
Seminar on Concurrency Theory
Ori Lahav

March 3, 2021

Today

• What is this seminar about?

• Goals, requirements and logistics of the seminar

• List of student presentations

About me
Ph.D.

Logic in computer science 
Advisor: A. Avron

Postdoctoral researcher

Program verification 
Host: M. Sagiv

Postdoctoral researcher

Weak memory models  
Hosts: V. Vafeiadis, D. Dreyer

Since 2017 - Faculty member

Tel Aviv University

Teaching this semester:
• Shared memory concurrency semantics (0368-4217)

• Seminar in concurrency theory (0368-3114)

Main areas of research:
•Programming languages theory

•Verification

•Concurrency

•Relaxed memory models

Concurrency theory
• Rigorous mathematical formalisms and techniques for modeling and analyzing

concurrent systems.

• Concurrent systems include concurrent programs & reactive systems.

• Concurrent doesn’t necessarily mean parallel. 

סמינר בתיאוריה של בו-זמניות (?)

• Particular focus on communication and synchronization  
(rather than simple parallelism).

Rob Pike - 'Concurrency Is Not Parallelism'

https://www.youtube.com/watch?v=oV9rvDllKEg

Reactive systems

• A program transforms an input into an output.

• Denotational semantics:  
the meaning of a program is a partial function: 

• Non-termination is bad. 

• Is that what we need?

States → States

The classical view

Reactive systems
• What about: operating systems? websites? database systems? power plants? vending machines? 

Reactive systems continuously reacts to the environment and influence the environment

• Key issue: communication and interaction.

• Non-determinism is often inevitable.

• What is correctness?

• Often halting is actually a problem.

• Not crashing (e.g., “dividing by 0”).

• Serving requests on time.

• Adhering to certain communication protocols.

• What is equivalence? refinement?  

.

.

.

Concurrent programming

Parallelism is here
“The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software”.
By Herb Sutter (2005)

Two fundamental models of concurrent programming
message passingshared memory

C / C++ Erlang, Go

concurrent modules interact by reading
and writing shared objects in memory

concurrent modules interact by sending messages
to each other through a communication channel

ScalaPL examples:

Hard to get right!
• Concurrency is widespread, but it is also error prone, and hard to debug and reproduce.

• Non-determinism is inherent.

• Unlike sequential programs, programmers need to take care of synchronization, race conditions,
deadlocks, etc.

• Therac-25: Concurrent programming errors (in particular, race conditions) → accidents causing
death and serious injury

• Mars Rover: Problems with interaction between concurrent tasks caused periodic software
resets reducing availability for exploration

Simple example

• How many possible outcomes?

• Such “bugs” may even disappear when you try to print it or even debug!

 Initially X = 0.

X := X+1; X := X+3;

Verification

Testing 
 
Hard to apply for concurrent
systems

Formal verification 
 
Even short concurrent
programs are hard to analyze

Reasoning principles

system ⊧ specification

Compositionality

Verification
system ⊧ specification

Safety: 
nothing bad will happen

Liveness: 
something good will happen (eventually)

E.g., “at most one process
in the critical section”

E.g., “every request will finally be
answered by the server”

This seminar

Goals

• Introduction different fundamental topics in concurrency (basis
for advanced studies)

• Independent understanding of a scientific topic

• Understanding scientific literature

• Technical presentation skills

Requirements 1/2
• Attend all meetings (by zoom with enabled video) and actively participate.

• Present one subject in a 70-90 minute talk, based on a research paper or a chapter
from a book.

• Should work in pairs (interleaved not parallel…).

• Prepare slides (pdf, in English), and send them to me two weeks before the
lecture.

• Discuss presentations with me a week before the lecture.

Requirements 2/2

• Each lecture should include three “closed questions” (using zoom polls) to verify
understanding of the material. At least one of them in the very end.

• Answers to there polls will be used for attendance check.

• Grade:  
95%: meeting these requirements (including sending presentation on time);
understanding of the material; quality and clarity of presentation in class; quality of
the slides/handouts. 
5%: best 80% answers in polls during the semester.

Your presentations
• This is an advanced seminar: the material is sometimes not easy and not self-

contained.

• Identify and present the crux, rather than all details.

• Demonstrate with clear and effective examples.

• Be precise.

• May (and often should) skip proof details.

• Initiate participation and discussion (e.g., ask thought provoking questions!).

