Automated Support for the Investigation of Paraconsistent and Other Logics

Agata Ciabattoni

Vienna University of Technology

joint work with O. Lahav, L. Spendier and A. Zamansky

are usually introduced/described using Hilbert systems.

are usually introduced/described using Hilbert systems.

Their usefulness depend on the existence of:

- (i) an **analytic calculus**, i.e. where proof search proceeds by step-wise decomposition of the formulas to be proved
- (ii) an intuitive semantics that provides insight into the logic

Finding an analytic calculus and useful semantics for a logic

- Ad hoc procedures
 - \Rightarrow (Too?) Many papers are written on similar results
 - \Rightarrow Error-prone task (e.g. cut-elimination)
 - \Rightarrow Many open problems

Finding an analytic calculus and useful semantics for a logic

- Ad hoc procedures
 - \Rightarrow (Too?) Many papers are written on similar results
 - \Rightarrow Error-prone task (e.g. cut-elimination)
 - $\Rightarrow \mathsf{Many} \text{ open problems}$

General and automated procedures are desirable!

"Inconsistency-tolerant" non-classical logics.

Within classical logic, contradictions entail everything

$$A, \neg A \vdash B$$

- Paraconsistent logics allow "contradictory" but non-trivial theories.
- Many applications in Computer Science: integration of information from multiple sources, negotiations among agents with conflicting goals, ...

Internalize the concepts of consistency inside the object language via the operator \circ with intuitive meaning $\circ A$: "A is consistent".

Internalize the concepts of consistency inside the object language via the operator \circ with intuitive meaning $\circ A$: "A is consistent".

Positive fragment of classical propositional logic CL^+ extended with suitable combinations of

with $\diamond = \land, \lor, \supset$

First modular approach for C-systems (A. Avron, B. Konikowska, and A. Zamansky, LICS 2012)

Starting from a Hilbert calculus for a C-system:

(Step 1) Define a suitable semantics

 \Rightarrow needs ingenuity!

(Step 2) Use the obtained semantics to define a sequent calculus

First modular approach for C-systems (A. Avron, B. Konikowska, and A. Zamansky, LICS 2012)

Starting from a Hilbert calculus for a C-system:

(Step 1) Define a *suitable semantics*

 \Rightarrow needs ingenuity!

(Step 2) Use the obtained semantics to define a sequent calculus

Can we do more and can we do it in an automated way?

Our results

We identified a formal grammar generating (infinitely many) axioms in the language of CL^+ with *new unary connectives*. Example

... and (infinitely) many more axioms ...

We identified a formal grammar generating (infinitely many) axioms in the language of CL^+ with *new unary connectives*.

For any set of axioms generated by this grammar we provided algorithms (and a PROLOG program):

We identified a formal grammar generating (infinitely many) axioms in the language of CL^+ with *new unary connectives*.

For any set of axioms generated by this grammar we provided algorithms (and a PROLOG program):

(Step 1) to extract a corresponding sequent calculus(Step 2) use the calculus to define a suitable semantics for the logic,

We identified a formal grammar generating (infinitely many) axioms in the language of CL^+ with *new unary connectives*.

For any set of axioms generated by this grammar we provided algorithms (and a PROLOG program):

(Step 1) to extract a corresponding sequent calculus

(Step 2) use the calculus to define a **suitable semantics** for the logic, the semantics is used:

 \Rightarrow to show the decidability of the logic

 \Rightarrow to check the analyticity of the calculus

Example	
Axiom (n'_{\wedge})	$ eg(\psi \land \varphi) \supset (\neg \psi \lor \neg \varphi)$
Invertibility	$\Rightarrow \neg(\psi \land \varphi) \supset (\neg \psi \lor \neg \varphi)$
Invertibility	$\neg(\psi \land \varphi) \Rightarrow \neg \psi \lor \neg \varphi$
Ackermann Lemma	$\neg(\psi \land \varphi) \Rightarrow \neg \psi, \neg \varphi$
Equivalent logical rule	$\frac{\Gamma, \neg \psi \Rightarrow \Delta \qquad \Gamma, \neg \varphi \Rightarrow \Delta}{\Gamma, \neg (\psi \land \varphi) \Rightarrow \Delta}$

