Seminar on Concurrency Theory

Ori Lahav

March 9, 2020
Today

- What is this seminar about?
- Goals, requirements and logistics of the seminar
About me

Ph.D.
Logic in computer science
Advisor: A. Avron

Postdoctoral researcher
Program verification
Host: M. Sagiv

Postdoctoral researcher
Weak memory models
Hosts: V. Vafeiadis, D. Dreyer

Since 2017 - Faculty member
Tel Aviv University

Main areas of research:
• Programming languages theory
• Verification
• Concurrency
• Relaxed memory models

Teaching this semester:
• Foundations of programming languages (0368-3241)
• Seminar on formal theory of concurrency (0368-3114)
Concurrency theory

- Rigorous mathematical formalisms and techniques for modeling and analyzing concurrent systems.

- Concurrent systems:
 - Concurrent programs
 - Reactive systems
Concurrent programming

- Shared memory
 - C / C++

- Message passing
 - Erlang
Parallelism is here

Reactive systems

The classical view

- A program transforms an input into an output.
- Denotational semantics: the meaning of a program is a partial function:

 \[\text{States} \rightarrow \text{States} \]

- Non-termination is bad.
- *Is that what we need?*
Reactive systems

Reactive systems continuously reacts to the environment and influence the environment.

- Key issue: communication and interaction.
- Non-determinism is often inevitable.
- Related and similar to **parallelism**.
Problem

- Concurrency is widespread, but it is also **error prone**.

- **Non-determinism** is inherent.

- Unlike sequential programs, programmers need to take care of synchronization, race conditions, deadlocks, etc.

- Therac-25: Concurrent programming errors (in particular, race conditions) → accidents causing death and serious injury

- Mars Rover: Problems with interaction between concurrent tasks caused periodic software resets reducing availability for exploration
Example

Initially $X = 0$.

- $X := X+1$;
- $X := X+2$;

- How many possible outcomes?
Verification

\[\text{system} \models \text{specification} \]

Testing

- Hard to apply for concurrent systems
- Randomization

Formal verification

- Even short concurrent programs are hard to analyze
- Reasoning principles
- Automatic decision procedures
- Compositionality
Verification

\[\text{system } \models \text{ specification} \]

- **Safety:** nothing \textcolor{red}{bad} will happen
 - E.g., “at most one process in the critical section”

- **Liveness:** something \textcolor{green}{good} will happen (eventually)
 - E.g., “every request will finally be answered by the server”
Practice

• **Modeling** and simulating concurrent systems (different formalisms and tools)

• Concurrent **programming**: programming languages have different concurrency models in (e.g., C, Go, Rust, Erlang)

• **Verifying** correctness to avoid expensive bugs (many tools)
This seminar
Goals

- Introduction different fundamental topics in concurrency *(basis for advanced studies)*
- Independent understanding of a scientific topic
- Understanding scientific literature
- Technical presentation skills
Requirements

• Attend all meetings.

• Present one subject in a 70-90 minute talk, based on a research paper or a chapter from a book.

• Prepare slides and/or handouts (pdf, in English), and send them to me two weeks before the lecture.

• May work in pairs (present 2 subjects).

• Discuss presentations with me a week before the lecture.

• **Recommendation:** use other sources besides the one that will be suggested (with citations).

• **Grade:** meeting these requirements; understanding of the material; quality and clarity of presentation in class; quality of the slides/handouts.

• Optional: extra short lecture (e.g., introduce an alternative model of concurrency).
Your presentations

• This is an advanced seminar: the material is sometimes not easy and not self-contained.

• Identify and present the crux, rather than all details.

• Demonstrate with clear and effective examples.

• Be precise.

• May (and often should) skip proof details.

• Initiate participation and discussion (e.g., ask questions!).
Some tips

- Take your *time* to understand the material.
- Discuss the content with me and other students.
- Practice your talk out loud.
Logistics

• Website:
 https://www.cs.tau.ac.il/~orilahav/seminar20/index.html

• By next week: topic assignments
 add your preferences in
 https://docs.google.com/document/d/
 1x5UElcWsh3l1ruzBD9OWOiI9i2U0msrl7hN3GXpHivU/edit?usp=sharing

• Speaker for next week?
Topics

- See website.

- You are welcome to suggest topics / papers!