, predicate variables
and individual variables. We also assume that for every rational number there is a constant
in the vocabulary.

Formulas:

� Atomic formulas are of the form Pðx1, . . . , xkÞ, where P is a (deterministic or
probabilistic) predicate symbol of arity k and x1, . . . ,xk are individual variables; or of
the form Xðx1, . . . , xkÞ, where X is a deterministic predicate variable of arity k and
x1, . . . ,xk are individual variables.
� If ’1 and ’2 are formulas then ð’1 _ ’2Þ and :’1 are formulas.
� If ’ is a formula then 9 x ’ and 9X’, where x is an individual variable and X is a

deterministic predicate variable, are formulas.
� If ’, are formulas, and q is a rational number, then Prob>qð’Þ and Prob>qð’ j  Þ are

formulas.

Conjunction ð’1 ^ ’2Þ, implication ð’1! ’2Þ, the first-order and second-order universal
quantifications 8x and 8X are defined as usual, using disjunction, negation and the existential
quantifiers. Expressions like Prob<q, Prob�q, Prob�q, Prob¼q can be also defined in terms
of Prob>p using negation and modified bounds on probability in a syntactical manner.
For example, we define Prob<pð’Þ as Prob>ð1�pÞð:’Þ.

2.2 Semantics

First, we recall some basic notions from probability theory.
A measurable space is a pair ð�,�Þ consisting of a non-empty set � and a �-algebra � of its

subsets that are called measurable sets and represent random events in probability context.
A �-algebra over � contains � and is closed under complementation and countable union.
Adding to a measurable space a probability measure � : �! ½0, 1� such that �ð�Þ ¼ 1 and
that is countably additive, we get a probability space ð�,�,�Þ. Probabilistic predicates are
interpreted as random predicates. Given a domain U and a probabilistic space ð�,�,�Þ a
random (or stochastic) predicate P of arity k is a function from �� Uk to Bool ¼ ftrue, falseg
such that for any fixed u1, . . . , uk 2 U the set f! 2 � : Pð!, u1, . . . , ukÞg is measurable.

A probabilistic structure for the language described here is a tuple ðhU, �i, h�,�,�i,�Þ,
where

� hU, �i is a first-order structure with universe U, and � assigns a relation over U of the
appropriate arity to each deterministic predicate symbol;
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� h�,�,�i is a probabilistic space;
� � assigns to each probabilistic predicate symbol P of arity k a random predicate �ðPÞ :

�� Uk ! Bool.

Define a valuation � to be a function that assigns to each individual variable an
element of U, and to each deterministic predicate variable a finite relation over U of the
appropriate arity (‘finite’ means that the set of tuples for which the deterministic predicate
is true is finite).

Given a probabilistic structureM¼ ðhU, �i, h�,�,�i,�Þ, an element !2� and a valuation
�, we formally define when a formula ’ holds at ! in M under a valuation �, written
M, �,! � ’ , by the following inductive clauses:

(S1) M, �,! � Rðx1, . . . , xkÞ for a deterministic predicate symbol R of arity k and
individual variables x1, . . . , xk iff �ðRÞð�ðx1Þ, . . . , �ðxkÞÞ is true.

(S2) M, �,! � Xðx1, . . . , xkÞ for a deterministic predicate variable X of arity k iff
�ðXÞð�ðx1Þ, . . . , �ðxkÞÞ is true.

(S3) M, �,! � Pðx1, . . . , xkÞ for a probabilistic predicate P of arity k iff
�ðPÞð!, �ðx1Þ, . . . , �ðxkÞÞ is true.

(S4) Quantifiers over individual variables and Boolean connectors are treated as usual.
(S5) Quantifiers over deterministic predicate variables are interpreted as quantifiers over

deterministic predicate variables that range only over finite relations over U.
(S6)M, �,! � Prob>qð’Þ iff �ðf!

0 2 � : M, �,!0 � ’gÞ > q, that is iff the set of all !0 for
whichM, �,!0 � ’ holds has a measure greater than q.

(S7) M,�,! � Prob>qð’ j Þ iff �f!0 2� :M,�,!0 � ð’^ Þg> q ��f!0 2� :M,�,!0 � g,
i.e., the conditional probability of ’ under  is > q.

Remark that (S6) is a particular case of (S7) when  ¼ true.
The semantics is well defined only if the sets that appear in (S6) and (S7) are

measurable. From now on, we assume that the probabilistic structure satisfy the
following assumption: The domain U of probabilistic structures is countable (Countability
Assumption).

PROPOSITION 1
Under Countability Assumption the sets that appear in (S6) and (S7) are measurable, and the
semantics is well defined.

PROOF. The proof proceeds by induction on the structure of formulas. The only not quite
straightforward step is quantification.

To show that f!0 2 � : M, �,!0 � 9 x ’g is measurable, we use the inductive hypothesis
for ’ and the fact that any �-algebra is closed under the countable unions.

To show that f!0 2 � : M, �,!0 � 9X ’g is measurable, we use the inductive hypothesis for
’, i.e., the fact that the set of finite predicates over a countable domain is countable and the
fact that any �-algebra is closed under the countable unions. g

PROPOSITION 2
Suppose that two valuations �1 and �2 agree on the free variables of a formula ’. Then,
M, �1,! � ’ iffM, �2,! � ’.

PROPOSITION 3
If every occurrence of each probabilistic predicates in a formula ’ is in the scope of an
operator Prob then M, �,!1 � ’ iffM, �,!2 � ’ for every !1,!2 2 �. In particular, for any
formula  we have M, �,!1 � Prob>qð Þ iff M, �,!2 � Prob>qð Þ.
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Notations: We use standard notations. If the free variables of formula ’ are in the set
fx1, . . . , xkg, we write M, a1, . . . , an,! � ’ðx1, . . . , xkÞ or M,! � ’½a1, . . . , ak� instead of
M, �,! � ’, where �ðxiÞ ¼ ai for i ¼ 1, . . . , k.

In addition, if all occurrences of probabilistic predicates in formula ’ are in the scope of
an operator Prob, we abbreviate this toM� ’½a1, . . . , ak�.

These abbreviations are justified by Proposition 2 and Proposition 3.

3 Undecidability of monadic logic of probability

The propositional fragment of our logic is decidable [5]. Moreover, if a propositional
probabilistic formula is satisfiable, then it is satisfiable over a finite probabilistic space.

In this section we show that:

(1) The monadic fragment of first-order probabilistic logic is undecidable and
(2) There are satisfiable monadic first-order probabilistic formulas that are not satisfiable

over finite probabilistic spaces.

For first-order logic it is well-known that the satisfiability problem is decidable if the
language has only unary predicates (monadic logic) and the satisfiability problem is
undecidable even for the language with one binary predicate [13]. Many undecidability results
for probabilistic logics can be found in [1], where this question was investigated in detail.
It was shown in [1] that the satisfiability problem of their probabilistic logic even with one
unary predicate is �2

1 complete. However, the logics considered there allow addition and
multiplication of probabilities and quantifiers over reals and the methods of [1] are not
applicable for our (much weaker) probabilistic logic.

We prove (Theorem 1) that the satisfiability/validity problem for first-order monadic logic
of probability (that is a logic of probability where all predicates are monadic) is undecidable.
Our proof reduces the satisfiability problem for first-order predicate logic with one binary
predicate to the satisfiability problem for the monadic logic of probability.

First, we define a translation from the first-order formulas over a binary predicate to
formulas of probabilistic logic with two unary predicates. Let B be a binary predicate symbol
and � be a formula in the signature fBg. Replace in � every occurrence of R(x, y) by
Prob>0ðPðxÞ ^QðyÞÞ, where P and Q are unary probabilistic predicate symbols. The resulting
formula  ðP,QÞ is called the translation of �.

PROPOSITION 4
The formula �(R) is satisfiable iff its translation  ðP,QÞ is satisfiable.

PROOF. It is clear that, if the translation of � is satisfiable in a probabilistic structureM, then
� is satisfiable in the structure hjMj,R	i, where jMj is the universe ofM and R	ða, bÞ holds
iffM, a, b � Prob>0ðPðxÞ ^QðyÞÞ.

Let M be a structure for a binary predicate name R, where the interpretation of R is
a relation R* over a countable universe U ¼ fa1, a2, . . . , an, . . .g. Let us define a probabilistic
structure M as follows. Take as a probabilistic space � ¼ U with a discrete distribution of
probabilities �ðfangÞ ¼ 1=2n for every n if � is infinite, and � is uniform if � is finite.

For each an 2 �, set �ðPÞðan, tÞ ¼ true iff t¼ an and set �ðQÞðan, tÞ ¼ true iff R	ðan, tÞ.
Observe that for every a, b 2 U, R	ða, bÞ iff M, a, b � Prob>0ðPðxÞ ^QðyÞÞ. Hence, for

every sentence � in the signature fRg and its translation  , we have M� � iffM�  .
In particular, if � is satisfiable, then its translation is satisfiable. g
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From Proposition 4 we can deduce:

THEOREM 1
The satisfiability problem for monadic logic of probability is undecidable.