The generated rules

Type 1:
$$\begin{array}{c} \mathcal{Q} \\ \overline{\Gamma, \star(\psi \diamond \varphi) \Rightarrow \Delta} \end{array}$$
 $\begin{array}{c} \mathcal{Q} \\ \overline{\Gamma \Rightarrow \star(\psi \diamond \varphi), \Delta} \end{array}$ Type 2: $\begin{array}{c} \mathcal{P} \\ \overline{\Gamma, \star \star \psi \Rightarrow \Delta} \end{array}$ $\begin{array}{c} \mathcal{P} \\ \overline{\Gamma \Rightarrow \star \star \psi, \Delta} \end{array}$ Type 3: $\begin{array}{c} \mathcal{P} \\ \overline{\Gamma, \star \psi \Rightarrow \Delta} \end{array}$ $\begin{array}{c} \mathcal{P} \\ \overline{\Gamma \Rightarrow \star \psi, \Delta} \end{array}$

Premises Q contain (a subset of) {ψ, *ψ, φ, *φ}
Premises P contain (a subset of) {ψ, *ψ}

The generated rules

Type 1:
$$\mathcal{Q}$$

 $\Gamma, \star(\psi \diamond \varphi) \Rightarrow \Delta$ \mathcal{Q}
 $\Gamma \Rightarrow \star(\psi \diamond \varphi), \Delta$ Type 2: $\frac{\mathcal{P}}{\Gamma, \star \star \psi \Rightarrow \Delta}$ $\frac{\mathcal{P}}{\Gamma \Rightarrow \star \star \psi, \Delta}$ Type 3: $\frac{\mathcal{P}}{\Gamma, \star \psi \Rightarrow \Delta}$ $\frac{\mathcal{P}}{\Gamma \Rightarrow \star \psi, \Delta}$

Premises Q contain (a subset of) {ψ, *ψ, φ, *φ}
Premises P contain (a subset of) {ψ, *ψ}

Adding *logical* rules to LK⁺: cut-free calculus?

Definition

A partial non-deterministic matrix (PNmatrix) \mathcal{M} consists of:

- (i) a set $\mathcal{V}_{\mathcal{M}}$ of truth values,
- (ii) a subset of $\mathcal{V}_{\mathcal{M}}$ of designated truth values, and
- (iii) a truth-table $\diamond_{\mathcal{M}} : \mathcal{V}_{\mathcal{M}}^n \to P(\mathcal{V}_{\mathcal{M}})$ for every n-ary connective \diamond .

PNmatrices generalise the notion of non-deterministic matrices (A. Avron, 2001) by allowing *empty sets* in the truth tables.

Standard rules for classical negation and conjunction:

Standard rules for classical negation and conjunction:

$$\frac{\Gamma \Rightarrow \Delta, \psi}{\Gamma, \neg \psi \Rightarrow \Delta}$$

Standard rules for classical negation and conjunction:

$$\frac{\Gamma \Rightarrow \Delta, \psi}{\Gamma, \neg \psi \Rightarrow \Delta}$$

 $\frac{\Gamma, \psi, \varphi \Rightarrow \Delta}{\Gamma, \psi \land \varphi \Rightarrow \Delta}$

$$\begin{array}{c|c} & & & & & & & \\ \hline 1 & \{0\} & & & 1 & 1 & \{1,0\} \\ \hline 0 & \{1,0\} & & 0 & 1 & \{0\} \\ & & 0 & 0 & \{0\} \end{array}$$

• Truth values $\mathcal{V}_{\mathcal{M}}$: tuples of size = # of unary connectives +1

• Truth values $\mathcal{V}_{\mathcal{M}}$: tuples of size = # of unary connectives +1

New rules reduce the level of non-determinism

Type 3:
$$\frac{\mathcal{P}}{\Gamma, \star \psi \Rightarrow \Delta}$$
reduce the set of truth values $\mathcal{V}_{\mathcal{M}}$ Type 2: $\frac{\mathcal{P}}{\Gamma, \star_i \star_j \psi \Rightarrow \Delta}$ determine truth tables for \star_j Type 1: $\frac{\mathcal{Q}}{\Gamma, \star(\psi \diamond \varphi) \Rightarrow \Delta}$ determine truth tables for \diamond

 CL^+ with one new unary connective \neg :

$$\mathcal{V}_{\mathcal{M}} := \{ \langle 0, 0 \rangle, \langle 0, 1 \rangle, \langle 1, 0 \rangle, \langle 1, 1 \rangle \}$$

