
Automated Support for the Investigation of
Paraconsistent and Other Logics

Agata Ciabattoni

Vienna University of Technology

joint work with O. Lahav, L. Spendier and A. Zamansky



Non-classical logics

are usually introduced/described using Hilbert systems.

Their usefulness depend on the existence of:

(i) an analytic calculus, i.e. where proof search proceeds by
step-wise decomposition of the formulas to be proved

(ii) an intuitive semantics that provides insight into the logic



Non-classical logics

are usually introduced/described using Hilbert systems.

Their usefulness depend on the existence of:

(i) an analytic calculus, i.e. where proof search proceeds by
step-wise decomposition of the formulas to be proved

(ii) an intuitive semantics that provides insight into the logic



State of the art

Finding an analytic calculus and useful semantics for a logic

Ad hoc procedures
⇒ (Too?) Many papers are written on similar results
⇒ Error-prone task (e.g. cut-elimination)
⇒ Many open problems

General and automated procedures are desirable!



State of the art

Finding an analytic calculus and useful semantics for a logic

Ad hoc procedures
⇒ (Too?) Many papers are written on similar results
⇒ Error-prone task (e.g. cut-elimination)
⇒ Many open problems

General and automated procedures are desirable!



Paraconsistent logics

”Inconsistency-tolerant” non-classical logics.

Within classical logic, contradictions entail everything

A,¬A ` B

Paraconsistent logics allow “contradictory” but non-trivial
theories.

Many applications in Computer Science: integration of
information from multiple sources, negotiations among agents
with conflicting goals, . . .



Examples: C-systems

Internalize the concepts of consistency inside the object language
via the operator ◦ with intuitive meaning ◦A: “A is consistent”.

Positive fragment of classical propositional logic CL+ extended
with suitable combinations of

(n1) ψ ∨ ¬ψ (n2) ψ ⊃ (¬ψ ⊃ ϕ)
(c) ¬¬ψ ⊃ ψ (e) ψ ⊃ ¬¬ψ
(nl
∧) ¬(ψ ∧ ϕ) ⊃ (¬ψ ∨ ¬ϕ) (nr

∧) (¬ψ ∨ ¬ϕ) ⊃ ¬(ψ ∧ ϕ)
(nl
∨) ¬(ψ ∨ ϕ) ⊃ (¬ψ ∧ ¬ϕ) (nr

∨) (¬ψ ∧ ¬ϕ) ⊃ ¬(ψ ∨ ϕ)
(nl
⊃) ¬(ψ ⊃ ϕ) ⊃ (ψ ∧ ¬ϕ) (nr

⊃) (ψ ∧ ¬ϕ) ⊃ ¬(ψ ⊃ ϕ)
(b) ψ ⊃ (¬ψ ⊃ (◦ψ ⊃ ϕ)) (r�) ◦(ψ � ϕ) ⊃ (◦ψ ∨ ◦ϕ)
(k) ◦ψ ∨ (ψ ∧ ¬ψ) (i) ¬◦ψ ⊃ (ψ ∧ ¬ψ)
(o1
�) ◦ψ ⊃ ◦(ψ � ϕ) (o2

�) ◦ϕ ⊃ ◦(ψ � ϕ)
(a�) (◦ψ ∧ ◦ϕ) ⊃ ◦(ψ � ϕ) (a¬) ◦ψ ⊃ ◦¬ψ

with � = ∧,∨,⊃



Examples: C-systems

Internalize the concepts of consistency inside the object language
via the operator ◦ with intuitive meaning ◦A: “A is consistent”.

Positive fragment of classical propositional logic CL+ extended
with suitable combinations of

(n1) ψ ∨ ¬ψ (n2) ψ ⊃ (¬ψ ⊃ ϕ)
(c) ¬¬ψ ⊃ ψ (e) ψ ⊃ ¬¬ψ
(nl
∧) ¬(ψ ∧ ϕ) ⊃ (¬ψ ∨ ¬ϕ) (nr

∧) (¬ψ ∨ ¬ϕ) ⊃ ¬(ψ ∧ ϕ)
(nl
∨) ¬(ψ ∨ ϕ) ⊃ (¬ψ ∧ ¬ϕ) (nr

∨) (¬ψ ∧ ¬ϕ) ⊃ ¬(ψ ∨ ϕ)
(nl
⊃) ¬(ψ ⊃ ϕ) ⊃ (ψ ∧ ¬ϕ) (nr

⊃) (ψ ∧ ¬ϕ) ⊃ ¬(ψ ⊃ ϕ)
(b) ψ ⊃ (¬ψ ⊃ (◦ψ ⊃ ϕ)) (r�) ◦(ψ � ϕ) ⊃ (◦ψ ∨ ◦ϕ)
(k) ◦ψ ∨ (ψ ∧ ¬ψ) (i) ¬◦ψ ⊃ (ψ ∧ ¬ψ)
(o1
�) ◦ψ ⊃ ◦(ψ � ϕ) (o2