We do not know the exact complexity for the satisfiability problem of monadic logic of
probability, yet we believe that it is much lower than �2

1.
It is well-known that the monadic logic has finite model property, i.e. every satisfiable

formula has a finite model. It was shown in [5] that if a propositional probabilistic formula
is satisfiable, then it is satisfiable over a finite probabilistic space. These contrast with the
following property of the monadic logic of probability:

PROPOSITION 5
There exists a satisfiable formula of monadic logic of probability with equality such that all its
models have an infinite probabilistic space and an infinite universe.

PROOF. There is a closed predicate formula �(R) over a binary predicate R which is satisfiable
only in structures with infinite domain. For example, take for �(R) the conjunction of the
three properties, R is transitive, irreflexive and 8x 9y Rðx, yÞ. Consider the formula  ðP,QÞ
obtained as in the preceding text, replacing in �(R) every occurrence of R(x, y) by
Prob>0ðPðxÞ ^QðyÞÞ. Consider the probabilistic monadic formula

�ðP,QÞ ¼  ðP,QÞ ^ Prob¼1ð9!x PðxÞÞ ^ 8x Prob>0ðPðxÞÞ

We claim that:

(1) �ðP,QÞ is satisfiable.
(2) Every model of �ðP,QÞ has an infinite probabilistic space.
(3) Every model of �ðP,QÞ has an infinite universe.

In order to prove (1), consider the following modelM. Take a countable infinite universe
U ¼ fa1, a2, . . . , an, . . .g. Take as a probabilistic space � ¼ U with a discrete distribution of
probabilities �ðfangÞ ¼ 1=2n for every n.

For each an 2 � set �ðPÞðan, tÞ ¼ true iff t ¼ fang and �ðQÞðan, tÞ ¼ true iff
t 2 fanþ1, anþ2, . . .g: Then, it is clear from the construction thatM satisfies �ðP,QÞ.

Here is the proof of (2). Suppose there is a structureM that is a model of �ðP,QÞ with a
finite probabilistic space � ¼ f!1, . . . ,!kg. We can suppose that �ð!iÞ > 0 for i ¼ 1, . . . , k.
Thus, for i ¼ 1, . . . , k there exists a unique ai 2 U such that �ðPÞð!i, aiÞ because M satisfies
Prob¼1ð9!x PðxÞÞ. Choose an element a in universe U different from all the ai. Since M
satisfies 8x Prob>0ðPðxÞÞ, there exists an !2� such that �ðPÞð!, aÞ ¼ true. A contradiction.

The proof of (3) is easy. Indeed the formula  ðP;QÞ is satisfiable only in structures with
infinite domain, as follows from its definition, the construction of � and Proposition 4. g

4 Model checking for fragments of logic of probabilities

In this section we consider a logic of probability with one binary deterministic
predicate, the order <, all other predicates are probabilistic monadic and all its second-
order variables are monadic. This logic is denoted PMLO (probabilistic monadic logic of
order). Formally the syntax of probabilistic monadic logic of order has in its vocabulary
individual (first-order) variables t0, t1, . . . , tk, monadic predicate variables (interpreted
as finite sets), and unary predicate names (interpreted as probabilistic predicates) and
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one binary relation < (the order). We use lowercase letters t, x, y to range over individual

variables and uppercase letters X,Y,Z to range over monadic variables and monadic

predicate names.
Atomic formulas are of the form XðtÞ, t1 < t2 and t1 ¼ t2, where t, t1, t2 are first-order

variables, and X is either monadic variable or a monadic predicate name.
Well-formed formulas of the monadic logic PMLO are obtained from atomic formulas

using Boolean connectives :, _ , ^ , !, the (first-order) quantifiers 9t and 8t, second-order

quantifiers 9X and 8X and probabilistic constructs Prob>qð’Þ and Prob>qð’ j  Þ, where q

is a rational number.
The formulas without probabilistic constructs are formulas of the weak monadic logic

of order (WMLO) denoted also as weak second-order logic of one successor (WS1S). WMLO

is a fundamental formalism and plays an important role in automata theory; moreover,

temporal logics can be translated into WMLO [20].
The probabilistic structures used in this section are defined by finite probabilistic processes.

We study the following model checking problem: decide whether a given PMLO formula ’
holds on the structure defined by a given finite probabilistic process. We introduce a rather

large subclass C of formulas for which the model checking problem is ‘almost always

decidable’.
Subsection 4.1 explains how finite probabilistic processes define probabilistic structures.

Subsection 4.2 introduces a class C of formulas and states the main results of this study.

4.1 Probabilistic structures defined by finite probabilistic processes

DEFINITION 1
A finite probabilistic process is a finite labeled Markov chain [15]M¼ ðS,M,V,LÞ, where S

is a finite set of states, M is a transition probability matrix: S2! ½0, 1� such that

Mði, jÞ is a rational number for all ði, jÞ 2 S2,
P

j2S Mði, jÞ ¼ 1 for every i 2 S, and V : S! 2L

is a valuation function that assigns to each state a set of symbols from a finite set L.
The pair ðS,MÞ is called a finite Markov chain.

The subsequent lemma is a well-known fact in the theory of matrices (see, e. g. [17], 13.7.5,

13.7.1).

LEMMA 1
Let (S,M) be a finite Markov chain. There exists a positive natural number d period of the

Markov chain such that the following limits exist:

lim
m!1

Mrþdm ¼Mr ðr ¼ 0, 1, . . . , d� 1Þ:

Moreover, if the elements ofM are rational, then these limits are computable fromM and

the convergence to the limits is geometric, i.e. jMrþdmði, jÞ � Prði, jÞj < a � bm when m � m0 for

some positive rationals a, b<1 and natural m0; the numbers a, b and m0 are also computable

fromM.

Given a finite probabilistic processM¼ ðS,M,V,LÞ and a state s, we define a probabilistic

structureMs as follows:

Signature: A deterministic binary predicate <, and monadic probabilistic predicates P for

every label P 2 L.

Logic of Probability with Decidable Model Checking 467



Interpretation:

� The universe of the structureMs is the set N of natural numbers;
� < is interpreted as the standard less relation over N;
� Probabilistic space ð�,�,�Þ [16] : � ¼ sS! is the set of all infinite sequences of states

starting from s, � is the �-algebra generated by the basic cylindric sets Du ¼ uS!, for

every u 2 sS	, and the probability measure � is defined by �ðDuÞ ¼
Q

i¼0,...:, n�1 Mðsi, siþ1Þ,

where u ¼ s0s1:::sn;
� Interpretation of monadic probabilistic predicates: for each ! ¼ s0s1:::sn_:: 2 �, for each

n 2 N we have �ðPÞð!, nÞ iff P 2 VðsnÞ (i.e. P belongs to the label of state sn). At this point,

notice that, for every integer n, the set f! 2 � : �ðPÞð!, nÞg is �-measurable since it is a

finite union of basic cylinders.

EXAMPLE

Let us consider a call-establishment procedure in a simple telephone network where

the capacity of simultaneous outgoing calls is less than the number of users. An abstraction of

this procedure represents the behavior of a user where time is assumed to be discrete

(Figure 1).
To simplify our presentation, it is assumed that a user who is not connected is continuously

attempting to get a connection (state Wait) and at each moment he succeeds to establish, the

connection with the probability 3/10. Moreover, when the call is established, the duration

of the call (state Call) follows a geometric distribution: at each moment, the probability to

finish the call is 5/7.
The set of labels here is equal to the set of states, and the label of a state is the state itself.

One can write a liveness property such that:

’ ¼df 8t Prob¼1ð9 t
0 > t Callðt0ÞÞ ð1Þ

which expresses that, at every time, the probability that the user will be served later is equal

to one.
One can also express some probabilistic property concerning the time the user has to wait

before being served:

 ¼df 8t Prob�0:9ð9t
0 ðt < t0 ^ t0 < tþ 3 ^ Callðt0ÞÞÞ ð2Þ

One can prove thatMWait � ’ andMWait 6�  .

0.7

5/7

W C

2/7

0.3alloc

clear

FIGURE 1. A finite probabilistic process (W stands for Wait and C stands for Call )
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4.2 Statement of main results

In this subsection we define some classes of formulas. Our main results (Theorems 3–5),

roughly speaking, state that for these classes it is decidable whether a given formula in a class

holds in the structure defined by a given finite probabilistic processM. The proofs of these

results will be provided in the following section.
All our decidability results are only for formulas that do not contain conditional

probability operators. From now on we will deal only with such formulas.

DEFINITION 2
A PMLO-formula ’ belongs to the class C iff operators Prob>q are not nested, and for every

subformula of ’ of the form Prob>q , the formula  does not contain free predicate variables.

If a PMLO formula ’ contains occurrences Prob>q only with q¼ 0, then ’ is called a

qualitative formula. If, for every subformula of the form Prob>q of a PMLO formula ’,
the formula  contains at most one free individual variable, then ’ is called a simple formula.

