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Topological GAMES

�

- alphabet (might be infinite).
Game

� � � �

is given by

� �

A

�

- a set of � strings over A.
There are two Players which play � rounds:
Round

�

:

Player I chooses 	 
 � � A.

Player II chooses 	 
 � 
 � � A.

A play - � � 	 � 	 � 	 
 � � � .
Winning conditions: Player I wins a play if � � �

, otherwise
Player II wins �.
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Strategy

A position is a finite word � � � �

.
If

� � � is even then � is a position of Player I
If

� � � is odd then � is a position of Player II

A strategy for Player I is a function
� � � � 
 � � � �

.
Player I follows a strategy

�

in a play� � 	 � 	 � � � � 	 
 � 	 
 � 
 � � � � iff

	 
 � � � � 	 � � � � � 	 
 �� � �

�

is a winning strategy for Player I in the game

� � � �

iff
every play � which follows

�

is in

�

.
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�

is a winning strategy for Player I in the game

� � � �

iff
every play � which follows

�

is in

�

.

Strategies and winning strategies for Player II are defined
similarly.
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EXAMPLE

� � � 	 � � �

and

�

is the set of �-strings with infinitely many�

.
A strategy

� � for Player I: always choose
�

.� � is a winning strategy.
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EXAMPLE

� � � 	 � � �

and

�

is the set of �-strings with infinitely many�

.
A strategy

� � for Player I: always choose
�

.� � is a winning strategy.

A strategy

� 
 for Player I: if in the last round Player II choice
was

�

, then choose 	; otherwise choose

�

.

� 
 is also a winning strategy for Player I.
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Determinacy

Lemma In

� � � �

at most one of the Players has a winning
strategy.
Proof. If

�

and � are strategies of Player I and Player II then
there is a unique play � which follows these strategies.
Hence, it is impossible that both

�
and � are winning.
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Determinacy

Lemma In

� � � �

at most one of the Players has a winning
strategy.
Proof. If

�

and � are strategies of Player I and Player II then
there is a unique play � which follows these strategies.
Hence, it is impossible that both

�
and � are winning.

Def.

� � � �

is determinate if one of the players has a
winning strategy.

Central issue in descriptive set theory: Characterise
determined games by topological properties of the winning
conditions.
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Open Games are determinate

�

is open if

� � � � �

(

�

a set of finite strings).
Theorem If

�

is open then

� � � �

is determinate.
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Open Games are determinate

�

is open if

� � � � �

(

�

a set of finite strings).
Theorem If

�

is open then

� � � �

is determinate.
Proof I.
For a finite string of odd length

�  � � �
is a residual game.

Player II moves fist,then Player I, etc.; a play � wining for
Player I in

�  � � �

if � � � �

.
Let

! � � � � Player I does not have a winning strategy in�  � � � �

.

– p.7/13



Open Games are determinate

�

is open if

� � � � �

(

�

a set of finite strings).
Theorem If

�

is open then

� � � �

is determinate.
Proof I.
For a finite string of odd length

�  � � �
is a residual game.

Player II moves fist,then Player I, etc.; a play � wining for
Player I in

�  � � �

if � � � �

.
Let

! � � � � Player I does not have a winning strategy in�  � � � �

.
We assume that I does not have a winning strategy in

� � � �

and show that II has a winning strategy.

– p.7/13



Open Games are determinate

�

is open if

� � � � �

(

�

a set of finite strings).
Theorem If

�

is open then

� � � �

is determinate.
Proof I.
For a finite string of odd length

�  � � �
is a residual game.

Player II moves fist,then Player I, etc.; a play � wining for
Player I in

�  � � �

if � � � �

.
Let

! � � � � Player I does not have a winning strategy in�  � � � �

.
We assume that I does not have a winning strategy in

� � � �

and show that II has a winning strategy.
(1)

� " !

and (2)
# � � ! $ 	 # � � � 	 � � ! �

.

– p.7/13



Open Games are determinate

�

is open if

� � � � �

(

�

a set of finite strings).
Theorem If

�

is open then

� � � �

is determinate.
Proof I.
For a finite string of odd length

�  � � �
is a residual game.

Player II moves fist,then Player I, etc.; a play � wining for
Player I in

�  � � �

if � � � �

.
Let

! � � � � Player I does not have a winning strategy in�  � � � �

.
We assume that I does not have a winning strategy in

� � � �

and show that II has a winning strategy.
(1)

� " !

and (2)
# � � ! $ 	 # � � � 	 � � ! �

.
Player II strategy

� 
 � ! � �

- choose 	 as in (2).

– p.7/13



Open Games are determinate

�

is open if

� � � � �

(

�

a set of finite strings).
Theorem If

�

is open then

� � � �

is determinate.
Proof I.
For a finite string of odd length

�  � � �
is a residual game.