�) ◦ϕ ⊃ ◦(ψ � ϕ)
(a�) (◦ψ ∧ ◦ϕ) ⊃ ◦(ψ � ϕ) (a¬) ◦ψ ⊃ ◦¬ψ

with � = ∧,∨,⊃



Motivating work

First modular approach for C-systems (A. Avron, B. Konikowska,
and A. Zamansky, LICS 2012)

Starting from a Hilbert calculus for a C-system:

(Step 1) Define a suitable semantics
⇒ needs ingenuity!

(Step 2) Use the obtained semantics to define a sequent calculus

Can we do more and can we do it in an automated way?



Motivating work

First modular approach for C-systems (A. Avron, B. Konikowska,
and A. Zamansky, LICS 2012)

Starting from a Hilbert calculus for a C-system:

(Step 1) Define a suitable semantics
⇒ needs ingenuity!

(Step 2) Use the obtained semantics to define a sequent calculus

Can we do more and can we do it in an automated way?



Our results

We identified a formal grammar generating (infinitely many)
axioms in the language of CL+ with new unary connectives.
Example

(n1) ψ ∨ ¬ψ (n2) ψ ⊃ (¬ψ ⊃ ϕ)
(c) ¬¬ψ ⊃ ψ (e) ψ ⊃ ¬¬ψ
(nl
∧) ¬(ψ ∧ ϕ) ⊃ (¬ψ ∨ ¬ϕ) (nr

∧) (¬ψ ∨ ¬ϕ) ⊃ ¬(ψ ∧ ϕ)
(nl
∨) ¬(ψ ∨ ϕ) ⊃ (¬ψ ∧ ¬ϕ) (nr

∨) (¬ψ ∧ ¬ϕ) ⊃ ¬(ψ ∨ ϕ)
(nl
⊃) ¬(ψ ⊃ ϕ) ⊃ (ψ ∧ ¬ϕ) (nr

⊃) (ψ ∧ ¬ϕ) ⊃ ¬(ψ ⊃ ϕ)
(b) ψ ⊃ (¬ψ ⊃ (◦ψ ⊃ ϕ)) (r�) ◦(ψ � ϕ) ⊃ (◦ψ ∨ ◦ϕ)
(k) ◦ψ ∨ (ψ ∧ ¬ψ) (i) ¬◦ψ ⊃ (ψ ∧ ¬ψ)
(o1
�) ◦ψ ⊃ ◦(ψ � ϕ) (o2

�) ◦ϕ ⊃ ◦(ψ � ϕ)
(a�) (◦ψ ∧ ◦ϕ) ⊃ ◦(ψ � ϕ) (a¬) ◦ψ ⊃ ◦¬ψ

. . . and (infinitely) many more axioms . . .



Our results

We identified a formal grammar generating (infinitely many)
axioms in the language of CL+ with new unary connectives.

For any set of axioms generated by this grammar we provided
algorithms (and a PROLOG program):

(Step 1) to extract a corresponding sequent calculus

(Step 2) use the calculus to define a suitable semantics for the logic,
the semantics is used:
⇒ to show the decidability of the logic
⇒ to check the analyticity of the calculus



Our results

We identified a formal grammar generating (infinitely many)
axioms in the language of CL+ with new unary connectives.

For any set of axioms generated by this grammar we provided
algorithms (and a PROLOG program):

(Step 1) to extract a corresponding sequent calculus

(Step 2) use the calculus to define a suitable semantics for the logic,

the semantics is used:
⇒ to show the decidability of the logic
⇒ to check the analyticity of the calculus



Our results

We identified a formal grammar generating (infinitely many)
axioms in the language of CL+ with new unary connectives.

