Graph Theory

Homework assignment \#1
Due date: Sunday, November 15, 2015

Problem 1. Prove that for each $n \geqslant 1$, the number of graphs with vertex set $\{1, \ldots, n\}$ and all degrees even is $2\binom{n-1}{2}$.

Problem 2. Suppose that $n \geqslant 8$. Prove that every n-vertex graph graph with at least $6 n-20$ edges contains a subgraph with minimum degree at least 7 .

Problem 3. Let G be a graph with n vertices. Prove that G contains a cycle with a chord (an edge connecting nonconsecutive vertices of the cycle) if either
(a) $\delta(G) \geqslant 3$ or
(b) $|E(G)| \geqslant 2 n-3$ and $n \geqslant 4$.

Problem 4. Prove that every graph G with m edges admits a bipartition $V(G)=V_{1} \cup V_{2}$ such that the number of edges of G crossing between V_{1} and V_{2} is at least $m / 2$.

Problem 5. Let d_{1}, \ldots, d_{n} be positive integers. Prove that there exists a tree with degrees d_{1}, \ldots, d_{n} if and only if

$$
d_{1}+\ldots+d_{n}=2 n-2 .
$$

Problem 6. Prove that if T_{1}, \ldots, T_{k} are pairwise intersecting subtrees of a tree T, then T has a vertex that belongs to each of T_{1}, \ldots, T_{k}.

Problem 7. Prove that every graph G contains each tree with $\delta(G)$ edges as a subgraph.
Problem 8. Compute the number of spanning trees of the complete bipartite graph $K_{m, n}$.

Please do NOT submit written solutions to the following exercises:

Exercise 1. Show that a graph is bipartite if and only if it contains no odd cycles. In particular, all trees are bipartite.

Exercise 2. Suppose that $m \leqslant n$, let A be an $m \times n$ matrix and let B be an $n \times n$ matrix. Prove, using the Lindström-Gessel-Viennot lemma, the Cauchy-Binet formula:

$$
\operatorname{det} A B=\sum_{J \in\binom{[n]}{m}} \operatorname{det} A_{J} \cdot \operatorname{det} B_{J},
$$

where A_{J} is the $m \times m$ submatrix of A consisting of the columns indexed by J and B_{J} is the $m \times m$ submatrix of B consisting of the rows indexed by J.

Exercise 3. Show that the block graph of a connected graph is a tree.