Rules introducing unary connectives reduce $\mathcal{V}_{\mathcal{M}}$, e.g.:

$$\frac{\Gamma, \psi \Rightarrow \Delta}{\Gamma \Rightarrow \neg \psi, \Delta}$$

 $\mathcal{V}_{\mathcal{M}} := \{ \langle \mathbf{0}, \mathbf{0} \rangle, \langle \mathbf{0}, \mathbf{1} \rangle, \langle \mathbf{1}, \mathbf{0} \rangle, \langle \mathbf{1}, \mathbf{1} \rangle \}$

 CL^+ with one new unary connective \neg :

$$\mathcal{V}_{\mathcal{M}} := \{ \langle 0, 0 \rangle, \langle 0, 1 \rangle, \langle 1, 0 \rangle, \langle 1, 1 \rangle \}$$

Rules introducing unary connectives reduce $\mathcal{V}_{\mathcal{M}}$, e.g.:

$$\frac{\Gamma, \psi \Rightarrow \Delta}{\Gamma \Rightarrow \neg \psi, \Delta}$$

$$\mathcal{V}_{\mathcal{M}} := \{ \langle 0,1
angle, \langle 1,0
angle, \langle 1,1
angle \}$$

$$\mathcal{V}_{\mathcal{M}} := \{ \langle 0,1
angle, \langle 1,0
angle, \langle 1,1
angle \}$$

■ Rules introducing formulas of the form ¬¬ψ determine the truth table for ¬, e.g.:

Example: Extracting a PNmatrix IV

$$\mathcal{V}_{\mathcal{M}} := \{ \langle 0,1
angle, \langle 1,0
angle, \langle 1,1
angle \}$$

■ Rules introducing formulas of the form ¬¬ψ determine the truth table for ¬, e.g.:

$$\frac{\Gamma, \psi \Rightarrow \Delta}{\Gamma, \neg \neg \psi \Rightarrow \Delta}$$

$$\frac{\neg}{\langle 0, 1 \rangle} \quad \{\langle 1, 0 \rangle\} \\ \langle 1, 0 \rangle \quad \{\langle 0, 1 \rangle\} \\ \langle 1, 1 \rangle \quad \{\langle 1, 0 \rangle, \langle 1, 1 \rangle\}$$

Paralyzer (PARAconsistent logic anaLYZER)

Input: Axioms \mathcal{A} according to our grammar. Output:

- Proof Theory: sequent calculus for CL^+ with \mathcal{A}
- Semantics: truth tables (using PNmatrices)

http://www.logic.at/staff/lara/tinc/webparalyzer/paralyzer.html

Semantics at work

Theorem

All our logics are decidable.

Theorem

A generated calculus is "analytic" iff the corresponding PNmatrix does not have empty sets in the truth tables of the connectives.

Semantics at work

Theorem

All our logics are decidable.

Theorem

A generated calculus is "analytic" iff the corresponding PNmatrix does not have empty sets in the truth tables of the connectives.

What to do if there is an empty set?

- Transform the PNmatrix into a *finite family* of Nmatrices
- Apply the method in (A. Avron et al., 2006) and produce a family of cut-free sequent calculi.

Open problems and work in progress

Extend the grammar

E.g. (Kamide 2009, 2012, Kamide and Wansing 2012) $\neg \sim (\alpha \land \beta) \supset \neg \sim \alpha \lor \neg \sim \beta$, $\sim \sim \sim (\alpha \rightarrow \beta) \supset \sim \sim \alpha \land \sim \sim \sim \beta$, $\sim^{j} (\alpha \land \beta) \supset \sim^{j} \alpha \lor \sim^{j} \beta$ (with *j* odd), ...

- Consider "intuitionistic"-based paraconsistent logics
- First-order logics

Theory and tools for the investigation of non-classical logics

- Systematic introduction of analytic calculi
- Their exploitation
 - new semantic foundations (e.g. this work)
 - decidability proofs (e.g. this work)
 - standard completeness
 - properties of algebraic structures
 - ...

Theory and tools for the investigation of non-classical logics

- Systematic introduction of analytic calculi
- Their exploitation
 - new semantic foundations (e.g. this work)
 - decidability proofs (e.g. this work)
 - standard completeness
 - properties of algebraic structures

...

"Non-classical Proofs: Theory, Applications and Tools", research project 2012-2017 (START prize – Austrian Research Fund)