For example, the formula

9t9t0ðt < t0 ^ Prob>1=3ðPðtÞ ^ Pðt0Þ ^ 9Q8t00 > t Qðt00ÞÞ ^ Prob>1=2ð:Pðt
0ÞÞÞ, ð3Þ

where P is a probabilistic predicate and Q a deterministic one, belongs to C.
The properties (1) and (2) are expressed by simple formulas; these formulas are also in the

class C.
As an example that uses a weak second-order quantification, we can mention the following

property: the probability that a given probabilistic predicate has an even number of elements

is greater than 0.9. It is easy to write a formula Even(X) of WMLO, which says that the

number of elements in X is even. Hence, in our logic the aforementioned property can be

formalized as Prob>0:9ðEvenðPÞÞ.
A PMLO formula ’ is called a sentence if it has no free variable and every occurrence of

each probabilistic predicate is in the scope of an operator Prob.
If ’ is a sentence,M� ’ stands forM,! � ’, that is well-defined and is independent from

! and an interpretation of variables due to Proposition 3.
The main results of this study, roughly speaking, say that it is decidable whether a given

formula ’ 2 C holds in the structure defined by a given finite probabilistic processM.
In order to express our decidability result about model checking, we need to introduce the

notion of parameterized formula of logic of probability.
The set of parameterized formulas is defined similarly to the set of formulas; the

only difference is that operators Prob>q with q 2 Q are replaced by Prob>p, where p is a

parameter name.
For example,

9t9t0ðt < t0 ^ Prob>p1ðPðtÞ ^ Pðt0Þ ^ 9Q8t00 > t Qðt00ÞÞ ^ Prob>p2 ð:Pðt
0ÞÞÞ

is a parameterized formula.
Let ’ be a parameterized formula with parameters p1, . . . , pm and �1, . . . ,�m be a sequence of

rational values. We denote by ’�1,..., �m the formula obtained by replacing in ’ each parameter

pi by the value �i. The set of parameterized sentences is defined exactly like the set

of sentences. By abuse of terminology, we say that a parameterized formula ’ belongs to C

if all (or, equivalently, any of) its instances ’�1,..., �m are in C.
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In the following text, for simplicity, we will write ProbMs
ð’ðn1, . . . , nkÞÞ instead of

�f! :Ms, n1, . . . , nk,! � ’ðt1, . . . , tkÞg for a finite probabilistic processM, state s ofM and
ðn1, . . . , nkÞ 2 N

k.
Now, we are ready to state the main technical theorem.

THEOREM 2
LetM be a finite probabilistic process, s0 be a state ofM and ’ðt1, . . . , tkÞ be a parameterized
formula without free predicate variables and with m parameters.

(1) If formula ’ is in the class C and is simple, one can compute for each parameter pi in
’ (i ¼ 1, . . . ,m) a finite set Hi of rational values not containing zero such that for each
tuple of rationals � ¼ ð�1, . . . ,�mÞ where �i 2 Q nHi, i ¼ 1, . . . ,m, one can compute a
WMLO formula  ðt1, . . . , tkÞ such that for n1, . . . , nk 2 NðM, s0Þ satisfies ’�ðn1, . . . , nkÞ iff
ðN, <Þ �  ðn1, . . . , nkÞ:

(2) If formula ’ is in the class C, then, for each rational number �>0, one can compute for
each parameter pi in ’ (i ¼ 1, . . . ,m) a set Hi that is the union of a finite set of intervals
not containing zero, with total length less than �, such that for each tuple of
rationals � ¼ ð�1, . . . ,�mÞ where �i 2 Q nHi, i ¼ 1, . . . ,m, one can compute a WMLO
formula  ðt1, . . . , tkÞ such that for n1, . . . , nk 2 NðM, s0Þ satisfies ’�ðn1, . . . , nkÞ iff
ðN, <Þ �  ðn1, . . . , nkÞ.

Remarks:

(1) The complexity of our decision procedure is mainly determined by the complexity of
decision procedure for WMLO formulas (that is non-elementary in the worst case) [18].

(2) The fact that we cannot treat a set of exceptional values seems to be essential from the
mathematical point of view. Once annot exclude that the model checking problem is
undecidable for these exceptional values. However, for practical properties the values of
probabilities can always be slightly changed without loss of its essential significance
and this permits to eliminate these exceptional values of probabilities.

From Theorem 2 and from the fact that the validity problem for WMLO is decidable, one
deduces immediately the following decidability results:

THEOREM 3 (Qualitative model checking)
Given a qualitative sentence ’ in the class C, a finite probabilistic processM, a state s ofM, it
is decidable whether ’ holds in the probabilistic structureMs.

THEOREM 4
Given a finite probabilistic processM, a state s ofM and a parameterized simple sentence
’ in the class C with m parameters, one can compute for each parameter pi in ’ a finite set
Hi (i ¼ 1, . . . ,m) such that for each tuple � ¼ ð�1, . . . ,�mÞ where �i 2 Q nHi, i ¼ 1, . . . ,m,
it is decidable whether ’ holds in the probabilistic structureMs.

THEOREM 5
Given a finite probabilistic processM, a state s ofM, a parameterized sentence ’ in the class
C with m parameters and a rational number �>0, one can compute for each parameter pi in ’
(i ¼ 1, . . . ,m) a finite setHi of intervals, not containing zero, with total length less than �, such
that for each tuple � ¼ ð�1, . . . ,�mÞ, where �i 2 Q nHi, i ¼ 1, . . . ,m, it is decidable whether
’ holds in the probabilistic structureMs.
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5 Proof of Theorem 2

Before providing the proof of Theorem 2, let us illustrate the model checking procedure on a

simple example.
Assume that M is a finite state labelled Markov chain. Moreover, assume that (i) its

matrix M is regular, i.e., limn!1Mn exists and (ii) there is exactly one state s1 labelled by

a predicate P1.
Let ’ðtÞ be the formula Prob>1=2P1ðtÞ. In order to check whether ’ is satisfiable in the

structureMs0 , i.e. whether there exists an integer n such that ’(n) holds inMs0 , we can do the

following. First, observe that the probability that P1(t) holds at a moment n in the structure

Ms0 is ðM
nÞ0, 1. Second, compute bM ¼ limn!1Mn; and let 	 ¼ bM0, 1. (This step is computable

by Lemma 1). Now we will proceed by the following cases:

Case 	 > 1=2:
In this case Prob>1=2P1ðnÞ holds in Ms0 for all n that are big. Therefore, Prob>1=2P1ðtÞ

is satisfiable inMs0 .

Case 	 < 1=2:
In this case by Lemma 1 we can compute n0 such that for all n > n0 the probability that P1(n)

holds will be 
	 < 1=2. Therefore, Prob>1=2P1ðtÞ is satisfiable iff it is satisfiable for n � n0.

The last condition can be checked by verifying if there is n < n0 such that ðMnÞ0, 1 > 1=2.

Case 	 ¼ 1=2:
In this case we have to verify that there is n such that ðMnÞ0, 1 > 1=2. We do not know how

to treat this exceptional case.

From the preceding description, it is clear how to model check the parameterized formula

Prob>rP1ðtÞ on Ms0 for all values of the parameter r except one value 	. Moreover, the

preceding arguments show that for r 6¼ 	 the set of n that satisfies Prob>rP1ðtÞ is either finite

(Case 	 < r) or cofinite (case 	 > r).
The procedure for model checking of arbitrary formulas is similar to the

procedure described in the preceding text. The aforementioned assumption that M

is regular is not essential and can be easily removed. The more difficult part of the

proof is a reduction of arbitrary formulas to simpler formulas. This is done in the rest of

this section.

5.1 Future and past formulas and decomposition lemma

We introduce a notation: N�a ¼ fn 2 N j n � ag and recall what are future and past WMLO

formulas.

DEFINITION 3 (Future Formulas)
A WMLO formula ’ðx0,X1,X2, . . . ,XmÞ with only one free first-order variable x0 is a future

formula if for every a 2 N and every m subsets S1,S2, . . . ,Sm of N, the following holds:

ðN,a,S1,S2, . . . ,SmÞ � ’ðx0,X1,X2, . . . :,XmÞ iff ðN�a,a,S
0
1,S
0
2, . . . ,S

0
mÞ � ’ðx0,X1,X2, . . . :,XmÞ,

where S0i ¼ Si \N�a for i¼ 1,2, . . . :,m.

Past WMLO formulas are defined in a symmetric way. Note that the definition of the

future formulas is a semantical one.
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It is convenient to extend the syntax of the monadic logic of order with the bounded

existential quantifiers 9t�t1 , 9t
�t2
�t1 , 9t�t1 . Semantically, 9t�t2�t1’ is a shorthand for

9t t1 � t ^ t � t2 ^ ’. Similarly, 9t�t1’ (respectively, 9t�t1’) is a shorthand for 9t t � t1 ^ ’
(respectively, 9t t � t1 ^ ’).

There is a syntactic characterization of future and past formulas.

PROPOSITION 6
A WMLO-formula ’ðx0,X1,X2, . . . :,XmÞ with only one free first-order variable x0 is a

future (respectively, past) formula iff it is (semantically) equivalent to a formula where all

first-order quantifiers are relativized to �x0 (respectively, �x0), i.e. are of the form 9t�x0
(respectively, 9t�x0 ).