Your presentations

• Use a blank background

• May (and often should) use material available online (related papers and surveys,
lecture notes, slides, videos).

• List the sources you use and give credits in the second slide of your presentation

• Do not copy-paste as is

Some tips

• Take your time to understand the material → start soon!

• Discuss the content with me and other students.

• Practice your talk out loud.

Topics March 3 Ori Introduction and guidelines [slides]

March 10 Dvir, Mor Transition systems and behavioral equivalences 
[Chapter 2 in Introduction to Concurrency Theory by Gorrieri&Versari]

March 17 Dor, Topaz Calculus of communicating systems (CCS) 
[Chapter 3 in Introduction to Concurrency Theory by Gorrieri&Versari]

April 7
A Very Gentle Introduction to Multiparty Session Types 
Nobuko Yoshida, Lorenzo Gher 
Distributed Computing and Internet Technology. ICDCIT 2020. Springer. 
[1]

April 21
An axiomatic proof technique for parallel programs I 
Susan S. Owicki, David Gries 
Acta Informatica 6: 319-340, 1976  
[1]

April 28
The rely-guarantee method for verifying shared variable concurrent programs 
Qiwen Xu, Willem-Paul de Roever, Jifeng He  
Formal Aspects of Computing 9: 149-174, 1997  
[1]

May 5
Separation logic: a logic for shared mutable data structures 
John C. Reynolds 
Proceedings 17th Annual IEEE Symposium on Logic in Computer Science, Copenhagen, Denmark, 2002, pp. 55-74  
[1]

May 12
Resources, concurrency and local reasoning  
Peter W. O’Hearn  
Theoretical Computer Science 375, 1-3: 271-307, 2007  
[1] [recent CACM article]

May 19
Linearizability: a correctness condition for concurrent objects 
Maurice P. Herlihy, Jeannette M. Wing  
ACM Trans. Program. Lang. Syst. 12, 3: 463-492, 1990  
[1]

May 26
Wait-free synchronization  
Maurice Herlihy. 
ACM Trans. Program. Lang. Syst. 13, 1: 124-149, 1991  
[1]

June 2
Laws of order: expensive synchronization in concurrent algorithms cannot be eliminated  
Hagit Attiya, Rachid Guerraoui, Danny Hendler, Petr Kuznetsov, Maged M. Michael, Martin Vechev 
In Proceedings of the 38th annual ACM SIGPLAN-SIGACT symposium on principles of programming languages (POPL '11). ACM, New York, NY, USA, 487-498  
[1]

June 9
FastTrack: efficient and precise dynamic race detection  
Cormac Flanagan, Stephen N. Freund  
Proceedings of the 30th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI '09). ACM, New York, NY, USA, 121–133  
[1]

June 16
Conflict-free Replicated Data Types: An Overview
Nuno Preguiça
[1]

applewebdata://25C6CEE6-10B8-4942-B11D-CBFEB8651F76/intro.pdf
applewebdata://25C6CEE6-10B8-4942-B11D-CBFEB8651F76/Gorrieri_Versari.pdf
applewebdata://25C6CEE6-10B8-4942-B11D-CBFEB8651F76/Gorrieri_Versari.pdf
https://link.springer.com/content/pdf/10.1007%2F978-3-030-36987-3_5.pdf
https://dl.acm.org/citation.cfm?id=2697004
https://link.springer.com/content/pdf/10.1007/BF01211617.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1029817
http://www0.cs.ucl.ac.uk/staff/p.ohearn/papers/concurrency.pdf
http://delivery.acm.org/10.1145/3220000/3211968/p86-o_hearn.pdf?ip=77.126.31.166&id=3211968&acc=OA&key=4D4702B0C3E38B35%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35%2EA370BA5413A93317&__acm__=1551377127_a4d051888179662c2e5dbdd171014d8e
https://dl.acm.org/citation.cfm?id=78972
http://cs.brown.edu/~mph/Herlihy91/p124-herlihy.pdf
https://dl.acm.org/citation.cfm?id=1926442
https://dl.acm.org/doi/10.1145/1543135.1542490
https://asc.di.fct.unl.pt/~nmp/pubs/tr-arxiv-crdt-2018.pdf

Logistics

• Website:

https://www.cs.tau.ac.il/~orilahav/seminar21/index.html

• By next week: topic assignments  

https://www.cs.tau.ac.il/~orilahav/seminar21/index.html

