What we have done so far

- DFAs and regular languages
- NFAs and their equivalence to DFAs
- Regular expressions.
- Regular expressions capture exactly regular languages:
 - Construct a NFA from a regular expression.
 - Left to do: Construct a regular expression from an NFA
Constructing a regular expression from an NFA

What can’t DFAs do? Non Regular Languages: Two Approaches
1. Pumping Lemma
2. Myhill-Nerode Theorem

Algorithmic questions for NFAs

Context Free Grammars (time permitting)

Sipser’s book, 1.4, 2.1, 2.2
Hopcroft and Ullman, 3.4
We now define generalized non-deterministic finite automata (GNFA).

An NFA:

- Each transition labeled with a symbol or ε,
- reads zero or one symbols,
- takes matching transition, if any.

A GNFA:

- Each transition labeled with a regular expression,
- reads zero or more symbols,
- takes transition whose regular expression matches string, if any.

GNFAs are natural generalization of NFAs.
A Special Form of GNFA

- **Start state** has outgoing arrows to **every** other state, but no incoming arrows.
- **Unique accept state** has incoming arrows from **every** other state, but no outgoing arrows.
- Except for start and accept states, an arrow goes from **every state** to **every other state**, including itself.

Easy to transform any GNFA into special form.

Really? How? ...
Converting DFA to Regular Expression

Strategy – sequence of equivalent transformations

- given a k-state DFA
- transform into $(k + 2)$-state GNFA
- while GNFA has more than 2 states, transform it into equivalent GNFA with one fewer state
- eventually reach 2-state GNFA (states are just start and accept).
- label on single transition is the desired regular expression.

Based on slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.
Converting Strategy \(\leftrightarrow\)

- **3-state DFA**
- **5-state GNFA**
- **4-state GNFA**
- **3-state GNFA**
- **2-state GNFA**

Regular expression

Based on slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.
We remove one state q_r, and then repair the machine by altering regular expression of other transitions.
Formal Treatment – GNFA Definition

- q_s is start state.
- q_a is accept state.
- \mathcal{R} is collection of regular expressions over Σ.

The transition function is

$$\delta : (Q - \{q_a\}) \times (Q - \{q_s\}) \rightarrow \mathcal{R}$$

If $\delta(q_i, q_j) = R$, then arrow from q_i to q_j has label R.

Arrows connect every state to every other state except:
- no arrow from q_a
- no arrow to q_s
Formal Definition

A generalized deterministic finite automaton (GNFA) is
\((Q, \Sigma, \delta, q_s, q_a)\), where

- \(Q\) is a finite set of states,
- \(\Sigma\) is the alphabet,
- \(\delta : (Q - \{q_a\}) \times (Q - \{q_s\}) \rightarrow \mathcal{R}\) is the transition function.
- \(q_s \in Q\) is the start state, and
- \(q_a \in Q\) is the unique accept state.
A Formal Model of GNFA Computation

A GNFA accepts a string \(w \in \Sigma^* \) if there exists a parsing of \(w = w_1w_2 \cdots w_k \), where each \(w_i \in \Sigma^* \), and there exists a sequence of states \(q_0, \ldots, q_k \) such that

- \(q_0 = q_s \), the start state,
- \(q_k = q_a \), the accept state, and
- for each \(i \), \(w_i \in \mathcal{L}(R_i) \), where \(R_i = \delta(q_{i-1}, q_i) \).

(namely \(w_i \) is an element of the language described by the regular expression \(R_i \).)
The CONVert Algorithm

Given GNFA G, convert it to equivalent GNFA G'.

- Let k be the number of states of G.
- If $k = 2$, return the regular expression labeling the only arrow.
- If $k > 2$, select any q_r distinct from q_s and q_a.
- Let $Q' = Q - \{q_r\}$.
- For any $q_i \in Q' - \{q_a\}$ and $q_j \in Q' - \{q_s\}$, let
 - $R_1 = \delta(q_i, q_r)$, $R_2 = \delta(q_r, q_r)$,
 - $R_3 = \delta(q_r, q_j)$, and $R_4 = \delta(q_i, q_j)$.
- Define $\delta'(q_i, q_j) = (R_1)(R_2)^*(R_3) \cup (R_4)$.
- Denote the resulting $k - 1$ states GNFA by G'.

Based on slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.
The CONVERT Procedure

We define the recursive procedure `CONVERT(·)`:

Given GNFA G.

- Let k be the number of states of G.
- If $k = 2$, return the regular expression labeling the only arrow of G.
- If $k > 2$, let G' be the $k - 1$ states GNFA produced by the algorithm.

