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Non-classical logics

are usually introduced/described using Hilbert systems.
Their usefulness depend on the existence of:

(i) an analytic calculus, i.e. where proof search proceeds by
step-wise decomposition of the formulas to be proved

(ii) an intuitive semantics that provides insight into the logic



State of the art

Finding an analytic calculus and useful semantics for a logic

m Ad hoc procedures
= (Too?) Many papers are written on similar results
= Error-prone task (e.g. cut-elimination)
= Many open problems
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Finding an analytic calculus and useful semantics for a logic

m Ad hoc procedures
= (Too?) Many papers are written on similar results
= Error-prone task (e.g. cut-elimination)
= Many open problems

‘ General and automated procedures are desirable! ‘




Paraconsistent logics

"Inconsistency-tolerant” non-classical logics.
m Within classical logic, contradictions entail everything
A -AFB

m Paraconsistent logics allow “contradictory” but non-trivial
theories.

m Many applications in Computer Science: integration of
information from multiple sources, negotiations among agents
with conflicting goals, ...
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Internalize the concepts of consistency inside the object language
via the operator o with intuitive meaning oA: “A is consistent”.
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Internalize the concepts of consistency inside the object language
via the operator o with intuitive meaning oA: “A is consistent”.

Positive fragment of classical propositional logic CL™ extended
with suitable combinations of
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Motivating work

First modular approach for C-systems (A. Avron, B. Konikowska,
and A. Zamansky, LICS 2012)
Starting from a Hilbert calculus for a C-system:

(Step 1) Define a suitable semantics
= needs ingenuity!

(Step 2) Use the obtained semantics to define a sequent calculus



Motivating work

First modular approach for C-systems (A. Avron, B. Konikowska,
and A. Zamansky, LICS 2012)
Starting from a Hilbert calculus for a C-system:

(Step 1) Define a suitable semantics
= needs ingenuity!

(Step 2) Use the obtained semantics to define a sequent calculus

‘ Can we do more and can we do it in an automated way?




Our results

We identified a formal grammar generating (infinitely many)
axioms in the language of CL* with new unary connectives.

Example
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... and (infinitely) many more axioms . ..
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Our results

We identified a formal grammar generating (infinitely many)
axioms in the language of CL* with new unary connectives.

For any set of axioms generated by this grammar we provided
algorithms (and a PROLOG program):

(Step 1) to extract a corresponding sequent calculus

(Step 2) use the calculus to define a suitable semantics for the logic,
the semantics is used:
= to show the decidability of the logic
= to check the analyticity of the calculus




Step 1: From axioms to logical rules

Example

Axiom (n'\) (Y Ap) D (Y V—p)
Invertibility = (A p) D (=¥ V)
Invertibility (P A @)= Vg
Ackermann Lemma (Y A ) = ), —p

r,—\’L/):>A r,—\cp:>A
M=y Ap)=A

Equivalent logical rule



The generated rules

Q Q
T 1:

P T iog) = A T = o)A
, P P
Type 2 T U SA = %%, A
_ P P

Type 3: M) = A M= x0, A

m Premises Q contain (a subset of) {u, x, p, %o}
m Premises P contain (a subset of) {1, 1}



The generated rules

Q Q
T 1:

P T iog) = A T = o)A
, P P
Type 2 T U SA = %%, A
_ P P

Type 3: M) = A M= x0, A

m Premises Q contain (a subset of) {u, x, p, %o}
m Premises P contain (a subset of) {1, 1}

Adding logical rules to LK™: cut-free calculus? ‘




Useful semantics

Definition
A partial non-deterministic matrix (PNmatrix) M consists of:
(i) a set Vaq of truth values,
ii) a subset of YV of designated truth values, and
g
(iii) a truth-table orq : VR, — P(Vaq) for every n-ary connective o.

PNmatrices generalise the notion of non-deterministic matrices
(A. Avron, 2001) by allowing empty sets in the truth tables.



Why non-determinism?

Standard rules for classical negation and conjunction:

M= A, Moo= A
M-y =A = A,
My,o=A N=A¢yv = Ap
NLyYyAe=A =AY Ap
_n
B 1 1|1
1/0 1 0|0
0] 1 0 10
0 0|0
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Why non-determinism?

Standard rules for classical negation and conjunction:

M= A%
=Y =A
My, o= A
NYyANe=A
| A
- TTaf{o}
1] {0} 1 0| {0}
0| {1,0} 01| {0
0 0| {0}
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Step 2: Extracting PNmatrices

m Truth values Vo tuples of size = # of unary connectives +1

m New rules reduce the level of non-determinism

. P
Type 3: Fo) = A reduce the set of truth values V4
Type 2: P determine truth tables for x;
F, *i *j 1/} = A J
Type 1: Q determine truth tables for ¢

Mox(pop)= A



Example: Extracting a PNmatrix |

CL™ with one new unary connective —:
y

Vm = {<Ov 0>7 <03 1)7 <1’ 0)7 <17 1>}

m Rules introducing unary connectives reduce V4, e.g.:

My=A
M= -, A

Vm = {<07 0>7 <O7 1>7 <17O>7 <17 1>}
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Example: Extracting a PNmatrix IlI

Vm = {<07 1>7 <1’O>a <17 1>}

m Rules introducing formulas of the form ——t) determine the
truth table for -, e.g.:

My =A
T—0=A
- |
(0,1) | {40,1),(1,0),(1,1)}
(1,0) || {(0,1),(1,0),(1,1)}
(1,1) || {40,1),(1,0),(1,1)}




Example: Extracting a PNmatrix 1V

Vm = {<07 1>7 <1’O>a <17 1>}

m Rules introducing formulas of the form ——t) determine the
truth table for -, e.g.:

My =A
M-y =A
~ |
(0,1) {(1,0)}
(1,0) {0,1)}
(1,1) || {(1,0),(1,1)}




Paralyzer (PARAconsistent logic anaLYZER)

Input: Axioms A according to our grammar. Output:
m Proof Theory: sequent calculus for CL™ with A

m Semantics: truth tables (using PNmatrices)

Output Paralyzer for (*2' a & "*2' b) -> *2'(a -> b)

http://www.logic.at/staff/lara/tinc/webparalyzer /paralyzer.html



Semantics at work

All our logics are decidable.

A generated calculus is “analytic” iff the corresponding PNmatrix
does not have empty sets in the truth tables of the connectives.




Semantics at work

All our logics are decidable.

A generated calculus is “analytic” iff the corresponding PNmatrix
does not have empty sets in the truth tables of the connectives.

What to do if there is an empty set?

m Transform the PNmatrix into a finite family of Nmatrices

m Apply the method in (A. Avron et al., 2006) and produce a
family of cut-free sequent calculi.



Open problems and work in progress

m Extend the grammar
E.g. (Kamide 2009, 2012, Kamide and Wansing 2012)
S~ (@AB) D ~aV o~ B
~oves (a0 — B) D al v 3,
~ (@A B) D~ av ~ B (with j odd), ...
m Consider "intuitionistic” -based paraconsistent logics

m First-order logics



The big picture

Theory and tools for the investigation of non-classical logics

m Systematic introduction of analytic calculi
m Their exploitation

new semantic foundations (e.g. this work)
decidability proofs (e.g. this work)
standard completeness

properties of algebraic structures
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" Non-classical Proofs: Theory, Applications and Tools", research
project 2012-2017 (START prize — Austrian Research Fund)



