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Validity problem over finite
structures

Input: a formula 


Question: Is 
 true over all finite structures?

Theorem(Trakhtenbrot) There is no procedure for checking
validity over finite structures.

The theory of finite structures is very different from the the-

ory of arbitrary structures
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Hilbert Calculus

Axiomsa

Ax1

� � � 
 � � �

Ax2

� � � � 
 � � � � � � � � � 
 � � � � � � � �

Ax3

�� 
 � � � � � � �� 
 � � � � 
 �

Ax4

� � � � � � � � � � � � � � �, where
�

is a term.

Ax5

� � � � � � 
 � � � � � � � � 
 �

, where � is not free in

�

.

Inference Rules

MP Derive




from
�

and

� � 


.

Gen Derive

� � �
from

�

.
aWe do not distinguish between formulas with the same skeleton
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�

is satisfiable (holds in a structure for
FO).

Propositional Calculus
Theorem Every consistent set of formulas is a subset of a
maximal consistent set of formulas.
Theorem Every maximal consistent set of formulas is
satisfiable.

Predicate Calculus
Theorem Every consistent set of formulas is a subset of a
Complete Henkin consistent set of formulas.
Theorem Every Complete Henkin consistent set of
formulas holds (in a Herbrand Structure).
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By structural induction on sentences show that


 " �

iff

3 � 
 � 4 1 � � 5 6 7
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