Similar to Lemma 9.3.2 in [8], we have the following decomposition lemma for WMLO

logic:

LEMMA 2 (Decomposition Lemma)
The formula t1 < t2 < � � � < tk ^  ðt1, t2, . . . , tkÞ, where  ðt1, t2, . . . , tkÞ, is a WMLO formula

with only free variables t1, . . . , tk is equivalent to a finite disjunction of formulas of the form:

_i2I’i, ðt1Þ ^  i, 1ðt1, t2Þ ^ � � � ^  i, k�1ðtk�1, tkÞ ^ ’i,!ðtkÞ,

where

(1) ’i, ðt1Þ is a past formula
(2) ’i,!ðtkÞ is a future formula
(3) In  i, jðtj, tjþ1Þ only tj and tjþ1 are free and all first-order quantifiers are of the form 9t

�tjþ1
�tj ,

for j ¼ 1, . . . , k� 1.

Moreover, formulas ’i, , ’i,!,  i, j are computable from  and for i1 6¼ i2, the disjuncts

’i1, ðt1Þ ^  i1, 1ðt1, t2Þ ^ � � � ^  i1, k�1ðtk�1, tkÞ ^ ’i1,!ðtkÞ and ’i2, ðt1Þ ^  i2, 1ðt1, t2Þ ^ � � � ^

 i2, k�1ðtk�1, tkÞ ^ ’i2,!ðtkÞ are mutually exclusive.

5.2 Ultimately periodic sets

Let d, k and h be fixed integers. We say that a set S � N
k is ultimately periodic with period d,

dimension k and displacement h if for all n1, . . . , nk 2 N:

if ni � h then ðn1, . . . , ni, . . . , nkÞ 2 S iff ðn1, . . . , ni þ d, . . . , nkÞ 2 Sð Þ:

Observe that in dimension one, a set is ultimately periodic with period one if and only if it is

finite or cofinite. This characterization is not true in higher dimensions.
A finite set J � N

k is a representation of S if ðn1, . . . , ni . . . , nkÞ 2 S iff there is

ðm1, . . . ,mi . . . ,mkÞ 2 J such that: for all i 2 f1, . . . , kg ½ðmi ¼ ni < hÞ or (mi � h, ni � h and

mi ¼ ni mod d Þ�:

LEMMA 3 (Properties of Ultimately Periodic Sets)

(1) If a set is ultimately periodic, then its complement is ultimately periodic.
(2) If S1,S2 � N

k are ultimately periodic, then S1 [ S2,S1 \ S2 are ultimately periodic.
(3) Every ultimately periodic set has a finite representation.
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(4) If S � N
k is ultimately periodic, then there exists a WMLO formula 
ðt1, . . . , tkÞ such that

ðN, <Þ � 
ðn1, n1 þ n2, . . . , n1 þ � � � þ nkÞ iff ðn1, n2, . . . , nkÞ 2 S.

PROOF. The first two properties are easy to prove. We prove the last ones.
Proof of (3). If S � N

k is an ultimately periodic set with period d, dimension k and

displacement h, then the set fðn1, . . . , nkÞ : ðn1, . . . , nkÞ 2 S ^
Vk

i¼1 ni < hþ dg is a finite

representation of S.
Proof of (4).
For i < d 2 N let �i, dðt1, t2Þ be a formula that says that t1< t2 and t2 � t1 ¼ i mod d. It can

be written as the conjunction of

(1) t1< t2
(2) There are predicate variables Z0, . . . ,Zd�1 such that

(a) The sets Z0, . . .Zd�1 partition interval ½t1, t2�
(b) 8tðt1 � t < t2Þ !

Vd�1
j¼0 ðt 2 Zj $ tþ 1 2 Zjþ1 mod dÞ

(c) t12Z^5 and t2 2 Zi

From �i, d and the finite representation J of S, which is given above, we obtain:

ðn1, n2, n3, . . . , nkÞ 2 S is equivalent to:

_
ðm1,...,mkÞ2J

k̂

i¼1

ðni ¼ mi < h _ ð�mi, dð0, niÞ ^ ni � h ^mi � hÞ:

Notice that if �mi, dð0, niÞ holds then �mi, dðn
0, n0 þ niÞ for every integer n0. Notice also that

for every n 2 N there is a WMLO formula diffnðt1, t2Þ and a WMLO formula lessnðt1, t2Þ

such that for all n1, n2 2 N:

diffnðn1, n2Þ if and only if n2 � n1 ¼ n and

lessnðn1, n2Þ if and only if n2 � n1 < n:

Finally, the desirable formula, 
ðt1, . . . , tkÞ can be defined as:

_
ðm1,...,mkÞ2J

�
Cm1
^ Aðm2,...,mkÞ ^ Bðm2,...,mkÞ

�
, where

Cm is
t1 ¼ m if m < h

t1 � m ^�m, dð0, t1Þ otherwise

�
and

Aðm2,...,mkÞ is
^

fi:1<i�k^mi<hg

diffmi
ðti�1, tiÞ

and

Bðm2,...,mkÞ is
^

fi:1<i�k^mi�hg

�mi, dðti�1, tiÞ ^ :lesshðti�1, tiÞ:

g
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5.3 A Lemma from analysis

The next lemma is a simple lemma from analysis:

LEMMA 4
For 1 � i � k, 1 � j � m, let Mi,j be probabilistic rational matrices of size N�N, and Ii,j be

rational (row) vectors of the size N with all elements equal to zero, except one equal to 1;

let Fi,j be rational (column) vectors of the size N with all elements in [0, 1], and cj 2 Q
þ.

Suppose that matrices Mn
i, j have a limit when n!1. Let ai, j, n ¼ Ii, j �M

n
i, j � Fi, j. Let

Lp ¼ ðn1, . . . , nkÞ 2 N
k :
Xm
j¼1

cj �
Yk
i¼1

ai, j, ni

 !
> p

( )

(1) If p¼ 0, then Lp is ultimately periodic with period one.
(2) If p 6¼ 0, then

(a) If k¼ 1, then there is a computable finite set H such that, for every rational p 62 H,

the set Lp is finite or cofinite, i.e. ultimately periodic with period one.
(b) If k>1, then for every rational �>0 there is a computable set H that is the union of

a finite set of intervals with total length at most � such that for every rational p 62 H

the set Lp is ultimately periodic with period one.

In all the aforementioned cases a finite representation of Lp is computable fromMi, j, Ii, j,Fi, j

and p. In 2(b), the set H is the union of a finite set f½ai, bi� : ai, bi 2 Q for i ¼ 1, . . . , tg of

intervals; by computability of H we mean that the sequences hai : i ¼ 1, . . . , ti and

hbi : i ¼ 1, . . . , ti are computable from Mi, j, Ii, j,Fi, j and p.

PROOF. Recall the following well-known fact. Let G be a graph and s, s0 be its vertices. Then,

the set Gs, s0 ¼df fn 2 N : there is a path from s to s0 of length ng is ultimately periodic.

Moreover, the set Gs, s0 has a computable finite representation, because fan : n 2 Gs:s0 g is

a regular language over a unary alphabet.
We study first the case when p¼ 0. In this case, ðn1, . . . , nkÞ 2 L0 iff there exists j 2 f1, . . .mg

such that for all i 2 f1, . . . , kg ai, j, ni > 0. Let Gi,j be the graph with vertices 1, . . . ,N, and ðs, s0Þ

is an edge iff Mi, jðs, s
0Þ > 0. Let s be the vertex such that Ii, jðsÞ ¼ 1 and F ¼ fs0 j Fi, jðs

0Þ > 0g.

We have ai, j, ni > 0 iff there exists in the graph Gi,j a path from s to some vertex in F with

length ni. Thus, the set L0 is ultimately periodic, and a finite representation of L0 is

computable by the well-known fact mentioned earlier.
We study now the case when p>0.
Define:
�ðn1, . . . , nkÞ ¼

Pm
j¼1ðcj �

Qk
i¼1 ai, j, niÞ.

Let l ¼ limn1!1,..., nk!1�ðn1, . . . , nkÞ ¼
Pm

j¼1ðcj �
Qk

i¼1 limni!1ai, j, ni Þ
¼
Pm

j¼1ðcj �
Qk

i¼1 Ii, j � ðlimni!1M
ni
i, jÞ � Fi, jÞ.

From Lemma 1 the limit l is rational and computable.
The proof of 2 is by induction on k.
Case k¼ 1 and p>0:

� If l¼ 0 then limn1!1�ðn1Þ ¼ 0 and so Lp ¼ fn1 : �ðn1Þ > pg is a finite set.
� If l 6¼ 0, let H ¼ fl g.
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If p> l, then Lp is finite.
If p< l, then Lp is cofinite, and hence Lp is ultimately periodic with period one.
In both cases, a finite representation of Lp is computable due to the exponential

convergence of the matrices to the limit, as stated in Lemma 1.
Case k>1 and p>0:
For every rational � there exists an integer N such that, if n1, . . . , nk � N, then

j�ðn1, . . . , nkÞ � lj < �=4: ð4Þ

Let:

N
k
�N ¼ fðn1, . . . , nkÞ 2 N

k
j ni � N for i ¼ 1, . . . , kg:

For i 2 f1, . . . , kg and ni 2 f0, . . . ,N� 1g let:

N
k
i, ni
¼ N

i�1
fnigN

k�i:

We have N
k
¼ N

k
�N [ ð[

i¼k
i¼1 [

ni¼N�1
ni¼0

N
k
i, ni
Þ.

