Graph Theory 0366-3267

Noga Alon, Michael Krivelevich Fall Semester 2011

Homework Assignment No. 4 Due: Jan. 25, 2012

1. Show that if

$$
3\binom{n}{k} 3^{-\binom{k}{2}}<1
$$

then there is a coloring of the edges of the complete graph on n vertices by 3 colors with no monochromatic clique of size k.
2. Let A be a set of $3 m$ points in the Euclidean plane, and suppose that the distance between any two of these points is smaller than $\sqrt{2}$. Prove that the number of pairs P, Q of points of of A so that the distance between P and Q is at least 1 does not exceed $3 m^{2}$.
3. Show that if the edges of a graph G can be covered by two trees then its chromatic number is at most 4 .
4. Let G be a simple graph with maximum degree 7 containing no clique of size 4 . Prove that the chromatic number of G is at most 6 .
Hint: Show first that one can delete from G a bipartite graph leaving each degree in what's left at most 3 .
5. Let G be a graph with chromatic number $\chi(G)=11$ and with no cycle of length at most 20. Show that the number of vertices of G exceeds the population of China (which is less than $1,400,000,000)$.
6. Let G be a 2 -connected, simple 5 -regular planar graph drawn in the plane so that every face contains the same number of edges. What is the number of vertices of G ? Prove your claim.