For any set of axioms generated by this grammar we provided
algorithms (and a PROLOG program):

(Step 1) to extract a corresponding sequent calculus

(Step 2) use the calculus to define a suitable semantics for the logic,
the semantics is used:
⇒ to show the decidability of the logic
⇒ to check the analyticity of the calculus



Step 1: From axioms to logical rules

Example

Axiom (nl
∧) ¬(ψ ∧ ϕ) ⊃ (¬ψ ∨ ¬ϕ)

Invertibility ⇒ ¬(ψ ∧ ϕ) ⊃ (¬ψ ∨ ¬ϕ)

Invertibility ¬(ψ ∧ ϕ)⇒ ¬ψ ∨ ¬ϕ

Ackermann Lemma ¬(ψ ∧ ϕ)⇒ ¬ψ,¬ϕ

Equivalent logical rule
Γ,¬ψ ⇒ ∆ Γ,¬ϕ⇒ ∆

Γ,¬(ψ ∧ ϕ)⇒ ∆



The generated rules

Type 1:
Q

Γ, ?(ψ � ϕ)⇒ ∆
Q

Γ⇒ ?(ψ � ϕ),∆

Type 2: P
Γ, ? ? ψ ⇒ ∆

P
Γ⇒ ? ? ψ,∆

Type 3: P
Γ, ?ψ ⇒ ∆

P
Γ⇒ ?ψ,∆

Premises Q contain (a subset of) {ψ, ?ψ, ϕ, ?ϕ}
Premises P contain (a subset of) {ψ, ?ψ}

Adding logical rules to LK+: cut-free calculus?



The generated rules

Type 1:
Q

Γ, ?(ψ � ϕ)⇒ ∆
Q

Γ⇒ ?(ψ � ϕ),∆

Type 2: P
Γ, ? ? ψ ⇒ ∆

P
Γ⇒ ? ? ψ,∆

Type 3: P
Γ, ?ψ ⇒ ∆

P
Γ⇒ ?ψ,∆

Premises Q contain (a subset of) {ψ, ?ψ, ϕ, ?ϕ}
Premises P contain (a subset of) {ψ, ?ψ}

Adding logical rules to LK+: cut-free calculus?



Useful semantics

Definition

A partial non-deterministic matrix (PNmatrix) M consists of:

(i) a set VM of truth values,

(ii) a subset of VM of designated truth values, and

(iii) a truth-table �M : Vn
M → P(VM) for every n-ary connective �.

PNmatrices generalise the notion of non-deterministic matrices
(A. Avron, 2001) by allowing empty sets in the truth tables.



Why non-determinism?

Standard rules for classical negation and conjunction:

Γ⇒ ∆, ψ

Γ,¬ψ ⇒ ∆

Γ, ψ ⇒ ∆

Γ⇒ ∆,¬ψ

Γ, ψ, ϕ⇒ ∆

Γ, ψ ∧ ϕ⇒ ∆

Γ⇒ ∆, ψ Γ⇒ ∆, ϕ

Γ⇒ ∆, ψ ∧ ϕ

¬
1 0
0 1

∧
1 1 1
1 0 0
0 1 0
0 0 0



Why non-determinism?

Standard rules for classical negation and conjunction:

Γ⇒ ∆, ψ

Γ,¬ψ ⇒ ∆

Γ, ψ ⇒ ∆

Γ⇒ ∆,¬ψ

Γ, ψ, ϕ⇒ ∆

Γ, ψ ∧ ϕ⇒ ∆

Γ⇒ ∆, ψ Γ⇒ ∆, ϕ

Γ⇒ ∆, ψ ∧ ϕ

¬
1 0
0 ???

∧
1 1 ???
1 0 0
0 1 0
0 0 0



Why non-determinism?

Standard rules for classical negation and conjunction:

Γ⇒ ∆, ψ

Γ,¬ψ ⇒ ∆

Γ, ψ ⇒ ∆

Γ⇒ ∆,¬ψ

Γ, ψ, ϕ⇒ ∆

Γ, ψ ∧ ϕ⇒ ∆

Γ⇒ ∆, ψ Γ⇒ ∆, ϕ

Γ⇒ ∆, ψ ∧ ϕ

¬
1 {0}
0 {1,0}

∧
1 1 {1, 0}
1 0 {0}
0 1 {0}
0 0 {0}



Step 2: Extracting PNmatrices

Truth values VM: tuples of size = # of unary connectives +1

New rules reduce the level of non-determinism

Type 3: P
Γ, ?ψ ⇒ ∆

reduce the set of truth values VM

Type 2: P
Γ, ?i ?j ψ ⇒ ∆

determine truth tables for ?j

Type 1:
Q

Γ, ?(ψ � ϕ)⇒ ∆
determine truth tables for �



Step 2: Extracting PNmatrices

Truth values VM: tuples of size = # of unary connectives +1

New rules reduce the level of non-determinism

Type 3: P
Γ, ?ψ ⇒ ∆

reduce the set of truth values VM

Type 2: P
Γ, ?i ?j ψ ⇒ ∆

determine truth tables for ?j

Type 1:
Q

Γ, ?(ψ � ϕ)⇒ ∆
determine truth tables for �



Example: Extracting a PNmatrix I

CL+ with one new unary connective ¬:

VM := {〈0, 0〉, 〈0, 1〉, 〈1, 0〉, 〈1, 1〉}

Rules introducing unary connectives reduce VM, e.g.:

Γ, ψ ⇒ ∆

Γ⇒ ¬ψ,∆

VM := {〈0, 0〉, 〈0, 1〉, 〈1, 0〉, 〈1, 1〉}



Example: Extracting a PNmatrix II

CL+ with one new unary connective ¬:

VM := {〈0, 0〉, 〈0, 1〉, 〈1, 0〉, 〈1, 1〉}

Rules introducing unary connectives reduce VM, e.g.:

Γ, ψ ⇒ ∆

Γ⇒ ¬ψ,∆

VM := {〈0, 1〉, 〈1, 0〉, 〈1, 1〉}



Example: Extracting a PNmatrix III

VM := {〈0, 1〉, 〈1, 0〉, 〈1, 1〉}

Rules introducing formulas of the form ¬¬ψ determine the
truth table for ¬, e.g.:

Γ, ψ ⇒ ∆

Γ,¬¬ψ ⇒ ∆

¬
〈0, 1〉 {〈0, 1〉, 〈1, 0〉, 〈1, 1〉}
〈1, 0〉 {〈0, 1〉, 〈1, 0〉, 〈1, 1〉}
〈1, 1〉 {〈0, 1〉, 〈1, 0〉, 〈1, 1〉}



Example: Extracting a PNmatrix IV

VM := {〈0, 1〉, 〈1, 0〉, 〈1, 1〉}

Rules introducing formulas of the form ¬¬ψ determine the
truth table for ¬, e.g.:

Γ, ψ ⇒ ∆

Γ,¬¬ψ ⇒ ∆

¬
〈0, 1〉 {〈1, 0〉}
〈1, 0〉 {〈0, 1〉}
〈1, 1〉 {〈1, 0〉, 〈1, 1〉}



Paralyzer (PARAconsistent logic anaLYZER)

Input: Axioms A according to our grammar. Output:

Proof Theory: sequent calculus for CL+ with A
Semantics: truth tables (using PNmatrices)

http://www.logic.at/staff/lara/tinc/webparalyzer/paralyzer.html



Semantics at work

Theorem

All our logics are decidable.

Theorem

A generated calculus is “analytic” iff the corresponding PNmatrix
does not have empty sets in the truth tables of the connectives.

What to do if there is an empty set?

Transform the PNmatrix into a finite family of Nmatrices

Apply the method in (A. Avron et al., 2006) and produce a
family of cut-free sequent calculi.



Semantics at work

Theorem

All our logics are decidable.

Theorem

A generated calculus is “analytic” iff the corresponding PNmatrix
does not have empty sets in the truth tables of the connectives.

What to do if there is an empty set?

Transform the PNmatrix into a finite family of Nmatrices

Apply the method in (A. Avron et al., 2006) and produce a
family of cut-free sequent calculi.



Open problems and work in progress

Extend the grammar
E.g. (Kamide 2009, 2012, Kamide and Wansing 2012)
¬ ∼ (α ∧ β) ⊃ ¬ ∼ α ∨ ¬ ∼ β,
∼∼∼ (α→ β) ⊃∼∼ α∧ ∼∼∼ β,
∼j (α ∧ β) ⊃∼j α∨ ∼j β (with j odd), . . .

Consider ”intuitionistic”-based paraconsistent logics

First-order logics



The big picture

Theory and tools for the investigation of non-classical logics

Systematic introduction of analytic calculi

Their exploitation

new semantic foundations (e.g. this work)
decidability proofs (e.g. this work)
standard completeness
properties of algebraic structures
...

”Non-classical Proofs: Theory, Applications and Tools”, research
project 2012-2017 (START prize – Austrian Research Fund)



The big picture

Theory and tools for the investigation of non-classical logics

Systematic introduction of analytic calculi

Their exploitation

new semantic foundations (e.g. this work)
decidability proofs (e.g. this work)
standard completeness
properties of algebraic structures
...

”Non-classical Proofs: Theory, Applications and Tools”, research
project 2012-2017 (START prize – Austrian Research Fund)