We will prove that the intersection of Lp with each of the sets Nk
�N, and N

k
i, ni

is ultimately

periodic and a finite representation of the intersection is computable.
Firstly, from (4) we deduce that, for each p such that jp� lj > �=4, the set N

k
�N \ Lp ¼

fðn1, . . . , nkÞ 2 N
k
�N : �ðn1, . . . , nkÞ > pg is ultimately periodic with period one, and a finite

representation of this set is computable (this set is empty, if p > lþ �=4; it is equal to N
k
�N,

if p < l� �=4).
Secondly, fix i0 2 f1, . . . , kg and ni0 2 f0, . . . ,N� 1g. A tuple ðn1, . . . , nkÞ 2 N

k
i0, ni0

satisfies

�ðn1, . . . , nkÞ > p

iff

Xm
j¼1

cj � ai0, j, ni0 �
Y
i 6¼i0

ai, j, ni

 !
> p: ð5Þ

Let Cj ¼ cj � ai0, j, ni0 . Note that (5) can be rewritten as:

Xm
j¼1

Cj �
Y
i6¼i0

ai, j, ni

 !
> p: ð6Þ

Let �0 ¼ �=2kN. By the induction hypothesis, there exists a computable set Hi0, ni0
, which is the

union of a finite number of intervals with the sum of lengths at most �0 such that, if a rational

p 6¼ 0 is not in Hi0, ni0
then the set of tuples ðn1, . . . , ni0�1,ni0þ1, . . . , nkÞ, which satisfy (6), is

ultimately periodic with period one and with a computable finite representation. Thus, for a

fixed ði0, ni0 Þ, if rational p is not in a finite number of intervals the sum of lengths of which is

at most �=2kN, the set of tuples in N
k
i, ni

that satisfies the inequality (5) is ultimately periodic

with period one and with a computable finite representation. Finally, define a set of intervalH

as follows:
An interval I is in H if I is the interval ½l� �=4, lþ �=4� or I is one of the intervals in Hi, ni

for i ¼ 1, . . . , k and ni ¼ 1, . . . ,N.
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H is a finite set of interval, because the sets Hi, ni (i ¼ 1, . . . , k and ni ¼ 1, . . . ,N) are finite.

For the same reasons, H is a computable set. Finally, the total length of the intervals in H

is less than 2� �=4þ kN � �=2kN ¼ �. This completes the proof. g

5.4 Technical lemmas

In this subsection we will collect theorems and lemmas that will be used in the next subsection,

where the proof of theorem 2 is completed.
The next theorem easily follows from Theorem 4.1.7 in [4].

THEOREM 6
Let ’(t) be a future WMLO formula,M be a finite probabilistic process and s be a state ofM.

The probability fs that ’ð0Þ holds inMs is computable fromM, s and ’.

Lemma 5 (Past Formulas)
Let ’(t) be a past WMLO formula,M be a finite probabilistic process and s0 be a state ofM.

There is a probabilistic matrix Q and vectors u and v such that for every n 2 N the probability

that ’(n) holds inMs0 is equal to uQnv. Moreover, Q, u and v are computable fromM, s0
and ’.

PROOF. Let ’(t) be a past WMLO formula. A structure S for such a formula ’ is defined as

an infinite word on the alphabet � ¼ 2L, where L is the set of monadic symbols of ’(t). The
property defined by ’(t) depends only on the prefix of size tþ 1 of a model. Thus, from [3],

there exists a computable finite complete deterministic automaton A on the alphabet �

accepting a language of finite words LðAÞ such that S, n � ’ðtÞ iff the prefix of S of size nþ 1

belongs to LðAÞ.
Therefore, given the automaton A and the finite probabilistic process M, we build a

new finite probabilistic process M0, the ‘product’ of M and A following the same lines as

in Section 4 of [4].
States of M0 are pairs (q, s), where q is a state of A and s is a state of M. There is a

transition from (q, s) to ðq0, s0Þ iff ðq, �, q0Þ is a transition in A, where � is the valuation of s

inM, and the probability of this transition is the same as the probability of ðs, s0Þ inM.
At last, the set of labels L0 ofM0 is reduced to one symbol F, and the valuation of (q, s) is

fF g if q is a final state in A, and 6 0 otherwise.
We have:

ProbMs0
ð’ðnÞÞ ¼ ProbM0

ðq0, s0 Þ
ðFðnÞÞ

where q0 is the initial state of A and F is the monadic probabilistic symbol defined by L0.
Let Q be the transition probability matrix of the Markov chainM0, let u be the row vector

with zero components, except uðq0, s0Þ, which is equal to 1, and let v be the column vector with

zero components, except for vðq, sÞ which are equal to 1 if q 2 F. We have:

ProbM0
ðq0, s0 Þ
ðFðnÞÞ ¼ uQnv:

So fs0 ¼ uQnv is computable. g
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LEMMA 6
Let ’ðt1, t2Þ be a formula with all first-order quantifiers of the form 9t�t2�t1 , and  ðt1Þ be a past

formula. LetM be a finite probabilistic process and si, sj be two of its states. For n1, n2 2 N,

ProbMsi
ð ðn1Þ ^ Sjðn1Þ ^ ’ðn1, n1 þ n2ÞÞ ¼ ProbMsi

ð ðn1Þ ^ Sjðn1ÞÞ � ProbMsj
ð’ð0, n2ÞÞ;

where Sj(t) is a predicate which is true exactly in state sj.

PROOF. The set of elements from the probabilistic space � ¼ siS
!, which satisfy

 ðn1Þ ^ Sjðn1Þ ^ ’ðn1, n1 þ n2Þ, can be written as a concatenation product �1 ��2, where �1

is the set of finite paths of length n1 starting in si ending in sj and satisfying  ðn1Þ and �2

is the set of infinite paths starting in sj and satisfying ’ð0, n2Þ. This is due to the fact that

all quantifiers of ’ are of the form 9t�t2l�t1
. Thus,

ProbMsi
ð ðn1Þ ^ Sjðn1Þ ^ ’ðn1, n1 þ n2ÞÞ ¼ ProbMsi

ðSjðn1Þ ^ ð ðn1ÞÞ � ProbMsj
ð’ð0, n2ÞÞ:

g

LEMMA 7
Let k,m 2 N. For 1 � i � k, 1 � j � m, letMi, j be a finite probabilistic process, si,j be a state

ofMi, j, ’i, jðtiÞ be a past WMLO formula with only one free variable ti, and cj 2 Q
þ. Let

Lp ¼ ðn1, . . . , nkÞ 2 N
k :

X
1�j�m

cj � ProbM1, j, s1, jð’1, jðn1ÞÞ � � � � � ProbMk, j, sk, jð’k, jðnkÞÞ > p

( )

(1) If p¼ 0, then Lp is ultimately periodic.
(2) If p 6¼ 0, then

(a) If k¼ 1, then there is a computable finite set H such that, for every rational p 62 H,

the set Lp is finite or cofinite, i.e. ultimately periodic.
(b) If k>1, then for every rational �>0 there is a computable set H that is the union of

a finite set of intervals with the total length at most � such that for every rational p 62 H

the set Lp is ultimately periodic.

In all the afore mentioned cases a finite representation of Lp is computable.

PROOF. Using Lemma 5, one can compute, for each 1 � i � k, and 1 � j � m, a probabilistic

matrix Qi,j, and vectors ui, j, vi, j, such that the probability that ðMi, j, si, j , niÞ satisfies ’i, jðtiÞ
is equal to ui, j �Q

ni
i, j � vi, j.

Let d be the least common multiple of the periods of the Markov chains with the matrix Qi,j

(for 1 � i � k and 1 � j � m). By Lemma 1, limn!1ðQ
d
i, jÞ

n exists. Let Q0i, j be Q
d
i, j. If we write

ni ¼ ri þ dn0i, with 0 � ri < d, then

ui, j �Q
ni
i, j � vi, j ¼ ui, j � ðQ

d
i, jÞ

n0i � ðQri
i, j � vi, jÞ ¼ ui, j �Q

0n0 i
i, j � v

0
i, j ¼ ai, j, n0 i :

Using Lemma 1, limn!1Q
0n
i, j exists, so the hypotheses of Lemma 4 are satisfied. Therefore,

Lp is an ultimately periodic set with period d, and the present Lemma is proven. g
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LEMMA 8
Let M be a finite probabilistic process, s be a state of M, and ’ðt1, . . . , tkÞ be a WMLO

formula with only free variables t1, . . . , tk. Let

ðN
k
Þ’, p¼df fðn1, . . . , nkÞ 2 N

k
jMs, n1, n1 þ n2, . . . , nk�1 þ nk

� Prob>pðt1 < t2 < � � � < tk ^ ’ðt1, . . . , tkÞÞg

(1) If p¼ 0, then ðNk
Þ’, p is ultimately periodic.