- Return `CONVERT(G')`.
Theorem: \(G \) and \(\text{CONVERT}(G) \) accept the same language.

Proof: By induction on number of states of \(G \)

Basis: When there are only 2 states, there is a single label, which characterizes the strings accepted by \(G \).

Induction Step: Assume claim for \(k - 1 \) states, prove for \(k \).

Let \(G' \) be the \(k - 1 \) states GNFA produced from \(G \) by the algorithm.
G and G' accept the same language

By the induction hypothesis, G' and $\text{CONVERT}(G')$ accept the same language.

On input G, the procedure returns $\text{CONVERT}(G')$.

So to complete the proof, it suffices to show that G and G' accept the same language.

Three steps:

1. If G accepts the string w, then so does G'.
2. If G' accepts the string w, then so does G.
3. Therefore G and G' are equivalent.
Claim: If G accepts w, then so does G':

- If G accepts w, then there exists a “path of states” $q_s, q_1, q_2, \ldots, q_a$ traversed by G on w, leading to the accept state q_a.

- If q_r does not appear on path, then G' clearly accepts w (recall that each new regular expression on each edge of G' contains the old regular expression in the “union part”).

- If q_r does appear, consider the regular expression corresponding to $\ldots q_i, q_r, \ldots, q_r, q_j \ldots$. The new regular expression $(R_{i,r})(R_{r,r})^*(R_{r,j})$ linking q_i and q_j encompasses any such string.

In both cases, the claim holds.
Claim: If \(G' \) accepts \(w \), then so does \(G \).

Proof: Each transition from \(q_i \) to \(q_j \) in \(G' \) corresponds to a transition in \(G \), either directly or through \(q_r \). Thus if \(G' \) accepts \(w \), then so does \(G \).

This completes the proof of the claim that \(L(G) = L(G') \).

Combined with the induction hypothesis, this shows that \(G \) and the regular expression \(\text{CONVERT}(G) \) accept the same language.

This, in turn, proves our remarkable claim: A language, \(L \), is described by a regular expression, \(R \), if and only if \(L \) is regular.
What We Just Completed

Thm.: A language, L, is described by a regular expression, R, if and only if L is regular.

\Rightarrow construct an NFA accepting R.

\Leftarrow Given a regular language, L, construct an equivalent regular expression
Negative Results

We have made quite some progress understanding what finite automata can do. But what can’t they do? Is there a DFA over \(\{0, 1\} \) that accepts

- \(B = \{0^n1^n|n \geq 0\} \)
- \(C = \{w|w \text{ has an equal number of 0’s and 1’s}\} \)
- \(D = \{w|w \text{ has an equal number of occurrences of 01 and 10 substrings}\} \)

Consider \(B \):

- DFA must “remember” how many 0’s it has seen
- impossible with finite state.

The others are exactly the same.
Negative Results

Is there a DFA over \(\{0, 1\} \) that accepts

- \(B = \{0^n1^n | n \geq 0\} \)
- \(C = \{w | w \) has an equal number of 0’s and 1’s\} \)
- \(D = \{w | w \) is binary and has an equal number of occurrences of 01 and 10 substrings\} \)

Consider \(B \):

- DFA must “remember” how many 0’s it has seen
- impossible with finite state.

The others are exactly the same...

Question: This is sound intuition. But is this a proof?

Answer: No. \(D \) is regular!???

(See problem 7 in hw1...)

Based on slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.
Pumping Lemma

We will show that all regular languages have a special property.

- Suppose L is regular.
- If a string in L is longer than a certain critical length ℓ (the pumping length),
- then it can be “pumped” to a longer string by repeating an internal substring any number of times.
- The longer string must be in L too.
Pumping Lemma

Theorem: If L is a regular language, then there is an $\ell > 0$ (the pumping length), where if s is any string in L of length $|s| \geq \ell$, then s may be divided into three pieces $s = xyz$ such that

- for every $i \geq 0$, $xy^iz \in L$,
- $|y| > 0$, and
- $|xy| \leq \ell$.

Remarks: Without the second condition, the theorem would be trivial. The third condition is technical and sometimes useful.
Pumping Lemma – Proof

Let \(M = (Q, \Sigma, \delta, q_1, F) \) be a DFA that accepts \(L \).

Let \(\ell = |Q| \), the number of states of \(M \).

