Graph Theory 0366-3267

Noga Alon, Michael Krivelevich Fall Semester 2011

Homework Assignment No. 3 Due: Jan. 11, 2012

1. Let G be a connected, simple graph with an even number of edges. Prove, using Tutte's Theorem, that the set of edges of G can be partitioned into pairwise disjoint pairs, where each pair forms a path of length 2 .
2. Let $A=\left(a_{i, j}\right)$ be an n by n real matrix, where $n>1, a_{i, j} \geq 0$ for all i, j and the sum of elements in each row of A and the sum of elements in each column of A is exactly 1 . Prove that there is a permutation σ of $1,2, \ldots, n$ so that $a_{i, \sigma(i)}>\frac{1}{n^{2}}$ for all $1 \leq i \leq n$.
3. Let G be a simple 6 -regular graph on 127 vertices. What is the chromatic index $\chi^{\prime}(G)$ of G ? Prove your claim.
4. Prove that the edges of every bipartite graph with minimum degree δ can be colored by δ colors so that every vertex is incident with an edge of every color. (Note: the required coloring is not necessarily a proper edge coloring.)
5. Prove that for every integer k there is an integer $n=n(k)$ so that for any coloring of the set Z_{3}^{n} of all n-dimensional vectors with coordinates in Z_{3} by k colors, there are three distinct vectors $x, y, z \in Z_{3}^{n}$ having the same color so that $x_{i}+y_{i}+z_{i} \equiv 0(\bmod 3)$ for all $1 \leq i \leq n$. 6. (i) Is there a finite n so that every simple, connected graph on at least n vertices contains an induced subgraph with precisely 15 edges ? Prove or supply a counter-example.
(ii) Is there a finite n so that every simple, connected graph on at least n vertices contains an induced subgraph with precisely 19 edges ? Prove or supply a counter-example.