(2) If p 6¼ 0, then

(a) If k¼ 1, then there is a computable finite set H such that, for every rational p 62 H,

the set ðNk
Þ’, p is finite or cofinite, i.e. ultimately periodic.

(b) If k>1, then for every rational �>0 there is a computable set H that is the union of

a finite set of intervals with the total length at most � such that for every rational

p 62 H the set ðNk
Þ’, p is ultimately periodic.

In all the aforementioned cases a finite representation of ðNk
Þ’, p is computable.

PROOF. Using Lemma 2 the formula t1 < t2 < � � � < tk ^ ’ðt1, t2, . . . , tkÞ is equivalent to a

finite disjunction of formulas of the form:_
i2I

’i, ðt1Þ ^ ’i, 1ðt1, t2Þ ^ � � � ^ ’i, k�1ðtk�1, tkÞ ^ ’i,!ðtkÞ,

where

(1) ’i, ðt1Þ is a past formula.
(2) ’i,!ðtkÞ is a future formula.
(3) In ’i, jðtj, tjþ1Þ only tj and tjþ1 are free and all quantifiers are relativized to between tj and

tjþ1 (i.e. are of the form 9t
�tjþ1
�tj for j ¼ 1, . . . , k� 1).

Moreover, formulas ’i, , ’i,!,  i, j are computable from  and for i1 6¼ i2, the disjuncts

’i1, ðt1Þ ^  i1, 1ðt1, t2Þ ^ � � � ^  i1, k�1ðtk�1, tkÞ ^ ’i1,!ðtkÞ and ’i2, ðt1Þ ^  i2, 1ðt1, t2Þ ^ � � � ^

 i2, k�1ðtk�1, tkÞ ^ ’i2,!ðtkÞ are mutually exclusive.
For each state j ofM we introduce a new probabilistic predicate symbol Sj, and add Sj to

the valuation of the state j. LetM0 be the new finite probabilistic process obtained in this way.
The following equalities hold for every tuple of integers n01, . . . , n

0
k, where Q is the set of

states ofM:

ProbMs
ðn01 < n02 < � � � < n0k ^ ’ðn

0
1, n
0
2, . . . , n

0
kÞÞ

¼ ProbMs

_
i

’i, ðn
0
1Þ ^  i,1ðn

0
1, n
0
2Þ ^ � � � ^  i, k�1ðn

0
k�1, tkÞ ^ ’i,!ðn

0
kÞ

 !
¼
X
i2I

ProbMs
ð’i, ðn

0
1Þ ^  i,1ðn

0
1, n
0
2Þ ^ � � � ^  i,k�1ðn

0
k�1, tkÞ ^ ’i,!ðn

0
kÞÞ

¼
X

i2I, j1,..., jk2Q

ProbMs
ð’i, ðn

0
1Þ ^ Sj1ðn

0
1Þ ^  i, 1 ðn

0
1, n
0
2Þ ^ Sj2 ðn

0
2Þ ^ � � � ^ Sjk�1ðn

0
k�1Þ

^  i, k�1ðn
0
k�1, n

0
kÞ ^ Sjkð

0nkÞ ^ ’i,!ðn
0
kÞÞ
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and using Lemma 6 iteratively k times:

¼
X

i2I, j1,...:jk2Q

ProbMs
ð’i, ðn

0
1Þ ^ Sj1ðn

0
1ÞÞ � ProbMj1

ð i,1ð0, n
0
2 �
0 n1Þ ^ Sj2ðn

0
2 �
0 n1ÞÞ . . .

. . .ProbMjk�1
ð i, k�1ð0, n

0
k � n0k�1Þ ^ Sjkðn

0
k � n0k�1ÞÞ � ProbMjk

ð’i,!ð0ÞÞ:

We can compute the rational constants ProbMjk
ð’i,!ð0ÞÞ using Theorem 6. Then, we apply

Lemma 7 with n1 ¼ n01 and ni ¼ n0i � n0i�1 for i ¼ 2, . . . , k to finish the proof.

5.5 Finishing off

Now we are ready to complete the proof of of Theorem 2.
Recall that an ordered partition of the set f1, . . . , kg is a tuple ðN1, . . . ,NlÞ, where Ni are

non-empty disjoint subsets of f1, . . . , kg and the union of Ni is f1, . . . , kg.
For each i ¼ 1, . . . ,m, let  i be the sub-formula of ’ of the form Prob>pi’iðt1 . . . , tkÞ. Let �

be the set of ordered partitions ðN1, . . . ,NlÞ (l � k) of the set f1, . . . , kg.
For each ordered partition � ¼ ðN1, . . . ,NlÞ let 
� be the formula ^i¼1,..., lEqðNiÞ ^ ti1 <

ti2 < � � � < til where ij is an element in Nj for j ¼ 1, . . . , l and Eq(Ni) expresses the fact that

all the tj for j 2 Ni are equal. The formulas 
� for �2 represent all the different orderings

of the values ft1, . . . , tkg.
Observe that

Prob>pi’iðt1, . . . , tkÞ ¼ Prob>pi

_
�2�

ð
�ðt1, . . . , tkÞ ^ ’iðt1, . . . , tkÞÞ

¼
_
�2�

Prob>pið
�ðt1, . . . , tkÞ ^ ’iðt1, . . . , tkÞÞ

since for a fixed tuple ðn1, . . . , nkÞ exactly one 
�ðn1, . . . , nkÞ holds.
Let us fix now a partition � ¼ ðN1, . . . ,NlÞ, and let us choose some ij in each Nj. Let

’0i,�ðti1 , . . . , tilÞ be the formula obtained from ’iðt1, . . . , tkÞ by replacing each tn for n in Nj by tij .
The formula

Prob>pið
�ðt1, . . . , tkÞ ^ ’iðt1, . . . , tkÞÞ

is equivalent to ^
i¼1,..., l

EqðNiÞ ^ Prob>pi ðti1 < ti2 < � � � < til ^ ’
0
i,�ðti1 , . . . , tilÞÞ:

One can compute now, using Lemma 8 a set of probabilities Hi,� not containing zero such

that, for each value �i,� 2 Q nHi,�, the set R�i,� ¼ fðn1, . . . , nlÞ : Ms0 , n1, n1 þ n2, . . . , n1 þ � � �þ

nl�1 þ nl � Prob>�i ðti1 < ti2 < � � � < til ^ ’
0
i,�ðti1 , . . . , til ÞÞ is ultimately periodic with a compu-

table finite representation. Moreover, if k¼ 1, the sets Hi,� are finite. Using Lemma 3, there is

a WMLO formula 
�i,� ðtil , . . . , ti1 Þ such that 
�i,� ðn1, n1 þ n2, . . . n1 þ � � � þ nlÞ holds iff
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ðn1, . . . ,nlÞ 2R�i,� . Thus, the PMLO sub-formula Prob>�i,� ðti1 < ti2 < � � �< til ^’
0
i,�ðti1 , . . . , til ÞÞ

can be replaced by the WMLO formula 
�i,� ðti1 , . . . , tilÞ.
Let Hi ¼ [�2�Hi,�, and � ¼ ð�1, . . . ,�mÞ such that �i 2 Q nHi for i ¼ 1, . . . ,m.

Consider the WMLO formula  ðt1, . . . , tkÞ obtained from ’�, eliminating in the way

just described all the probabilistic operators. We have:ðM, s0Þ satisfies ’�ðn1, . . . , nkÞ iff

ðN, <Þ �  ðn1, . . . , nkÞ. g

6 Extension of decidable model checking to nested formulas

In class C we disallow nesting of Prob operators. In the following we prove that the

decidability results can be extended to formulas with nested Prob.

DEFINITION 4
A PMLO formula ’ belongs to the class C0 iff in every subformula of the form Prob>q ,
the formula  does not have free second-order deterministic variables.

DEFINITION 5
Let �>0 be a real number. The �-thin subsets of Q

n are defined by the induction on n,

as follows:

(1) S � Q is �-thin if and only if S can be covered by a finite set of intervals of total length

< �.
(2) S � Q

dþ1 is �-thin if there is an �-thin set S1 � Q and i � dþ 1, such that for every qi 62 S1

the set fhq1, . . . , qi�1, qiþ1, . . . , qdþ1i : hq1, . . . , qd, qdþ1i 2 Sg is an �-thin subset of Qd.

DEFINITION 6
The 0-thin subset of Qn are defined by the induction on n as follows:

(1) S � Q is 0-thin if and only if S is finite.
(2) S � Q

dþ1 is 0-thin if there is an 0-thin set S1 � Q and i � dþ 1, such that for every qi 62 S1

the set fhq1, . . . , qi�1, qiþ1, . . . , qdþ1i : hq1, . . . , qd, qdþ1i 2 Sg is 0-thin subset of Qd.

Observe that if S1 � Q
d1 and S2 � Q

d2 are �-thin (respectively, 0-thin) then their Cartesian

product S1 � S2 � Q
d1þd2 is �-thin (respectively, 0-thin).