If \(s \in L \) has length at least \(\ell \), consider the sequence of states \(M \) goes through as it reads \(s \):

\[
\begin{array}{cccccccc}
s_1 & s_2 & s_3 & s_4 & s_5 & s_6 & \ldots & s_n \\
\uparrow & \uparrow \\
q_1 & q_{20} & q_9 & q_{17} & q_{12} & q_{13} & q_9 & q_2 & q_5 \in F
\end{array}
\]

Since the sequence of states is of length \(|s| + 1 > \ell \), and there are only \(\ell \) different states in \(Q \), at least one state is repeated (by the pigeonhole principle).
Pumping Lemma – Proof (cont.)

Write down $s = xyz$

By inspection, M accepts xy^kz for every $k \geq 0$.

$|y| > 0$ because the state (q_9 in figure) is repeated (this is a DFA, no ϵ-transitions...).

To ensure that $|xy| \leq \ell$, pick first state repetition, which must occur no later than $\ell + 1$ states in sequence.
An Application

Theorem: The language $B = \{0^n1^n|n > 0\}$ is not regular.

Proof: By contradiction. Suppose B is regular, accepted by DFA M. Let ℓ be the pumping length.

Consider the string $s = 0^\ell 1^\ell$.

By pumping lemma $s = xyz$, where $xy^kz \in B$ for every k.

If y is all 0, then xy^kz has too many 0’s.

If y is all 1, then xy^kz has too many 1’s.

If y is mixed, then xy^kz is not of right form.
Another Application - first attempt

Theorem: The language
\[C = \{ w \in \{0, 1\}^* | w \text{ has an equal number of 0's and 1's} \} \]
is not regular.

Proof: By contradiction. Suppose \(C \) is regular, accepted by DFA \(M \). Let \(\ell \) be the pumping length.

- The string to be pumped needs to be chosen carefully!
- Let’s try the string \(s = (01)\ell \).
- By pumping lemma \(s = xyz \), where \(xy^kz \in C \) for every \(k \).
- But unfortunately we cannot reach a contradiction, as the chosen string can be pumped as follows:
 \[x = \epsilon, \; y = 01, \; z = (01)^{\ell-1} \]
- Then indeed \(xy^iz \in L(M) \) for every \(i \geq 0 \)...
Another Application - second attempt

Theorem: The language
\[C = \{ w \in \{0, 1\}^* | w \text{ has an equal number of 0's and 1's} \} \] is not regular.

Proof: By contradiction. Suppose \(C \) is regular, accepted by DFA \(M \). Let \(\ell \) be the pumping length.

- Consider the string \(s = 0^\ell 1^\ell \).
- By pumping lemma \(s = xyz \), where \(xy^kz \in C \) for every \(k \).
- If \(y \) is all 0, then \(xy^kz \) has too many 0’s.
- If \(y \) is all 1, then \(xy^kz \) has too many 1’s.
- If \(y \) is mixed, then since \(|xy| \leq \ell \), \(y \) must be all 0’s, contradiction.

Based on slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.
Yet Another Application

Theorem: The language $L_3 \subset \{1\}^*$, which contains all strings whose length is a **perfect square**, is not regular.

\[
L_3 = \{1^{n^2} \mid n \geq 0\}
\]

Proof:

- Assume for contradiction that L_3 is regular. Let ℓ be the pumping length.

- Take the string $s = 1^{\ell^2}$. By the pumping lemma, $s = xyz$, where for any $i \geq 0$, $xy^iz \in L_3$.

- Note the growing gap between successive members of the sequence of perfect squares:

\[
0, 1, 4, 9, 16, 25, 36, 49, \ldots,
\]
Yet Another Application - cont.

- We notice: large members of the sequence cannot be near each other!

- Now consider the strings $xy^i z$ and $xy^{i+1} z$. Their length differs only in the length of y. If we choose a large enough i, these two strings cannot be both in L_3, as they are too close!

- If $m = n^2$, then the difference between it and the next perfect square is:

$$
(n + 1)^2 - n^2 = n^2 + 2n + 1 - n^2 = 2n + 1 = 2\sqrt{m} + 1
$$

- By the pumping lemma, both strings $xy^i z$ and $xy^{i+1} z$ are perfect squares. But if we take $|xy^i z| = m$, it means that they cannot be both perfect squares if $|y| < 2\sqrt{|xy^i z|} + 1$.
Yet Another Application - cont.

We can now calculate the value for i that leads to a contradiction:

- Recall that $|y| \leq |s| = l^2$
- Take $i = l^4$, then:

$$|y| \leq l^2 = \sqrt{l^4} < 2\sqrt{l^4} + 1 \leq 2\sqrt{|xy^i z|} + 1$$

- Thus $xy^l z$ and $xy^{l+1} z$ cannot be both perfect squares - a contradiction!
And now: an alternative technique for showing a language is not regular.
The Equivalence Relation \sim_L

Let $L \subseteq \Sigma^*$ be a language.