Player II moves fist,then Player I, etc.; a play � wining for
Player I in

�  � � �

if � � � �

.
Let

! � � � � Player I does not have a winning strategy in�  � � � �

.
We assume that I does not have a winning strategy in

� � � �

and show that II has a winning strategy.
(1)

� " !

and (2)
# � � ! $ 	 # � � � 	 � � ! �

.
Player II strategy

� 
 � ! � �

- choose 	 as in (2).
We claim that

� 
 is a winning strategy.

– p.7/13



Open Games are determinate

�

is open if

� � � � �

(

�

a set of finite strings).
Theorem If

�

is open then

� � � �

is determinate.
Proof I.
For a finite string of odd length

�  � � �
is a residual game.

Player II moves fist,then Player I, etc.; a play � wining for
Player I in

�  � � �

if � � � �

.
Let

! � � � � Player I does not have a winning strategy in�  � � � �

.
We assume that I does not have a winning strategy in

� � � �

and show that II has a winning strategy.
(1)

� " !

and (2)
# � � ! $ 	 # � � � 	 � � ! �

.
Player II strategy

� 
 � ! � �

- choose 	 as in (2).
We claim that

� 
 is a winning strategy.
If � is consistent with

� 
 we are always in

!

.
– p.7/13



Open Games are determinate

�

is open if

� � � � �

(

�

a set of finite strings).
Theorem If

�

is open then

� � � �

is determinate.
Proof I.
For a finite string of odd length

�  � � �
is a residual game.

Player II moves fist,then Player I, etc.; a play � wining for
Player I in

�  � � �

if � � � �

.
Let

! � � � � Player I does not have a winning strategy in�  � � � �

.
We assume that I does not have a winning strategy in

� � � �

and show that II has a winning strategy.
(1)

� " !

and (2)
# � � ! $ 	 # � � � 	 � � ! �

.
Player II strategy

� 
 � ! � �

- choose 	 as in (2).
We claim that

� 
 is a winning strategy.
If � is consistent with

� 
 we are always in

!

.� has no prefix in

�
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Second Proof

� � � � �

.
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Second Proof

� � � � �

.

Define � � � �

.

� 
 � � � � % � � � � � 
 � � � � 	 � � for some a

�

% � � � � � � 
 � � � � 	 � � for all a

�
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Second Proof

� � � � �

.

Define � � � �

.

� 
 � � � � % � � � � � 
 � � � � 	 � � for some a

�

% � � � � � � 
 � � � � 	 � � for all a

�

Define rank :

� � � & 	 ' % �( �
as:

rank

� � � � � ) � * � � � � � � �.
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Second Proof

� � � � �

.

Define � � � �

.

� 
 � � � � % � � � � � 
 � � � � 	 � � for some a

�

% � � � � � � 
 � � � � 	 � � for all a

�

Define rank :

� � � & 	 ' % �( �
as:

rank

� � � � � ) � * � � � � � � �.
Player I has a winning strategy in

�  � � �

iff rank

� � � is finite.

The strategy - decrease the rank.
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Borel Sets

+

and

�

are the family of open and closed sets respectively.
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�
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+, - .
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Borel Sets

+

and

�

are the family of open and closed sets respectively.+, - the countable unions of closed sets.� - - the complements of sets from

+, - the countable
intersection of open sets.+, - the countable intersections of

+,� - , the complements of sets from
+, - .

Etc., for every . � � / 0 � � , we define

+1 and their
complements - Borel sets of finite ranks.

Def. The class of Borel sets is the smallest class of sets
containing open sets and closed under countable unions
and countable intersections.

Almost all sets in WORKING Math. are Borel.
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Martin Theorem

Martin Determinacy Theorem If

�

is Borel then
� � � �

is
determinate.
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Martin Theorem

Martin Determinacy Theorem If

�

is Borel then
� � � �

is
determinate.

Theorem There is

�

such that

� � � �
is not determinate.

Proof relies on Axiom of Choice.
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Games on Graphs

Games on Graphs - Slightly more general than Top.
games. But they are “reducible" to Topological games.
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2 
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2. Out degree of every node is at least one.
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A graph game is an arena and a set

�

of infinite paths.
A play starting from a node 3.
Round 0: the owner of the vertex 3 � 3 � chooses an
adjacent node 3 � . Then the other player chooses a node 3 


adjacent to 3 � .
Round

�

: the owner of the vertex 3 � 3 
 � chooses an
adjacent node 3 
 � 
 � . Then the other player chooses a node3 
 4 � 
 � 5 adjacent to 3 
 � 
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Games on Graphs- Cont.

Winning conditions Player I wins a play � � 3 � 3 � � � � if� � �

; otherwise Player II wins.
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; otherwise Player II wins.
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Reduction between game graphs and topological games.
Examples Arena The compete bipartite graph on

� 3 � � 3 6 � � � 3 
 �

Winning set

�

- the path passing 3 6 infinitely often

Who has a winning strategy?

�

paths which pass infinitely often in 3 � and in 3 6 Who has
a winning strategy? – p.12/13



Fundamental Algorithmic Questions

Input: a finite representation of a game.
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