We say that H � Q
m is computable if there exists an algorithm that for each m-tuple of

rational numbers decides whether it is in H.
Recall that if ’ is a parameterized formula with parameters p1, . . . , pm, and � ¼ ð�1, . . . ,�mÞ

is a sequence of rational values, then we denote by ’� the formula obtained by replacing

in ’ each parameter pi by the value �i.

THEOREM 7
LetM be a finite probabilistic process, s0 be a state ofM and ’ðt1, . . . , tkÞ be a parameterized

formula in the class C0 with m parameters.

(1) There exists a WMLO formula  ðt1, . . . , tkÞ such that, for each ðn1, . . . , nkÞ 2 N
k, ðM, s0Þ

satisfies ’ð0,..., 0Þðn1, . . . , nkÞ iff ðN, <Þ �  ðn1, . . . , nkÞ.
(2) For every rational �>0, there exists a computable �-thin set H � ðQþÞm, such that

for each tuple of (rational) values � ¼ ð�1, . . . ,�mÞ 62 H there is a WMLO formula

 �ðt1, . . . , tkÞ such that ðM, s0Þ satisfies ’�ðn1, . . . , nkÞ iff ðN, <Þ �  �ðn1, . . . , nkÞ.
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(3) If ’ is simple, there exists a computable 0-thin set H � ðQþÞm such that for each tuple of

(rational) values � ¼ ð�1, . . . ,�mÞ 62 H there is a WMLO formula  �ðt1, . . . , tkÞ such that

ðM, s0Þ satisfies ’�ðn1, . . . , nkÞ iff ðN, <Þ �  �ðn1, . . . , nkÞ.

PROOF. The proof is by induction on the depth l of the nesting of Prob operators.
First, let us prove Theorem 7(1). In this case the formulas are qualitative.
Inductive base l¼ 1: This case follows from Theorem 2(1).
Inductive step l� 1 >! l: Let ’ be a parameterized formula of the nesting depth l>1. Let

’i be all the subformulas of ’ð0,..., 0Þ of the form Prob>0ð�iÞ, where �i are WMLO formulas.
By Theorem 2(1), the formulas ’i are equivalent (over the probabilistic structure generated

by ðM, s0Þ) to WMLO formulas  i. When we replace the subformulas ’i of ’ð0,..., 0Þ by  i, we

obtain a formula ’0, which is equivalent (over the probabilistic structure generated by ðM, s0Þ)

to ’ð0,..., 0Þ and has nesting depth l� 1. Therefore, by the inductive hypothesis, ’0 is equivalent
(over the probabilistic structure generated by ðM, s0Þ) to a WMLO formula  . Since ’ð0,..., 0Þ
and ’0 are equivalent, we derive that ’ð0,..., 0Þ is equivalent (over the probabilistic structure

generated by ðM, s0Þ) to  . This completes the inductive step and the proof of Theorem 7(1).
The proofs for Theorem 7(2) and 7(3) are similar and follow the same arguments as the

proof for Theorem 7(1).
In the following, we sketch the proof of Theorem 7(2). In the proof we use ‘equivalent’ for

‘equivalent over the probabilistic structure generated by ðM, s0Þ)’. We also assume that in all

parameterized formulas every parameter occurs at most once (this assumption is not essential,

but it slightly simplifies the proof).
Inductive base l¼ 1: This case follows from Theorem 2(2) and the observation that the

Cartesian product of �-thin subsets of Q is �-thin.
Inductive step l� 1 >! l: Let ’ be a parameterized formula of the nesting depth l>1. Let

’i (i ¼ 1, . . . , k) be all the sub-formulas of ’ of the form Prob>pið�iÞ, where �i are WMLO

formulas.
By Theorem 2(2), there are

(1) Sets Hi (i ¼ 1, . . . , k) such that Hi is the union of a finite set of intervals with the total

length at most �, and
(2) For every �i 62 Hi there is WMLO formulas  i (which depends on �i) such that the

WMLO formulas  i are equivalent to ’i�i (’
i
�i
is the formula obtained from ’i when the

parameter pi is replaced by the rational value �i).

Note that the set G ¼df H1 �H2 � � � � �Hk is an �-thin subset of Qk.
Fix ð�1, . . . ,�kÞ 2 Q n G. Let ’0 be obtained from ’ by replacing ’i by  i. Let pkþ1, . . . , pm be

the parameters that occur in ’0. Note that the nesting depth of ’0 is l� 1. Therefore, by the

inductive hypothesis, there is an �-thin Hð�1,...,�kÞ � Q
m�k such that for every b� 62 Hð�1,...,�kÞ

there is a WMLO formula  that is equivalent to ’0�̂. Hence, ’ð�1,..., �k, �̂Þ is equivalent to  .
We proved that for every ð�1, . . . ,�mÞ 62 H ¼ G�Q

m�k
[ [ð�1,..., �kÞ62Gð�1, . . . ,�kÞ �Hð�1,...,�kÞ

there is a WMLO formula  that is equivalent to ’ð�1,..., �k, �mÞ. To complete the proof, it

remains to show that H is an �-thin subset of Qm. The set G is an �-thin subset of Qk and for

every ð�1, . . . ,�kÞ 62 G the setHð�1,..., �kÞ is an �-thin subset ofQm�k. Therefore, H is �-thin. This
completes the proof of Theorem 7(2).

The proof of Theorem 7(3) is similar to the proof of Theorem 7(2). g
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As a consequence of Theorem 7, we get the following decidability results:

THEOREM 8 (Qualitative Model Checking)
Given a qualitative sentence ’ in the class C0, a finite probabilistic processM, a state s ofM,

it is decidable whether ’ holds in the probabilistic structureMs.

THEOREM 9
Given a finite probabilistic processM, a state s ofM and a parametrized simple sentence ’
in the class C0 with m parameters, there exists a computable 0-thin set H � ðQþÞm such that

for each tuple of (rational) values � ¼ ð�1, . . . ,�mÞ 62 H one can decide whether ’� holds in the

probabilistic structureMs.

THEOREM 10
Given a finite probabilistic processM, a state s ofM and a parameterized sentence ’ in the

class C0 with m parameters, for every rational �>0, there exists a computable �-thin set

H � ðQþÞm such that for each tuple of (rational) values � ¼ ð�1, . . . ,�mÞ 62 H one can decide

whether ’� holds in the probabilistic structureMs.

7 Comparison with probabilistic temporal logic pCTL*

The logic pCTL* is one of the most popular among probabilistic temporal logics [2]. The

relationship between our logic and pCTL* is rather complex. The semantics for logic of

probability is defined over arbitrary probabilistic structures; however, pCTL* is defined only

for finite probabilistic processes. Moreover, unlike the logic of probability, the truth value

of pCTL* formula depends not only on the probabilistic structure defined by a finite

probabilistic process, but also on the ‘branching structure’ of this process. Hence, there is no

meaning preserving translation from pCTL* to the monadic logic of probability. We also

show in the following text that, even for the class of models restricted to finite probabilistic

processes, no pCTL* formula is equivalent to the probabilistic formula 9t Prob�1QðtÞ, where

Q is a probabilistic predicate symbol. The formula 9t Prob�1QðtÞ formalizes a natural

property: ‘there is a moment at which Q holds with probability one’.
Let us recall the syntax and the semantics of the logic pCTL* as defined in [2]. Formulas

are evaluated on a finite probabilistic process ðS,P,V,LÞ.
There are two types of formulas in pCTL*: state formulas (which are true or false in a

specific state) and path formulas (which are true or false along a specific path).
Syntax. State formulas are defined by the following syntax:

(1) Each a in L is a state formula.
(2) If f1 and f2 are state formulas, then so are :f1, f1_ f2.
(3) If g is a path formula, then Pr<qðgÞ, Pr>qðgÞ are state formulas for every rational

number q.

Path formulas are defined by the following syntax:

(1) A state formula is a path formula.
(2) If g1 and g2 are path formulas, then so are :g1, g1_ g2.
(3) If g1 and g2 are path formulas, then so are Xg1, g1Ug2.

(X and U are respectively the Next and Until temporal operators).
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Semantics. Given a finite probabilistic process M¼ ðS,P,V,LÞ, state formulas and path

formulas are interpreted as defined below. Formulas f1 and f2 are state formulas and g1 and g2
are path formulas. Let s be a state, and � be an arbitrary infinite path inM. Satisfaction of

a state formula is defined with respect to s, and satisfaction of a path formula with respect

to �. For each integer k� 0, we denote by �k the path obtained from � when removing the

first k states (thus �0 ¼ �Þ, and we denote by ½��k the kth state of �.

� M, s � Q iff a 2 VðQÞ,
� M, s � :f1 iffM, s 6� f1,M, s � f1 _ f2 iffM, s � f1 orM, s � f2,
� M, s � Prob>qðg1Þ iff �f� 2 sS! jM, � � g1g > q M, s � Prob<qðg1Þ is defined in a

similar way,
� M,� � f1 iff ½��0 � f1,
� M,� � :g1 iffM,� 6� g1, M,� � g1 _ g2 iffM,� � g1 orM,� � g2,
� M,� � Xg1 iffM,�1 � g1,
� M,� � g1Ug2 iff there exists k� 0 such that M,�k � g2 and for all 0 � j < k,

M,�j � g1.