Define an equivalence relation \sim_L on pairs of strings:
Let $x, y \in \Sigma^*$. We say that $x \sim_L y$ if for every string $z \in \Sigma^*$, $xz \in L$ if and only if $yz \in L$.

It is easy to see that \sim_L is indeed an equivalence relation (reflexive, symmetric, transitive) on Σ^*.

In addition, if $x \sim_L y$ then for every string $z \in \Sigma^*$, $xz \sim_L yz$ as well (this is called right invariance).
The Equivalence Relation \sim_L

Like every equivalence relation, \sim_L partitions Σ^* to (disjoint) equivalence classes. For every string x, let $[x] \subseteq \Sigma^*$ denote its equivalence class w.r.t. \sim_L (if $x \sim_L y$ then $[x] = [y]$ – equality of sets).

Question is, how many equivalence classes does \sim_L induce?

In particular, is the number of equivalence classes of \sim_L finite or infinite?

Well, it could be either finite or infinite. This depends on the language L.
Example: \(L = (ab \cup ba)^* \)

\(\sim_L \) has the following four equivalence classes:

- \([\epsilon] = L\)
- \([a] = La\)
- \([b] = Lb\)
- \([aa] = L(aa \cup bb)\Sigma^*\)
Classes of \sim_L: More Examples

- Let $L_1 \subset \{0, 1\}^*$ contain all strings where the number of 1s is divisible by 4. Then \sim_{L_1} has finitely many equivalence classes.

- Let $L_2 = L(0^*10^*)$. Then \sim_{L_2} has finitely many equivalence classes.

- Let $L_3 \subset \{0, 1\}^*$ contain all strings of the form 0^n1^n. Then \sim_{L_3} has infinitely many equivalence classes.
Myhill-Nerode Theorem

Theorem: Let $L \subseteq \Sigma^*$ be a language. Then

L is regular $\iff \sim_L$ has finitely many equivalence classes.

Three specific consequences:

1. $L_1 \subseteq \{0, 1\}^*$ contains all strings where the number of 1s is divisible by 4. Then L_1 is regular.
2. $L_2 = L(0^*10^*)$ is regular.
3. $L_3 \subseteq \{0, 1\}^*$ contains all strings of the form 0^n1^n. Then L_2 is **not** regular.
Myhill-Nerode Theorem: Proof

Suppose L is regular. Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA accepting it. For every $x \in \Sigma^*$, let $\delta(q_0, x) \in Q$ be the state where the computation of M on input x ends.

The relation \sim_M on pairs of strings is defined as follows:

$x \sim_M y$ if $\delta(q_0, x) = \delta(q_0, y)$.

Clearly, \sim_M is an equivalence relation.

Furthermore, if $x \sim_M y$, then for every $z \in \Sigma^*$, also $xz \sim_M yz$. Therefore, $xz \in L$ if and only if $yz \in L$.

This means that $x \sim_M y \implies x \sim_L y$.

Based on slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.
The equivalence relation \sim_M has finitely many equivalence classes (at most the number of states in M).

We saw that $x \sim_M y \implies x \sim_L y$.

This means that the equivalence classes of \sim_M refine those of \sim_L.

Thus, the number of equivalence classes of \sim_M is greater or equal than the number of equivalence classes of \sim_L.

Therefore, \sim_L has finitely many equivalence classes, as desired.
Myhill-Nerode Theorem: Proof (cont.)

Suppose \sim_L has finitely many equivalence classes. We’ll construct a DFA M that accepts L.

Let $x_1, \ldots, x_n \in \Sigma^*$ be representatives for the finitely many equivalence classes of \sim_L.

The states of M are the equivalence classes $[x_1], \ldots, [x_n]$.

The transition function δ is defined as follows: For all $a \in \Sigma$, $\delta([x_i], a) = [x_ia]$ (the equivalence class of x_ia).

Why is δ well-defined? (Hint: right invariance: if $x \sim_L y$, then $xz \sim_L yz$).
The initial state is $[\varepsilon]$.

The accept states are $F = \{[x_i] \mid x_i \in L\}$.

Easy: On input $x \in \Sigma^*$, M ends at state $[x]$ (why?).

Therefore M accepts x iff $x \in L$ (why?).

So L is accepted by DFA, hence L is regular.
Context Switch
Q.: Given an NFA, N, and a string s, is $s \in L(N)$?

Answer: Construct the DFA equivalent to N and run it on w.

Q.: Is $L(N) = \emptyset$?

Answer: This is a reachability question in graphs: Is there a path in the states’ graph of N from the start state to some accepting state. There are simple, efficient algorithms for this task.
More Algorithmic Questions for NFAs

Q.: Is $L(N) = \Sigma^*$?

Answer: Check if $\overline{L(N)} = \emptyset$.

Q.: Given N_1 and N_2, is $L(N_1) \subseteq L(N_2)$?

Answer: Check if $L(N_2) \cap L(N_1) = \emptyset$.

Q.: Given N_1 and N_2, is $L(N_1) = L(N_2)$?

Answer: Check if $L(N_1) \subseteq L(N_2)$ and $L(N_2) \subseteq L(N_1)$.

In the future, we will see that for stronger models of computations, many of these problems cannot be solved by any algorithm.
Another, More Radical Context Switch

So far we saw

- finite automata,
- regular languages,
- regular expressions,
- Myhill-Nerode theorem and pumping lemma for regular languages.

We now introduce stronger machines and languages with more expressive power:

- pushdown automata,
- context-free languages,
- context-free grammars,
- pumping lemma for context-free languages.
Context-Free Grammars

An example of a context free grammar, G_1:

- $A \rightarrow 0A1$
- $A \rightarrow B$
- $B \rightarrow #$

Terminology:

- Each line is a substitution rule or production.
- Each rule has the form: symbol \rightarrow string. The left-hand symbol is a variable (usually upper-case).
- A string consists of variables and terminals.
- One variable is the start variable.
Rules for Generating Strings

- Write down the start variable (lhs of top rule).
- Pick a variable written down in current string and a derivation that starts with that variable.
- Replace that variable with right-hand side of that derivation.
- Repeat until no variables remain.
- Return final string (concatenation of terminals).

Process is inherently non deterministic.
Example

Grammar G_1:

- $A \rightarrow 0A1$
- $A \rightarrow B$
- $B \rightarrow \#$

Derivation with G_1:

\[
\begin{align*}
A & \Rightarrow 0A1 \\
& \Rightarrow 00A11 \\
& \Rightarrow 000A111 \\
& \Rightarrow 000B111 \\
& \Rightarrow 000\#111
\end{align*}
\]
Question: What strings can be generated in this way from the grammar G_1?
Answer: Exactly those of the form $0^n \#1^n$ ($n \geq 0$).
Context-Free Languages

The language generated in this way is called the language of the grammar.

For example, $L(G_1)$ is $\{0^n \#1^n \mid n \geq 0\}$.

Any language generated by a context-free grammar is called a context-free language.
A Useful Abbreviation

Rules with same variable on left hand side

\[
A \rightarrow 0A1 \\
A \rightarrow B
\]

are written as:

\[
A \rightarrow 0A1 \mid B
\]
English-like Sentences

A grammar G_2 to describe a few English sentences:

\[
\begin{align*}
<\text{SENTENCE}> & \rightarrow <\text{NOUN-PHRASE}> <\text{VERB}>
\\
<\text{NOUN-PHRASE}> & \rightarrow <\text{ARTICLE}> <\text{NOUN}>
\\
<\text{NOUN}> & \rightarrow \text{boy} | \text{girl} | \text{flower}
\\
<\text{ARTICLE}> & \rightarrow \text{a} | \text{the}
\\
<\text{VERB}> & \rightarrow \text{touches} | \text{likes} | \text{sees}
\end{align*}
\]
Deriving English-like Sentences

A specific derivation in G_2:

\[
\begin{align*}
< \text{SENTENCE} > & \Rightarrow < \text{NOUN-PHRASE} > < \text{VERB} > \\
& \Rightarrow < \text{ARTICLE} > < \text{NOUN} > < \text{VERB} > \\
& \Rightarrow \text{a} < \text{NOUN} > < \text{VERB} > \\
& \Rightarrow \text{a boy} < \text{VERB} > \\
& \Rightarrow \text{a boy sees}
\end{align*}
\]

More strings generated by G_2:

- a flower sees
- the girl touches
Derivation and Parse Tree

\[< \text{SENTENCE} > \Rightarrow < \text{NOUN-PHRASE} > < \text{VERB} > \]
\[\Rightarrow < \text{ARTICLE} > < \text{NOUN} > < \text{VERB} > \]
\[\Rightarrow \text{a} < \text{NOUN} > < \text{VERB} > \]
\[\Rightarrow \text{a boy} < \text{VERB} > \]
\[\Rightarrow \text{a boy sees} \]