In the following we give an example that illustrates differences between the logic of

probabilities and pCTL*. Consider the finite probabilistic processes K and L as shown in

Figure 2. Let ’ be the following pCTL	 formula

Prob¼1 XðProb¼1=2ðXPÞ ^ Prob¼1=2ðXQÞÞÞ:
�

Note that K, s � ’ but L, s 6� ’. However, the probabilistic structures Ks and Ls are the same.

Hence, unlike the truth value of logic of probability, the truth value of pCTL* formula

depends not only on the probabilistic structure defined by the finite probabilistic process, but

also on the ‘branching structure’ of this process. Therefore, there is no meaning preserving

translation from pCTL* to the monadic logic of probability.
In the rest of this section we show that even for the class of models restricted to finite

probabilistic processes, no pCTL* formula is equivalent to the probabilistic formula

9t Prob�1QðtÞ, where Q is a probabilistic predicate symbol (the formula 9t Prob�1QðtÞ

expresses a natural property: there is a moment at which Q holds with probability one).

More precisely, we show:

THEOREM 11
Let ’ ¼ 9t Prob�1QðtÞ where Q is a probabilistic predicate symbol. There is no pCTL*

formula  such that for every finite probabilistic processM and every state s ofM one has

Ms � ’ iffM, s �  .

1
P

s

Q

1/2

1/2

P
s

Q

1/2

1/2

1

1

1

1

1

1

Process K Process L

FIGURE 2. Two processes distinguishable by pCTL* formula
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Consider the finite probabilistic processes Km, n and Km for m� 1 and n� 1 as shown in

Figure 3. Edges (i, j) are labelled by probabilities P(i, j). Process Km contains only one state

(state sm) labelled by the probabilistic predicate Q; other states have the empty labels

and process Km, n contains only two states (states sm and tn) labelled by the probabilistic

predicate Q. Let us call �m the unique infinite path starting in s in Km.

LEMMA 9

(1) For every pCTL* path formula g, there exists an integer r� 1 such that, for every m � r,

Km,�m � g iff Kr,�r � g.
(2) For every pCTL* state formula f, there exists an integer r� 1 such that for every m, n � r,

Km, n, s � f iff Kr, r, s � f.

PROOF. The proof is by induction on the complexity of g and f.

(1) The key point is for a path formula of the form Xg. We have

Km,�m � Xg iff m > and Km�1;�m�1 � g:

By induction, there exists an integer r such that for m� 1 � r,

Km�1,�m�1 � g iff Kr,�r � g:

At last,

Kr,�r � g iff Krþ1,�rþ1 � Xg:

Thus, for m � rþ 1, Km,�m � Xg iff Krþ1,�rþ1 � Xg.
(2) Here the key point is for a formula f of the form Prob>qðgÞ. Notice that for q � 1=2,

Km, n, s � Prob>qðgÞ iff Km,�m � g and Kn,�n � g

for q < 1=2,

Km, n, s � Prob>qðgÞ iff Km,�m � g or Kn,�n � g:

Then we use (1). g

Finally, we are ready to prove Theorem 11.

s

s1 s2

Q

Q

s

Q1/2

1/2

1 1

1

1

11

1 1

1

sm

tnt1 t2

s'm

t'n

s'ms1 sm

FIGURE 3. Km,n and Km
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PROOF OF THEOREM 11
Let us suppose that such a pCTL* formula  exists. From Lemma 9, there exists an integer
r� 1 such that for every m, n � r, Km, n, s �  iff Kr, r, s �  . That contradicts the fact that
Km, n, s � ’ iff m¼ n. g

8 Conclusion

Our main result is a description of a fragment of a logic of probability with decidable model
checking. An important and difficult open question is whether one can prove the decidability
of model checking for all values of probabilistic parameters, without exceptions. Another
open question is to extend the above results to formulas with conditional probabilities. Here,
we point to some difficulties which should be faced in order to extend our model-checking
results.

8.1 Extension to all values of parameters

Recall that the central step in the model checking problem is based on decidability of the
following problem:

Problem A
Instance: A probabilistic rational matrix M, its states s1, s2 and a rational r.

Task: Check whether there is n such that ðMnÞ1, 2 ¼ r.

In Section 4, we explained that for given M, s1 and s2 it is easy to decide Problem A for all but
finitely many values of A. These ‘bad’ values are accumulating points of the sequence
fðMnÞ1, 2g. It is an open question whether Problem A is decidable.

It might be the case that there is a reduction between Problem A and the following Skolem
problem [19].

Skolem Problem
Instance: An integer matrix M.

Task: Check whether there is n such that ðMnÞ1, 1 ¼ 0.

Decidability of the Skolem Problem is open for more than 60 years. It would be interesting
to investigate the relationship between Problem A and the Skolem Problem.

8.2 Extension to formulas with conditional probabilities

Let us illustrate here some obstacles that arise in the attempt to extend the model-checking
results to the formulas with conditional probabilities.

Assume that M is a finite state labelled Markov chain. Moreover, assume that:
(i) M is regular, i.e., its matrix M is such that limn!1Mn exists and (ii) there is
exactly one state s1 labelled by a predicate Q1 and there is exactly one state s2 labelled by
a predicate Q2.

Let ’ðtÞ be the formula Prob>1=2ðQ1ðtÞjQ1ðtÞ _Q2ðtÞÞ.
In order to check whether ’ is satisfiable in the structureMs0 , we can do the following.
First, observe that the probability that Q1(t) (respectively, Q2(t)) holds at moment n in the

structureMs0 is ðPnÞ0, 1 (respectively, ðPnÞ0, 2).
Therefore, Prob>1=2ðQ1ðtÞjQ1ðtÞ _Q2ðtÞÞ holds at n in Ms0 iff ððMnÞ0, 1Þ=ððM

nÞ0, 1þ

ðMnÞ0, 2Þ > 1=2.
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Now if limn!1ðM
nÞ0, 1 þ ðM

nÞ0, 2 > 0, then for all but finitely many r we can check whether

Prob>rðQ1ðtÞjQ1ðtÞ _Q2ðtÞÞ is satisfiable inMs0 . However, in the case when limn!1ðM
nÞ0, 1þ

ðMnÞ0, 2 ¼ 0 we do not know how to verify the satisfiability inMs0 .
It is an open question whether the following conjecture holds:

CONJECTURE

Let (S,M) be a finite Markov chain. There exists a positive natural number d such that the

limits

lim
m!1

ðMrþdmÞ0,1

ðMrþdmÞ0,1 þ ðM
rþdmÞ0,2

exist for r ¼ 0, 1, . . . , d� 1.
Nevertheless, one can give a partial result following the same lines:

PROPOSITION 7
Let M be a finite probabilistic process, s0 be a state of M, and ’ðtÞ, ’0ðtÞ be two WMLO

formulas with one free variable.
If the set fProbð’0ðnÞ j n 2 Ng does not admit 0 as an accumulation point (this fact is

property is decidable), one can compute a finite set H of rational values not containing zero,

such that for each rational � 2 Q nH, one can compute a WMLO formula  �ðtÞ such that for

n 2 NðM, s0Þ satisfies Prob�ð’ðnÞ j ’
0ðnÞ iff ðN, <Þ �  ðnÞÞ:

8.3 Extension to parametric model checking

With some additional effort, one can get a similar algorithm for parametric model checking.

Parameters here are the values of probabilities p in operators Prob>p. The problem is to

compute for a given Finite processM, a state s ofM and a parameterized PMLO sentence

’ with m parameters, the set of tuples � ¼ ð�1, . . . ,�mÞ for which ’� holds inMs.
Let us call a m-box of R

m a product of m intervals of R. The set of parameter values

� ¼ ð�1, . . . ,�mÞ for which an equivalent WMLO formula can be computed can be described

as a finite set of boxes. And the main point is that the WMLO formula  �ðt1, . . . , tkÞ, which is

computed in Theorem 2, depends not in � but only on the box which � belongs to.

THEOREM 12
LetM be a finite probabilistic process, s0 be a state ofM, and ’ðt1, . . . , tkÞ be a parameterized

formula without free predicate variables and with m parameters.
If formula ’ is in the class C, then for each rational number �>0, one can compute for each

parameter pi in ’ (i ¼ 1, . . . ,m) a set Hi that is union of a finite set of intervals not containing

zero, with a total length less than �, and a finite set of m-boxes Bj, 1 � j � r that cover

�1�i�mð½0, 1� nHiÞ such that for each j ¼ 1, . . . , r, one can compute a WMLO formula

 jðt1, . . . , tkÞ such that for each tuple of rationals � ¼ ð�1, . . . ,�mÞ 2 Bj, for each

n1, . . . , nk 2 N ðM, s0Þ satisfies ’�ðn1, . . . , nkÞ iff ðN, <Þ �  jðn1, . . . , nkÞ:
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